JP2005069897A - Input detection device and test car - Google Patents

Input detection device and test car Download PDF

Info

Publication number
JP2005069897A
JP2005069897A JP2003300426A JP2003300426A JP2005069897A JP 2005069897 A JP2005069897 A JP 2005069897A JP 2003300426 A JP2003300426 A JP 2003300426A JP 2003300426 A JP2003300426 A JP 2003300426A JP 2005069897 A JP2005069897 A JP 2005069897A
Authority
JP
Japan
Prior art keywords
wheel
input detection
vehicle
input
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003300426A
Other languages
Japanese (ja)
Inventor
Yasumichi Wakao
泰通 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003300426A priority Critical patent/JP2005069897A/en
Publication of JP2005069897A publication Critical patent/JP2005069897A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an input detection device capable of detecting the input from the tread of the tire of a wheel with a simple constitution and a test car capable of measuring the input to the wheel nearly in the running state of an actual vehicle. <P>SOLUTION: The knuckle 5 which is non-revolving side member under the wheel spring is divided into a 1st knuckle member 51 which is connected with the hub 4 and the in-wheel motor 3 via the buffer mechanism 20, and a 2nd knuckle member 52 which is disposed in the suspension member 7 side and connected with the suspension arms 6a, 6b. The 1st knuckle member 51 and the 2nd knuckle member 52 are connected with the rectangular connection member 11 on which strain gauges Sx, Sy, and Sz are adhered while constituting the sensor of the input detection device 10, and the outputs of the strain gauges Sx, Sy, and Sz are sent to the input calculation means 12 of the input detection device 10 so as to calculate the force acting on the connection member 11, thereby measuring the force acting on the wheel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、路面から車輪に伝達される前後方向、左右方向、及び、上下方向の力を検出する入力検出装置と、走行中の車両における上記入力の方向や大きさを計測するための試験車両に関するものである。   The present invention relates to an input detection device for detecting front-rear direction, left-right direction, and vertical direction force transmitted from a road surface to a wheel, and a test vehicle for measuring the direction and magnitude of the input in a traveling vehicle. It is about.

従来、コーナリング性能等の車両の走行特性を試験する際には、車両に、例えば、トランスミッションの回転を検出する車速センサで車速を検出したり、操舵軸にトルクセンサを搭載して、操舵をアシストするためのアシストトルクを検出したり、あるいは、車両にヨーレートセンサを搭載して車両のヨー角速度(ヨーレート)を検出したりするとともに、車両の各車輪に加えられる制駆動力を検出して、上記検出された車速やトルク、あるいは、ヨーレートと上記制駆動力との関係を調べる方法が行われている。
一方、駆動輪では、路面から入力する前後方向の力、左右方向の力、及び、上下方向の力(車輪の三分力)がドライブシャフトにも伝播する。この影響をなくすためには、ハブとホイールとの間で発生する力を測定する必要がある。
Conventionally, when testing vehicle running characteristics such as cornering performance, the vehicle is detected by a vehicle speed sensor that detects the rotation of a transmission, for example, or a torque sensor is mounted on a steering shaft to assist steering. Or detecting a braking / driving force applied to each wheel of the vehicle while detecting a yaw angular velocity (yaw rate) of the vehicle by installing a yaw rate sensor in the vehicle. A method for examining the relationship between the detected vehicle speed and torque, or the yaw rate and the braking / driving force is used.
On the other hand, in the drive wheel, the front-rear direction force, the left-right direction force, and the up-down direction force (three-wheel force of the wheel) input from the road surface are also transmitted to the drive shaft. In order to eliminate this effect, it is necessary to measure the force generated between the hub and the wheel.

しかしながら、回転体に上記三分力を計測するための装置を試験車両に装着する場合には、上記装置から信号を取出すためにスリップリングが必要となるなど、装置が大型になってしまうといった問題点があった。更に、試験装置を装着することで、試験車両は通常の車両に対してバネ下が重くなるため、厳密な本来のタイヤ状態の正確な測定ができないだけでなく、上記装置を車体外側に装着しているため、タイヤを付け替えるたびに上記装置を装着し直す必要があり、手間がかかっていた。   However, when a device for measuring the three-component force is mounted on a rotating body on a test vehicle, a problem arises that the device becomes large, for example, a slip ring is required to extract a signal from the device. There was a point. Furthermore, since the unsprung weight of the test vehicle becomes heavier than that of a normal vehicle by installing the test device, it is not only possible to accurately measure the original tire condition, but also the above device is installed outside the vehicle body. Therefore, it is necessary to re-install the above device every time the tire is changed.

本発明は、従来の問題点に鑑みてなされたもので、簡単な構成で車輪のタイヤ接地面からの入力を検出することのできる入力検出装置と、車輪への入力を実際の車両に近いの走行状態で計測することのできる試験車両を提供することを目的とする。   The present invention has been made in view of conventional problems, and has an input detection device that can detect an input from a tire ground contact surface of a wheel with a simple configuration, and an input to a wheel that is close to an actual vehicle. An object of the present invention is to provide a test vehicle that can be measured in a running state.

