JP2005069848A5 - - Google Patents

Download PDF

Info

Publication number
JP2005069848A5
JP2005069848A5 JP2003299504A JP2003299504A JP2005069848A5 JP 2005069848 A5 JP2005069848 A5 JP 2005069848A5 JP 2003299504 A JP2003299504 A JP 2003299504A JP 2003299504 A JP2003299504 A JP 2003299504A JP 2005069848 A5 JP2005069848 A5 JP 2005069848A5
Authority
JP
Japan
Prior art keywords
gas
amount
pressure
measuring
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003299504A
Other languages
Japanese (ja)
Other versions
JP2005069848A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003299504A priority Critical patent/JP2005069848A/en
Priority claimed from JP2003299504A external-priority patent/JP2005069848A/en
Publication of JP2005069848A publication Critical patent/JP2005069848A/en
Publication of JP2005069848A5 publication Critical patent/JP2005069848A5/ja
Pending legal-status Critical Current

Links

Description

気体吸着量測定装置及び気体吸着量測定システムGas adsorption amount measuring device and gas adsorption amount measuring system

本発明は、気体の吸着量を正確に測定するための高圧気体吸着量測定装置及びこれを含む測定システムに関するものである。   The present invention relates to a high-pressure gas adsorption amount measuring device for accurately measuring a gas adsorption amount and a measurement system including the same.

(本発明の背景)
近年、燃料電池自動車や天然ガス自動車などに搭載する燃料電池や高圧ガスタンクの圧力を低圧化するため、高圧気体吸着物質(以下単に「吸着剤」という。)が研究開発されている。吸着剤を用いると、密閉容器内に同じ量のガスを貯える場合でもタンクの内圧を大幅に下げることができる。このため、吸着剤の特性を評価するための基礎技術として、高圧気体の吸着量を測定する技術が重要となっている。
(Background of the present invention)
In recent years, high-pressure gas adsorbents (hereinafter simply referred to as “adsorbents”) have been researched and developed in order to reduce the pressure of fuel cells and high-pressure gas tanks mounted on fuel cell vehicles and natural gas vehicles. When the adsorbent is used, the internal pressure of the tank can be greatly reduced even when the same amount of gas is stored in the sealed container. For this reason, as a basic technique for evaluating the characteristics of the adsorbent, a technique for measuring the adsorption amount of the high-pressure gas is important.

高圧気体の吸着量を測定する方法として、密閉容器内に封入した内圧の変化を測定し気体の状態方程式から吸着量を求める方法(容量法)、電子天秤などにより気体の吸着量を直接測定する方法(重量法)などが知られている(特許文献1、第2〜第4段落参照)。   As a method for measuring the amount of adsorption of high-pressure gas, the method of obtaining the amount of adsorption from the gas equation of state by measuring the change in the internal pressure enclosed in a sealed container (capacity method), directly measuring the amount of adsorption of gas using an electronic balance, etc. The method (weight method) etc. are known (refer patent document 1, 2nd-4th paragraph).

特に、近年の重量法による吸着量測定装置は電子天秤の代わりにコイルスプリングなどの弾性体を設け、弾性体の伸長量をレーザー光を用いて計測して吸着量を測定するものもある(特許文献2、第10〜第23段落参照)。   In particular, a recent weight method adsorption amount measuring apparatus is provided with an elastic body such as a coil spring instead of an electronic balance, and there is also an apparatus for measuring the amount of adsorption by measuring the extension amount of the elastic body using a laser beam (patent) (Ref. Literature 2, paragraphs 10 to 23).

密閉容器内に封入される吸着剤の特性を評価する場合、実際の使用状態に近づけて評価するためには、測定装置内部を少なくとも1気圧以上の高圧の状態(100気圧以上となることもある)で測定しなければならず、このため測定装置は耐圧容器を用いることが必要となる。   When evaluating the characteristics of the adsorbent enclosed in the sealed container, the inside of the measuring device may be in a high-pressure state (at least 100 atm or more) in order to evaluate it close to the actual use state. For this reason, it is necessary to use a pressure vessel for the measuring device.

しかし、耐圧容器を用いた高圧気体吸着量測定装置は、通常の気体吸着量測定装置よりも製造コストがかかり、また装置自体が大型化してしまう。そこで、小型化を図るために、例えば特許文献2の発明の実施の形態に示されているような光学系計測装置を採用すると、レーザー光の透過性を有する耐圧窓(ガラスや耐圧透明プラスチック)を設け、かつ、レーザー光の受発光装置からなる計測装置を設けることが必要となり、装置の製造コストが一層増大する。   However, a high-pressure gas adsorption amount measuring device using a pressure vessel costs more than a normal gas adsorption amount measuring device, and the size of the device itself is increased. Therefore, in order to reduce the size, for example, when an optical system measuring device as shown in the embodiment of Patent Document 2 is adopted, a pressure-resistant window (glass or pressure-resistant transparent plastic) having laser light transmittance is adopted. And a measuring device including a laser light receiving and emitting device is required, which further increases the manufacturing cost of the device.