本発明の請求項1に記載の発明は、車輪に発生する路面からの入力の大きさを検出する入力検出装置であって、上記車輪を懸架する車両バネ下部の、例えば、ナックル等の非回転側部材に、上記車輪へ入力する前後方向、左右方向、及び、上下方向の力のうちの少なくとも1方向の入力を検出する入力検出手段を装着して、上記入力を検出するようにしたものである。
請求項2に記載の発明は、請求項1に記載の入力検出装置において、上記入力検出手段を車両バネ下部の上記入力が集中する箇所、すなわち、上記入力が複数の系統の伝達ルートを有するような場合には、そのうちの1系統の振動のみが伝達される箇所に装着したものである。
請求項3に記載の発明は、請求項1に記載の入力検出装置において、上記入力を精度よく検出するため、上記入力検出手段をタイヤの中心軸に相当する位置(車軸相当部分)に装着したものである。
また、請求項4に記載の発明は、請求項1〜請求項3のいずれかに記載の入力検出装置において、上記入力検出手段を、歪ゲージや加速度センサ等の力センサから構成したものである。
The invention according to claim 1 of the present invention is an input detection device for detecting the magnitude of input from a road surface generated on a wheel, and is non-rotating, for example, a knuckle or the like below a vehicle spring that suspends the wheel. The side member is equipped with input detection means for detecting an input in at least one of front-rear direction, left-right direction, and up-down direction force input to the wheel, and the input is detected. is there.
According to a second aspect of the present invention, in the input detection device according to the first aspect, the input detection means is arranged such that the input under the vehicle spring is concentrated, that is, the input has a plurality of transmission routes. In such a case, it is attached to a place where only one of the vibrations is transmitted.
According to a third aspect of the present invention, in the input detection device according to the first aspect, in order to detect the input with high accuracy, the input detection means is mounted at a position corresponding to the center axis of the tire (a portion corresponding to the axle). Is.
According to a fourth aspect of the present invention, in the input detection device according to any one of the first to third aspects, the input detection means comprises a force sensor such as a strain gauge or an acceleration sensor. .

請求項5に記載の発明は、請求項1〜請求項4のいずれかに記載の入力検出装置において、上記車輪を、ダイレクトドライブホイールに中空形状のインホイールモータを取付けて成る駆動輪とするとともに、上記モータの非回転側ケースが結合された車両の足回り部品に上記入力検出手段を装着したものである。
請求項6に記載の発明は、請求項5に記載の入力検出装置において、上記モータを緩衝部材または緩衝装置を介して、車両バネ下部に取付けるようにしたものである。
請求項7に記載の発明は、請求項5または請求項6に記載の入力検出装置において、上記入力検出手段をナックルの車軸相当部分に装着して、タイヤの中心位置における車輪への入力を検出するようにしたものである。
なお、上記中空形状のモータは、詳細には、径方向内側が開放された第1の環状のケースと、この第1の環状のケースの径方向内側に、上記第1の環状のケースと同心円状に配置された、径方向外側が開放された第2の環状のケースのうち、一方のケースにモータステータを取付けてこれを非回転側ケースとし、他方のケースに上記モータステータと所定の間隔を隔ててモータロータを取りつけてこれを回転側ケースとし、上記非回転側ケースと回転側ケースとを軸受けを介して回転可能に連結したもので、上記回転側ケースは直接あるいは動力伝達機構を介してホイールに連結され、上記非回転側ケースは直接あるいは上記のように緩衝部材または緩衝装置を介して、車両バネ下部に連結される。
According to a fifth aspect of the present invention, in the input detection device according to any one of the first to fourth aspects, the wheel is a drive wheel formed by attaching a hollow in-wheel motor to a direct drive wheel. The above-mentioned input detection means is attached to the underbody part of the vehicle to which the non-rotating side case of the motor is coupled.
According to a sixth aspect of the present invention, in the input detection device according to the fifth aspect of the present invention, the motor is attached to a lower part of the vehicle spring via a buffer member or a buffer device.
According to a seventh aspect of the present invention, in the input detection device according to the fifth or sixth aspect, the input detection means is attached to a portion corresponding to the axle of the knuckle to detect an input to the wheel at the center position of the tire. It is what you do.
More specifically, the hollow motor includes a first annular case having a radially inner side opened, and a concentric circle with the first annular case on the radially inner side of the first annular case. A motor stator is attached to one case among the second annular cases that are radially arranged and opened on the outer side in the radial direction, and this is used as a non-rotating side case, and the other case has a predetermined distance from the motor stator. A motor rotor is mounted with a gap therebetween as a rotation case, and the non-rotation side case and the rotation case are rotatably connected via a bearing. The rotation case is directly or via a power transmission mechanism. The non-rotating side case is connected to a wheel, and is connected to the lower part of the vehicle spring directly or via the buffer member or the buffer device as described above.

また、請求項8に記載の発明は、走行状態の車両の車輪への入力を計測するための試験車両であって、車輪に上記請求項1〜請求項7のいずれかに記載の入力検出装置を備え、車輪に入力する前後方向、左右方向、及び、上下方向の力の少なくとも1つ、あるいは、上記3方向の全ての入力をを計測することができるようにしたものである。
請求項9に記載の発明は、請求項8に記載の試験車両において、上記車両を4輪駆動車とするとともに、各駆動輪にそれぞれ上記入力検出装置を搭載したものである。
請求項10に記載の発明は、請求項8または請求項9に記載の試験車両において、車輪の回転速度及び回転トルクを検出する手段を搭載し、車輪の前後方向、左右方向、及び、上下方向の力の情報に加えて、車輪の回転速度及び回転トルクの情報を得ることができるようにしたものである。
請求項11に記載の発明は、請求項8〜請求項10のいずれかに記載の試験車両において、上記車両に操舵軸の回転検出する舵角センサと車両のヨー角を検出するヨーレートセンサとを搭載して、上記各情報に加えて、操舵角とヨーレートの情報を得ることができるようにしたものである。
The invention according to claim 8 is a test vehicle for measuring an input to a wheel of a vehicle in a running state, and the input detection device according to any one of claims 1 to 7 is provided on the wheel. It is possible to measure at least one of the forces in the front-rear direction, the left-right direction, and the up-down direction input to the wheels, or all the inputs in the three directions.
The invention according to claim 9 is the test vehicle according to claim 8, wherein the vehicle is a four-wheel drive vehicle, and the input detection device is mounted on each drive wheel.
A tenth aspect of the present invention is the test vehicle according to the eighth or ninth aspect, wherein means for detecting the rotational speed and rotational torque of the wheel are mounted, and the front-rear direction, the left-right direction, and the vertical direction of the wheel are mounted. In addition to the information on the force, information on the rotational speed and rotational torque of the wheel can be obtained.
According to an eleventh aspect of the present invention, in the test vehicle according to any one of the eighth to tenth aspects, the vehicle includes a steering angle sensor that detects rotation of a steering shaft and a yaw rate sensor that detects a yaw angle of the vehicle. In addition to the above information, information on the steering angle and yaw rate can be obtained.

本発明によれば、車輪を懸架する車両バネ下部の、例えば、ナックル等の非回転側部材に、上記車輪へ入力する前後方向、左右方向、及び、上下方向の力(車輪の三分力)を検出する入力検出手段を装着して、上記三分力を検出するようにしたので、簡単な構成で車輪の三分力を確実に検出することがきる。また、上記入力装置を搭載することにより、車輪の三分力を、実際の車両の走行状態に近い状態で計測することができる。   According to the present invention, the force in the front-rear direction, the left-right direction, and the up-down direction input to the wheel on a non-rotating side member such as a knuckle, for example, under the vehicle spring that suspends the wheel (the three-component force of the wheel) Since the above-described three-component force is detected by mounting the input detection means for detecting the three-component force, it is possible to reliably detect the three-component force of the wheel with a simple configuration. Moreover, by mounting the input device, the three-wheel force of the wheel can be measured in a state close to the actual traveling state of the vehicle.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本発明による入力検出装置10を搭載した駆動輪の構成を示す縦断面図で、同図において、1はタイヤ、2はリム2aとホイールディスク2bとから成るホイール、3はステータ3Sが取付けられた、径方向外側が開放された第1の環状のケース(以下、非回転側ケースという)3aと、この非回転側ケース3aの径方向外側に上記非回転側ケース3aと同心円状に配置され、かつ、上記ステータ3Sと所定の間隔を隔てて配置されたロータ3Rが取付けられた、径方向内側が開放された第2の環状のケース(以下、回転側ケースという)3bとを、軸受け3jを介して回転可能に連結した中空形状のインホイールモータ(アウターロータ型のDCブラシレスインホールモータ)で、4は上記ホイール2とその回転軸において連結されたハブ部、5は上下のサスペンションアーム6a,6bに連結されるナックル、7はショックアブゾーバ等から成るサスペンション部材、8は上記ハブ部4に装着された制動装置である。
また、20は上記非回転側ケース3aを車両の上下方向に案内する直動ガイド部材21と、この直動ガイド部材21の稼動方向に伸縮するバネ部材とダンパーとから成るショックアブゾーバ22とを備え、上記インホールモータ3の非回転側ケース3aとナックル5とを結合して上記インホールモータ3を車両足回り部に対してフローティングマウントするための緩衝機構、30はモータの回転側ケース3bに取付けられた中空円盤状の結合プレート31と、直交する2軸の直動ガイドを組合わせた複数個のクロスガイド32とを備え、上記回転側ケース3bとホイール2とを連結する動力伝達機構である。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing the configuration of a drive wheel equipped with an input detection device 10 according to the present invention, in which 1 is a tire, 2 is a wheel comprising a rim 2a and a wheel disc 2b, and 3 is a stator 3S. A first annular case (hereinafter referred to as a non-rotating side case) 3a having a radially outer side attached thereto, and a concentric shape with the non-rotating side case 3a on the radially outer side of the non-rotating side case 3a And a second annular case (hereinafter referred to as a rotation side case) 3b having a radially inner side opened, to which the rotor 3R arranged at a predetermined interval from the stator 3S is attached. , A hollow in-wheel motor (outer rotor type DC brushless in-hole motor) that is rotatably connected via a bearing 3j, and 4 is connected to the wheel 2 and its rotating shaft. Hub portions, 5 a knuckle connected to upper and lower suspension arms 6a, 6b, a suspension member composed of a shock absorber or the like 7, 8 is a braking device mounted to said hub portion 4.
Reference numeral 20 denotes a linear motion guide member 21 that guides the non-rotating side case 3a in the vertical direction of the vehicle, and a shock absorber 22 composed of a spring member and a damper that expands and contracts in the operating direction of the linear motion guide member 21. A buffer mechanism for connecting the non-rotating side case 3a of the in-hole motor 3 and the knuckle 5 and floating-mounting the in-hole motor 3 with respect to a vehicle underbody; 30 is a rotating side case 3b of the motor A power transmission mechanism for connecting the rotating side case 3b and the wheel 2 to each other, and a hollow disk-shaped coupling plate 31 attached to a plurality of cross guides 32 combining two orthogonal linear motion guides. It is.