特開2000−292246号公報JP 2000-292246 A 特開2002−277369号公報JP 2002-277369 A

本発明が解決しようとする問題点は、弾性体の伸長量により吸着量を測定する新規な重量式高圧気体吸着量測定装置及び測定システムを提供することであり、特に、弾性体の伸長量を計測する計測手段を従来よりも簡易かつ安価な構成にする点である。   The problem to be solved by the present invention is to provide a novel weight-type high-pressure gas adsorption amount measuring apparatus and measurement system for measuring the adsorption amount by the extension amount of the elastic body, and in particular, to determine the extension amount of the elastic body. The measuring means for measuring is configured to be simpler and less expensive than the conventional one.

本発明は、弾性体の伸長量を計測する計測手段として、差動トランスを用いた位置計測器を採用したことを最も主要な特徴とする。   The main feature of the present invention is that a position measuring instrument using a differential transformer is employed as a measuring means for measuring the amount of expansion of the elastic body.

本発明に係る気体吸着量測定装置は、試料に対する高圧気体の吸着量を測定するための測定装置10であって、ガス導入部30を備えた容器20と、前記容器の内部を前記気体の雰囲気に設定するための測定雰囲気設定装置70、80と、前記容器の内部に吊り下げられ下端に前記試料を保持するための保持部41を接続した弾性体40と、前記弾性体の伸長量を計測するための計測装置50と、前記伸長量に基づいて前記吸着量を算出し、前記圧力値と前記吸着量との関係から等温線を求めるための演算装置60とを備えており、前記計測装置が差動トランス式位置計測器50より構成されることを特徴とする。なお、本明細書において「気体」という場合、超臨界気体を含むものとする。   The gas adsorption amount measuring apparatus according to the present invention is a measuring apparatus 10 for measuring the adsorption amount of a high-pressure gas to a sample, and includes a container 20 having a gas introduction unit 30 and an atmosphere of the gas inside the container. Measuring atmosphere setting devices 70 and 80 for setting to, an elastic body 40 that is suspended inside the container and connected to a holding portion 41 for holding the sample at the lower end, and measures the extension amount of the elastic body A measuring device 50 for calculating the amount of adsorption based on the extension amount, and an arithmetic device 60 for obtaining an isotherm from the relationship between the pressure value and the amount of adsorption. Is constituted by a differential transformer type position measuring device 50. In this specification, the term “gas” includes a supercritical gas.

上記気体吸着量測定装置において、可動コア51は、その重量を1g以下とすることが好ましい。このようにすると、弾性体の直線性範囲が広がり、極めて微少な重量変化も精度良く測定することができるためである。   In the gas adsorption amount measuring apparatus, the movable core 51 preferably has a weight of 1 g or less. This is because the linearity range of the elastic body is expanded, and extremely small weight changes can be accurately measured.

上記装置は前記容器20の内壁及び前記弾性体40の少なくともいずれか1つがステンレス鋼からなることが好ましい。なおステンレスは、ガスの吸着性が小さい性質のものほど好ましく、具体的には、SUS316、SUS316L、SUS304などを用いることができる。   In the apparatus, it is preferable that at least one of the inner wall of the container 20 and the elastic body 40 is made of stainless steel. Stainless steel having a low gas adsorbing property is preferable. Specifically, SUS316, SUS316L, SUS304, or the like can be used.

また、本発明に係る気体吸着量測定システムは、上記気体吸着量測定装置にガス供給系ラインL1及び/又は真空排気系ラインL2を接続し、前記ガス供給系ラインL1及び前記気体吸着量測定装置10が恒温槽3に納められ、一定温度で測定できるようにしたことを特徴とする。このように種々の温度条件で測定すると、より多種類のガス種に於ける等温線データを採取することができるようになる。この場合、前記ガス供給系ラインL1も恒温槽3に納められる構成とすると、測定の精度が一層上がるため好ましい。   Further, the gas adsorption amount measuring system according to the present invention connects the gas supply system line L1 and / or the vacuum exhaust system line L2 to the gas adsorption amount measurement device, and the gas supply system line L1 and the gas adsorption amount measurement device. 10 is stored in the thermostat 3 so that it can be measured at a constant temperature. As described above, when measurement is performed under various temperature conditions, it is possible to collect isotherm data for more types of gases. In this case, it is preferable that the gas supply system line L1 is also housed in the thermostat 3 because the measurement accuracy is further improved.