本例では、車輪を懸架する車両バネ下部の非回転側部材で、原理的に車輪を留めているナックル5に入力検出装置10を装着して上記ナックル5の歪を検出して車輪に加わっている力(車輪の三分力)を計測する。
駆動輪を駆動するインホイールモータとして上記のような中空形状のモータ3を用いた場合には、上記ナックル5の形状の自由度が大きいので、例えば、図1に示すように、ナックル5を、ホイール2に結合されたハブ部4に連結され、緩衝機構20を介して上記モータ3の非回転側ケース3aに連結される第1のナックル部材51と、サスペンション部材7側に配置され、サスペンションアーム6a,6bに連結される第2のナックル部材52とに分割するとともに、上記第1のナックル部材51と第2のナックル部材52とを連結する直方体状の連結部材11を設け、上記連結部材11の上面(路面と平行な面)11a側に、上記連結部材11に作用する前後方向(X方向)の力Fx、及び、左右方向(Y方向)の力Fyをそれぞれ検出するための力センサである歪ゲージSx,Syを装着し、側面(路面に垂直な面)11bに上下方向(Z方向)の力Fzを検出するための歪ゲージSzを装着し、上記各歪ゲージSx,Sy,Szの出力を入力算出手段12に送り、上記連結部材11に作用する力Fx,Fy,Fzを算出することにより、車輪に加わっている力を計測することが可能となる。
ここで、路面から車輪に伝達される前後方向、左右方向、及び、上下方向の力(車輪の三分力)を検出する入力検出装置10は、上記連結部材11と上記歪ゲージSx,Sy,Szとから成るセンサ部と上記入力算出手段12を備えた演算部とを基本要素として構成され、必要に応じて、上記算出されたFx,Fy,Fzの値を表示するための表示部や、上記センサ部からの出力あるいは上記Fx,Fy,Fzのデータを車両側に送信するためのは通信部等を付加することができる。
In this example, the non-rotating side member under the vehicle spring that suspends the wheel is attached to the wheel by detecting the distortion of the knuckle 5 by mounting the input detection device 10 on the knuckle 5 that holds the wheel in principle. Measure the force (three component force of the wheel).
When the hollow-shaped motor 3 as described above is used as an in-wheel motor for driving the drive wheels, the knuckle 5 has a large degree of freedom. For example, as shown in FIG. A first knuckle member 51 connected to the hub portion 4 coupled to the wheel 2 and connected to the non-rotating side case 3a of the motor 3 via the buffer mechanism 20, and the suspension arm 7 is disposed on the suspension arm 7 side. A rectangular parallelepiped coupling member 11 that divides the first knuckle member 51 and the second knuckle member 52 is provided while being divided into a second knuckle member 52 coupled to 6a and 6b. to the upper surface (the road surface and a plane parallel) 11a side, the force F x in the longitudinal direction that acts on the connecting member 11 (X-direction), and, detects the force F y in the horizontal direction (Y-direction), respectively Strain gauge S x is a force sensor because, wearing S y, side fitted with a strain gauge S z for detecting a force F z in the vertical direction 11b (plane perpendicular to the road surface) (Z-direction) The outputs of the respective strain gauges S x , S y , S z are sent to the input calculating means 12 and the forces F x , F y , F z acting on the connecting member 11 are calculated, so that they are applied to the wheels. Force can be measured.
Here, the input detecting device 10 for detecting the force in the front-rear direction, the left-right direction, and the up-down direction (three-wheel force of the wheel) transmitted from the road surface to the wheel is the connection member 11 and the strain gauges S x , S The sensor unit composed of y and S z and the calculation unit including the input calculation means 12 are configured as basic elements, and the calculated values of F x , F y and F z are displayed as necessary. can be added to the communication unit such as the order of transmitting the display unit and for the output or the F x from the sensor unit, F y, the data of F z in the vehicle side.

図2は本最良の形態に係る試験車両40の模式図で、この試験車両40は各車輪に上記構成のインホイールモータ3を搭載した4輪駆動車であり、各駆動輪(41L,41R;前輪、及び、42L,42R;後輪)にそれぞれ上記入力検出装置10を装着するとともに、上記車両に操舵軸の回転検出する舵角センサ43と車両のヨー角を検出するヨーレートセンサ44とを搭載したもので、45は上記入力検出装置10で検出された車輪三分力の情報と後述する上記各駆動輪を制駆動するモータコントローラ(インバータ)46からの車輪速及びトルクの情報に基づいて上記モータコントローラ46を制御して各駆動輪の制駆動力を演算して配分する駆動力制御手段である。
本例の試験車両40では、上記各駆動輪をダイレクトドライブするインホイールモータ3としてアウターロータ型のDCブラシレスモータを使用しているので、各駆動輪を制駆動するそれぞれのモータコントローラ46が常にモータ発生トルク、及び、車輪速を計測しているため、新たに車輪速センサ等の装置を装着することなく、各駆動輪の車輪速及び駆動力を知ることができる。
したがって、上記試験車両40を種々の条件下で走行させて、上記入力検出装置10により、上記各駆動輪に加わっている前後方向の力Fx、左右方向の力Fy、上下方向の力Fzをそれぞれ計測して、上記各力Fx,Fy,Fzと、各駆動輪の制駆動力、及び、舵角、ヨーレートとの関係を求めることで、制駆動力の制御ロジックを改良し、車両の安定化制御を実現することが可能となる。
FIG. 2 is a schematic diagram of a test vehicle 40 according to the best mode. The test vehicle 40 is a four-wheel drive vehicle in which the in-wheel motor 3 having the above-described configuration is mounted on each wheel, and each drive wheel (41L, 41R; The input detection device 10 is mounted on each of the front wheels and the rear wheels 42L and 42R, and a steering angle sensor 43 that detects rotation of the steering shaft and a yaw rate sensor 44 that detects the yaw angle of the vehicle are mounted on the vehicle. 45 is based on the information on the wheel three component force detected by the input detection device 10 and the information on the wheel speed and torque from the motor controller (inverter) 46 for controlling and driving each driving wheel described later. It is a driving force control means for controlling the motor controller 46 to calculate and distribute the braking / driving force of each driving wheel.
In the test vehicle 40 of this example, since the outer rotor type DC brushless motor is used as the in-wheel motor 3 that directly drives each drive wheel, each motor controller 46 that brakes and drives each drive wheel is always a motor. Since the generated torque and the wheel speed are measured, it is possible to know the wheel speed and driving force of each driving wheel without newly installing a device such as a wheel speed sensor.
Therefore, the test vehicle 40 is run under various conditions, and the input detection device 10 applies the front-rear direction force F x , the left-right direction force F y , and the up-down direction force F applied to the drive wheels. measures z, respectively, improved each force F x, F y, and F z, the longitudinal force of the drive wheels, and the steering angle, by obtaining the relationship between the yaw rate, the control logic of the longitudinal force Thus, it is possible to realize vehicle stabilization control.

このように、本最良の形態によれば、車輪を懸架する車両バネ下部の非回転側部材であるナックル5を、ハブ部4に連結され、緩衝機構20を介して上記モータ3の非回転側ケース3aに連結される第1のナックル部材51と、サスペンション部材7側に配置され、サスペンションアーム6a,6bに連結される第2のナックル部材52とに分割して、上記第1のナックル部材51と第2のナックル部材52とを、入力検出装置10のセンサ部を構成する歪ゲージSx,Sy,Szが貼着された直方体状の連結部材11で結合するとともに、上記各歪ゲージSx,Sy,Szの出力を上記入力検出装置10の演算部を構成する入力算出手段12に送り、上記連結部材11に作用する力Fx,Fy,Fzを算出して走行中の車両の車輪に加わっている力を計測するようにしたので、簡単な構成で車輪の三分力を容易に計測することができる。また、上記入力検出装置10を試験車両40の各駆動輪41L,41R,42L,42Rに装着することにより、車輪の三分力を、実際の車両の走行状態に近い状態で計測することができる。
また、上記入力検出装置10は車両の非回転側部材であるナックル5に装着されているので、タイヤを装着するたびに入力検出装置10を装着する手間がなくなるという利点を有する。
Thus, according to this best mode, the knuckle 5 which is the non-rotating side member below the vehicle spring that suspends the wheel is connected to the hub portion 4 and the non-rotating side of the motor 3 via the buffer mechanism 20. The first knuckle member 51 is divided into a first knuckle member 51 coupled to the case 3a and a second knuckle member 52 disposed on the suspension member 7 side and coupled to the suspension arms 6a and 6b. And the second knuckle member 52 are coupled by the rectangular parallelepiped connecting member 11 to which the strain gauges S x , S y , and S z constituting the sensor unit of the input detection device 10 are attached. The outputs of S x , S y , and S z are sent to the input calculating means 12 that constitutes the calculation unit of the input detection device 10, and the forces F x , F y , and F z acting on the connecting member 11 are calculated to travel. Join the wheels of the vehicle inside Since so as to measure that force can be easily measured three minutes forces of the wheels with a simple structure. Further, by mounting the input detection device 10 on each of the drive wheels 41L, 41R, 42L, and 42R of the test vehicle 40, the three-component force of the wheels can be measured in a state close to the actual traveling state of the vehicle. .
Further, since the input detection device 10 is mounted on the knuckle 5 that is a non-rotating side member of the vehicle, there is an advantage that the labor of mounting the input detection device 10 is eliminated every time a tire is mounted.

なお、上記最良の形態では、車輪の三分力を検出する手段として、歪ゲージSx,Sy,Szを用いた場合について説明したが、これに限るものではなく、加速度センサを用いた力センサを組合わせた三分力計などの他の三分力計を用いてもよい。
また、上記例では、インホールモータ3を車両の上下方向に案内する直動ガイド部材21と、この直動ガイド部材21の稼動方向に伸縮するバネ部材とダンパーとから成るショックアブゾーバ22とを備えた緩衝機構20により車両足回り部に対してフローティングマウントし、モータ3とホイール2とを複数個のクロスガイド32とを備えた動力伝達機構30により結合した構成としたが、本発明は、他の緩衝機構、動力伝達機構を用いてインホールモータ3を車輪に取付けた構成の車両にも適用可能である。
また、上記例では、第2のナックル部材52をサスペンション部を構成する部材の1つであるサスペンションアーム6a,6bに連結したが、第2のナックル部材52の取付け箇所はこれに限るものではなく、車両のサスペンション部の構成により適宜決定されることは言うまでもない。
また、上記例では、インホイールモータとして中空形状のインホイールモータ3を車輪に搭載した場合について説明したが、例えば、図7に示すような、ブレーキ内蔵インホイールモータ3Zのような、中空形状ではないインホイールモータを搭載した場合でも、上記モータ3Zをサスペンション部に取付ける取付部材5Zと上記モータ3Zとの間に、上記構成の入力検出装置10を配設すれば、車輪の三分力を容易に計測することができる。
また、入力検出装置10の設置箇所についても、上記のように、ナックル5、あるいは、取付部材5Zと上記モータ3Zとの間に限定されるものではなく、車両バネ下部の非回転側部材に取付ければよい。このとき、上記入力検出手段10の取付け箇所としては、車輪の三分力が集中する箇所が好ましい。すなわち、車両バネ下部の構成によっては、上記入力が複数の系統の伝達ルートを有するような場合も考えられるので、そのときには、上記入力検出手段10を上記入力が集中する箇所、すなわち、入力の伝達ルートとして1系統の振動のみが伝達される箇所に装着するようにすれば、車輪の三分力を精度良く検出することができる。
In the above-described best mode, the case where the strain gauges S x , S y , S z are used as means for detecting the three-component force of the wheel has been described. However, the present invention is not limited to this, and an acceleration sensor is used. Other three component force meters such as a three component force meter combined with a force sensor may be used.
In the above example, the linear motion guide member 21 that guides the in-hole motor 3 in the vertical direction of the vehicle, and the shock absorber 22 composed of a spring member and a damper that extend and contract in the operating direction of the linear motion guide member 21 are provided. Although the mounting mechanism is floating mounted on the vehicle suspension and the motor 3 and the wheel 2 are coupled by a power transmission mechanism 30 including a plurality of cross guides 32, the present invention The present invention can also be applied to a vehicle having a configuration in which the in-hole motor 3 is attached to a wheel using another buffer mechanism and a power transmission mechanism.
In the above example, the second knuckle member 52 is connected to the suspension arms 6a and 6b, which are one of the members constituting the suspension portion. However, the mounting location of the second knuckle member 52 is not limited to this. Needless to say, it is appropriately determined depending on the configuration of the suspension portion of the vehicle.
In the above example, the case where the hollow in-wheel motor 3 is mounted on the wheel as the in-wheel motor has been described. However, in the hollow shape such as the in-wheel motor 3Z with built-in brake as shown in FIG. Even when a non-in-wheel motor is mounted, if the input detection device 10 having the above-described configuration is provided between the motor 3Z and the mounting member 5Z for mounting the motor 3Z to the suspension portion, the three-wheel force of the wheel can be easily achieved. Can be measured.
Further, the installation location of the input detection device 10 is not limited to the knuckle 5 or between the mounting member 5Z and the motor 3Z as described above, but is attached to the non-rotating side member below the vehicle spring. Just do it. At this time, the location where the input detection means 10 is attached is preferably a location where the three component force of the wheel is concentrated. That is, depending on the configuration of the lower part of the vehicle spring, there may be a case where the input has a plurality of transmission routes. In that case, the input detection means 10 is placed at a location where the input concentrates, that is, the input transmission. If it is attached to a place where only one system of vibration is transmitted as a route, the three component force of the wheel can be detected with high accuracy.

図3は、WET路面にて、本発明の入力検出装置を搭載した試験車両を用いてレーンチェンジ走行試験を行った際の左リアにおける三分力の測定結果を示す図で、同図から明らかなように、上記入力検出装置を用いることにより、レーンチェンジに伴う前後方向の力Fx、左右方向の力Fy、上下方向の力Fzの変化を精度よく計測することができ、車輪の三分力を確実に把握できることが確認された。 FIG. 3 is a diagram showing the measurement results of the three component forces in the left rear when a lane change running test is performed on a WET road surface using a test vehicle equipped with the input detection device of the present invention. As described above, by using the input detection device, it is possible to accurately measure changes in the front-rear direction force F x , the left-right direction force F y , and the up-down direction force F z caused by the lane change. It was confirmed that the three component force could be grasped reliably.

図4は、スリッピーな路面にて、本発明の入力検出装置を搭載した試験車両を用いてトルクを一定値に固定し発進試験を行ったときの車速の時間変化を示す図で、同図のAは上記試験車両の4輪の情報のみを用いて制御を行った場合で、同図のBは制御を行っていない場合を示す。
制御を行っていない場合には、前輪が空転を起こしたが、4輪の荷重情報を基に、上記荷重に比例する駆動力を各駆動輪に配分する制御を行った場合には、空転が発生せず、加速度が向上した。
これにより、本発明の入力検出装置から得られた三分力を用いて車両の走行状態を制御することが可能であることが確認された。
FIG. 4 is a diagram showing the time change of the vehicle speed when a start test is performed with a torque fixed at a constant value using a test vehicle equipped with the input detection device of the present invention on a slippery road surface. A is a case where control is performed using only the information on the four wheels of the test vehicle, and B in the figure shows a case where the control is not performed.
When the control was not performed, the front wheels were idle, but when control was performed to distribute the driving force proportional to the load to each drive wheel based on the load information of the four wheels, It did not occur and the acceleration was improved.
Thereby, it was confirmed that the traveling state of the vehicle can be controlled using the three component force obtained from the input detection device of the present invention.

図5は、本発明の入力検出装置を搭載した試験車両にて、スキッドパッドでの旋回試験を行った際の、舵角変化に伴うヨーレートの変化の軌跡を示す図で、この試験車両では、旋回速度の上昇とともに、舵角−ヨーレート相関図が安定基準限界を超えたときに、駆動力を荷重に比例するように配分する制御を開始する。図6は本試験車両で行った駆動力制御の制御ロジックを示す図である。
一般に、修正舵とともにヨーレートも変化するため舵角−ヨーレートの軌跡は楕円を描くが、限界に近づくと上記軌跡は原点から遠ざかることになる。したがって、上記軌跡の原点からの距離を安定の目安として上記安定基準限界を設定した。
また、駆動力配分制御を開始すると同時に横力の情報を取得し、限界値での横力低下によるスピンを抑制するため、各車輪毎の駆動力の制御を行った。上記横力のモニター制御は、上記駆動力配分制御よりも制御周期が短く、いわば駆動力配分制御のインナーループとして作用する。また、横力は、滑り角、及び、荷重の関数になるため、横力の減少がそのままスピン発生になるとは限らず、操舵をニュートラル方向に戻したことも横力減少要因となる。そのため、横力をモニターする駆動力制御では、操舵角を制御ループに入れる必要がある。以下の表1は、横力の変化と舵角操作の両方を考慮した場合の、駆動力の制御方法をまとめたもので、このような制御を行うことにより、表2に示すように、限界域での操縦安定性評価値が+6から+7に向上した。

Figure 2005069897
Figure 2005069897
FIG. 5 is a diagram illustrating a locus of a change in yaw rate accompanying a change in rudder angle when a turning test with a skid pad is performed in a test vehicle equipped with the input detection device of the present invention. As the turning speed increases, when the steering angle-yaw rate correlation diagram exceeds the stability reference limit, control for distributing the driving force in proportion to the load is started. FIG. 6 is a diagram showing a control logic of driving force control performed in the test vehicle.
In general, since the yaw rate also changes with the correction rudder, the rudder angle-yaw rate trajectory draws an ellipse, but the trajectory moves away from the origin when approaching the limit. Therefore, the stability reference limit is set with the distance from the origin of the trajectory as a measure of stability.
In addition, lateral force information was acquired at the same time as the driving force distribution control was started, and the driving force was controlled for each wheel in order to suppress the spin caused by the lateral force drop at the limit value. The lateral force monitor control has a control cycle shorter than that of the driving force distribution control, and acts as an inner loop of the driving force distribution control. Further, since the lateral force is a function of the slip angle and the load, the decrease in the lateral force does not necessarily cause the spin to be generated, and the fact that the steering is returned to the neutral direction is also a factor for reducing the lateral force. Therefore, in the driving force control for monitoring the lateral force, it is necessary to put the steering angle in the control loop. Table 1 below summarizes the driving force control method in consideration of both lateral force change and steering angle operation. By performing such control, as shown in Table 2, The steering stability evaluation value in the area has improved from +6 to +7.
Figure 2005069897
Figure 2005069897

本発明によれば、簡単な構成で車輪の三分力を容易に計測することができるとともに、車輪の三分力を、実際の車両の走行状態に近い状態で計測することができるので、インホイールモータ車が実用化された場合には、上記車輪の三分力を及び車輪速を用いて車両の走行状態を制御することができ、車両安定化制御を実現できる。   According to the present invention, the three-component force of the wheel can be easily measured with a simple configuration, and the three-component force of the wheel can be measured in a state close to the actual running state of the vehicle. When a wheel motor vehicle is put into practical use, the running state of the vehicle can be controlled using the three-component force of the wheel and the wheel speed, and vehicle stabilization control can be realized.

本最良の形態に係る入力検出装置を搭載したインホイールモータシステムの構成を示す図である。It is a figure which shows the structure of the in-wheel motor system carrying the input detection apparatus which concerns on this best form. 本最良の形態に係る試験車両の概略構成を示す図である。It is a figure which shows schematic structure of the test vehicle which concerns on this best form. 三分力の測定結果を示す図である。It is a figure which shows the measurement result of three component force. 本最良の形態に係る試験車両の発進試験の結果を示す図である。It is a figure which shows the result of the start test of the test vehicle which concerns on this best form. 左旋回中の舵角とヨーレートとの関係を示す図である。It is a figure which shows the relationship between the steering angle and the yaw rate during left turn. 旋回試験における制御ロジックを示す図である。It is a figure which shows the control logic in a turning test. 本発明による入力検出装置の他の搭載例を示す図である。It is a figure which shows the other example of mounting of the input detection apparatus by this invention.

符号の説明Explanation of symbols

1 タイヤ、2 ホイール、3は インホイールモータ、3S ステータ、
3R ロータ、3a 非回転側ケース、3b 回転側ケース、3j 軸受け、4 ハブ部、5 ナックル、6a,6b サスペンションアーム、7 サスペンション部材、
8 制動装置、10 入力検出装置、11 連結部材、12 入力算出手段、
20 緩衝機構、21 直動ガイド部材、22 ショックアブゾーバ、
30 動力伝達機構、31 結合プレート、32 クロスガイド、
x,Sy,Sz 歪ゲージ、51 第1のナックル部材、52 第2のナックル部材。
1 tire, 2 wheel, 3 is an in-wheel motor, 3S stator,
3R rotor, 3a non-rotating side case, 3b rotating side case, 3j bearing, 4 hub portion, 5 knuckle, 6a, 6b suspension arm, 7 suspension member,
8 braking device, 10 input detecting device, 11 connecting member, 12 input calculating means,
20 shock absorbing mechanism, 21 linear motion guide member, 22 shock absorber,
30 power transmission mechanism, 31 coupling plate, 32 cross guide,
S x , S y , S z strain gauge, 51 first knuckle member, 52 second knuckle member.

Claims (11)

車輪に発生する路面からの入力の大きさを検出する入力検出装置であって、上記車輪を懸架する車両バネ下部の非回転側部材に装着された、上記車輪へ入力する前後方向、左右方向、及び、上下方向の力のうちの少なくとも1方向の入力を検出する入力検出手段を備えたことを特徴とする入力検出装置。   An input detection device for detecting the magnitude of input from a road surface generated on a wheel, which is attached to a non-rotating side member under a vehicle spring that suspends the wheel, and that inputs to the wheel in the front-rear direction, the left-right direction, And the input detection apparatus provided with the input detection means which detects the input of at least 1 direction among the forces of an up-down direction. 上記入力検出手段を車両バネ下部の上記入力が集中する箇所に装着したことを特徴とする請求項1に記載の入力検出装置。   The input detection device according to claim 1, wherein the input detection means is mounted at a location where the input concentrates under a vehicle spring. 上記入力検出手段をタイヤの中心軸に相当する位置に装着したことを特徴とする請求項1に記載の入力検出装置。   The input detection device according to claim 1, wherein the input detection means is mounted at a position corresponding to a central axis of a tire. 上記入力検出手段を力センサから構成したことを特徴とする請求項1〜請求項3のいずれかに記載の入力検出装置。   4. The input detection device according to claim 1, wherein the input detection means is constituted by a force sensor. 上記車輪を、ダイレクトドライブホイールに中空形状のインホイールモータを取付けて成る駆動輪とするとともに、上記入力検出手段を、上記モータの非回転側ケースが結合された車両の足回り部品に装着したことを特徴とする請求項1〜請求項4のいずれかに記載の入力検出装置。   The wheel is a drive wheel in which a hollow in-wheel motor is attached to a direct drive wheel, and the input detection means is mounted on a vehicle undercarriage part to which a non-rotating side case of the motor is coupled. The input detection device according to claim 1, wherein: 上記モータを緩衝部材または緩衝装置を介して、車両バネ下部に取付けるようにしたことを特徴とする請求項5に記載の入力検出装置。   6. The input detection device according to claim 5, wherein the motor is attached to a lower part of the vehicle spring via a buffer member or a buffer device. 上記入力検出手段をナックルの車軸相当部分に装着したことを特徴とする請求項5または請求項6に記載の入力検出装置。   The input detection device according to claim 5 or 6, wherein the input detection means is attached to a portion corresponding to an axle of a knuckle. 走行状態の車両の車輪への入力を計測するための試験車両であって、車輪に上記請求項1〜請求項7のいずれかに記載の入力検出装置を備え、車輪に入力する前後方向、左右方向、及び、上下方向の力の少なくとも1つ、あるいは、上記3方向の全ての入力を計測することを特徴とする試験車両。   A test vehicle for measuring an input to a wheel of a vehicle in a running state, the wheel comprising the input detection device according to any one of claims 1 to 7, and a front-rear direction, a left-right direction input to the wheel A test vehicle characterized by measuring at least one of a direction and a vertical force, or all inputs in the three directions. 上記車両を4輪駆動車とするとともに、各駆動輪に上記入力検出装置を搭載したことを特徴とする請求項8に記載の試験車両。   The test vehicle according to claim 8, wherein the vehicle is a four-wheel drive vehicle, and the input detection device is mounted on each drive wheel. 車輪の回転速度及び回転トルクを検出する手段を搭載したことを特徴とする請求項8または請求項9に記載の試験車両。   The test vehicle according to claim 8 or 9, wherein means for detecting the rotational speed and rotational torque of the wheel is mounted. 上記車両に操舵軸の回転検出する舵角センサと車両のヨー角を検出するヨーレートセンサとを搭載したことを特徴とする請求項8〜請求項10のいずれかに記載の試験車両。
The test vehicle according to any one of claims 8 to 10, wherein a steering angle sensor that detects rotation of a steering shaft and a yaw rate sensor that detects a yaw angle of the vehicle are mounted on the vehicle.
JP2003300426A 2003-08-25 2003-08-25 Input detection device and test car Pending JP2005069897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300426A JP2005069897A (en) 2003-08-25 2003-08-25 Input detection device and test car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300426A JP2005069897A (en) 2003-08-25 2003-08-25 Input detection device and test car

Publications (1)

Publication Number Publication Date
JP2005069897A true JP2005069897A (en) 2005-03-17

Family

ID=34405361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300426A Pending JP2005069897A (en) 2003-08-25 2003-08-25 Input detection device and test car

Country Status (1)

Country Link
JP (1) JP2005069897A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068725A (en) * 2006-09-14 2008-03-27 Ntn Corp Bearing device for wheel having in-wheel motor and built-in sensor
WO2008035455A1 (en) * 2006-09-19 2008-03-27 Ntn Corporation Sensor-equipped axle unit integral with in-wheel motor
JP2008081091A (en) * 2006-09-29 2008-04-10 Ntn Corp Bearing device for wheel with sensor containing in-wheel type motor
WO2008050782A1 (en) 2006-10-19 2008-05-02 Toyota Jidosha Kabushiki Kaisha Vibration-damping control device for vehicle
JP2008213556A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Vibration-damping control device for vehicle
JP2009025140A (en) * 2007-07-19 2009-02-05 Toyota Motor Corp Abnormality monitoring device and abnormality monitoring method
KR101300750B1 (en) * 2011-09-01 2013-08-28 자동차부품연구원 Regenerative breaking simulator and regenerative breaking simulation method thereof
US9067601B2 (en) 2008-10-31 2015-06-30 Toyota Jidosha Kabushiki Kaisha Sprung mass damping control system of vehicle
CN105599559A (en) * 2015-12-16 2016-05-25 上海大学 Variable-impedance Mecanum wheel posture keeping mechanism
CN108931383A (en) * 2018-07-12 2018-12-04 安徽悦众车身装备有限公司 A kind of installation frame for bumper detection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068725A (en) * 2006-09-14 2008-03-27 Ntn Corp Bearing device for wheel having in-wheel motor and built-in sensor
US8307931B2 (en) 2006-09-19 2012-11-13 Ntn Corporation Sensor-equipped axle unit having a built-in motor of in-wheel type
WO2008035455A1 (en) * 2006-09-19 2008-03-27 Ntn Corporation Sensor-equipped axle unit integral with in-wheel motor
JP2008074135A (en) * 2006-09-19 2008-04-03 Ntn Corp Axle unit with sensors incorporating in-wheel motor
JP2008081091A (en) * 2006-09-29 2008-04-10 Ntn Corp Bearing device for wheel with sensor containing in-wheel type motor
WO2008050782A1 (en) 2006-10-19 2008-05-02 Toyota Jidosha Kabushiki Kaisha Vibration-damping control device for vehicle
US8340864B2 (en) 2006-10-19 2012-12-25 Toyota Jidosha Kabushiki Kaisha Vehicle vibration damping control device
EP3235699A1 (en) 2006-10-19 2017-10-25 Toyota Jidosha Kabushiki Kaisha Vibration damping control device for vehicle
EP3428029A2 (en) 2006-10-19 2019-01-16 Toyota Jidosha Kabushiki Kaisha Vibration damping control device for vehicle
JP4692499B2 (en) * 2007-02-28 2011-06-01 トヨタ自動車株式会社 Vehicle vibration suppression control device
JP2008213556A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Vibration-damping control device for vehicle
JP2009025140A (en) * 2007-07-19 2009-02-05 Toyota Motor Corp Abnormality monitoring device and abnormality monitoring method
US9067601B2 (en) 2008-10-31 2015-06-30 Toyota Jidosha Kabushiki Kaisha Sprung mass damping control system of vehicle
KR101300750B1 (en) * 2011-09-01 2013-08-28 자동차부품연구원 Regenerative breaking simulator and regenerative breaking simulation method thereof
CN105599559A (en) * 2015-12-16 2016-05-25 上海大学 Variable-impedance Mecanum wheel posture keeping mechanism
CN108931383A (en) * 2018-07-12 2018-12-04 安徽悦众车身装备有限公司 A kind of installation frame for bumper detection device

Similar Documents

Publication Publication Date Title
CN107933561B (en) Method and system for calculating a road friction estimate
JP4145871B2 (en) Vehicle control method and vehicle control apparatus
US7317982B2 (en) Estimating device and vehicle motion control device using the same
CN107627900A (en) A kind of electric automobile dual wheel rims motor differential moment controlling system and control method
WO2013077409A1 (en) Electric vehicle control device
CN101992734A (en) Sensor system for motion control of moving unit and method of setting the same
JP2006506276A (en) Axle unit with slip sensor and slip measurement method
JP2002350254A (en) Wheel bearing for measuring contact force between tire and road
JP2009055703A (en) Friction coefficient estimation device for road surface
JP2005069897A (en) Input detection device and test car
CN106739909A (en) Electric vehicle hub turns to suspension system
CN102198833A (en) Method for determing normal acceleration, longitudinal angular acceleration and lateral angular acceleration of body, especially motor vehicle
JP6000674B2 (en) Control device for one-wheel locking of left and right independent drive vehicles
US20100063678A1 (en) Motion control sensor system for a moving unit and motion control system
CN113226881A (en) Vehicle motion state estimation device, vehicle motion state estimation method, and vehicle
JP5851812B2 (en) Electric vehicle control device and electric vehicle
JP2005035523A (en) Vehicle driving control system and its sensor unit
JP2006335218A (en) Spoiler control device
JP2001241945A (en) Tire condition detecting device, moving body control device, and tire condition detecting method
KR20120041555A (en) Vehicle with multiple axis driven independently
JP2004069071A (en) Hub bearing having slip sensor for measuring road surface friction coefficient
JP4529588B2 (en) Vehicle control device
WO2018073912A1 (en) Tire force estimation device and tire force estimation method
JP2013006577A (en) Camber controller
JP4420546B2 (en) Suspension testing machine