また、本発明に係る気体吸着量測定方法は、筒状の容器20の外周部に差動コイル52、53を配置すると共に、前記容器内の上部から弾性体40を吊り下げ、この弾性体の下端における前記差動コイルの磁束結合部に前記弾性体の伸長量に応じて上下に移動できる可動コア51を設け、前記差動コイルに誘起される差動電圧の変化に基づいて前記伸長量を求めることを特徴とする。   Moreover, the gas adsorption amount measuring method according to the present invention includes the differential coils 52 and 53 arranged on the outer peripheral portion of the cylindrical container 20, and the elastic body 40 is hung from the upper part in the container. A movable core 51 that can move up and down according to the amount of expansion of the elastic body is provided at the magnetic flux coupling portion of the differential coil at the lower end, and the amount of expansion is determined based on the change in the differential voltage induced in the differential coil. It is characterized by seeking.

本発明の気体吸着量測定装置は、差動トランスを用いることにより弾性体スプリングの伸長量を電気的に計測するため、従来よりも低コスト化が図れるとともに、システム化が容易となるという利点がある。また、従来の光学式或いは電子天秤を用いた方式と比べ、測定精度及び測定範囲が大きいという利点がある。   Since the gas adsorption amount measuring apparatus of the present invention electrically measures the extension amount of the elastic spring by using a differential transformer, the cost can be reduced as compared with the prior art and the system can be easily realized. is there. In addition, there is an advantage that the measurement accuracy and the measurement range are large as compared with a method using a conventional optical or electronic balance.

レーザーなどの光学系構成部品を用いることなく弾性体スプリングの伸長量を測定するという目的を、極めて簡単な構成で実現した。   The objective of measuring the amount of extension of the elastic spring without using an optical system component such as a laser was realized with a very simple configuration.

(全体のシステム構成について)
図1は、本発明の気体吸着量測定システムの一実施例を示す図である。同図において、気体吸着量測定装置10には、ヘリウムガスや吸着ガス(Adsガス)などのガスを供給するガス供給系ラインL1と、ターボ分子ポンプ(TMP)2aやロータリーポンプ(RP)2bなどの真空ポンプからなる真空排気系ラインL2とが接続されている。また、図のように各ラインにはバルブV1〜17、圧力センサーS1〜S4、真空計P1、P2、安全弁8a、8b、逆止弁9a、9bなどが適宜設けられている。
(About overall system configuration)
FIG. 1 is a diagram showing an embodiment of a gas adsorption amount measuring system of the present invention. In the figure, a gas adsorption amount measuring device 10 includes a gas supply system line L1 for supplying a gas such as helium gas or adsorption gas (Ads gas), a turbo molecular pump (TMP) 2a, a rotary pump (RP) 2b, and the like. Is connected to an evacuation system line L2 including a vacuum pump. Further, as shown in the figure, each line is appropriately provided with valves V1 to 17, pressure sensors S1 to S4, vacuum gauges P1 and P2, safety valves 8a and 8b, check valves 9a and 9b, and the like.

また、気体吸着量測定装置10及びガス供給系ラインL1を含む部分(図において、一点鎖線で囲まれた部分)は、恒温槽3に納められており、内部を一定の温度に保つことができる。恒温槽3は温度制御装置(不図示)を備えており、例えば273[K]〜323[K]まで自由に温度を変化させることができる。また、寒剤用保持容器等を用いて下部高圧セル28の外側から保持部41を一定温度に冷却すれば、液体窒素温度(77[K])や、液体アルゴン温度(87[K])、エタノール・ドライアイス温度等での測定をすることも可能である。 Further, the portion including the gas adsorption amount measuring device 10 and the gas supply system line L1 (the portion surrounded by the alternate long and short dash line in the figure) is housed in the thermostatic bath 3, and the inside can be kept at a constant temperature. . The thermostat 3 is provided with a temperature control device (not shown), and can change the temperature freely from 273 [K] to 323 [K], for example. Also, lever to cool the holder 41 at a constant temperature from the outside of the lower high pressure cell 28 by using a cryogen holding container or the like, a liquid nitrogen temperature (77 [K]) and, liquid argon temperature (87 [K]), It is also possible to measure at ethanol / dry ice temperature.

(高圧気体吸着量測定装置について)
次に、上記システムの中心をなす高圧気体吸着量測定装置10の装置構成例について説明する。図2は、本発明の気体吸着量測定装置の構成の概要を説明するための図である。装置10は主に、耐圧性の部材で構成された容器20、容器20の上部にガス導入部30、容器20内に配置され上方から吊り下げられた弾性体40、弾性体の伸長量を計測する計測装置50などを備えている。
(About the high-pressure gas adsorption measuring device)
Next, an apparatus configuration example of the high-pressure gas adsorption amount measuring apparatus 10 that forms the center of the system will be described. FIG. 2 is a diagram for explaining the outline of the configuration of the gas adsorption amount measuring apparatus of the present invention. The apparatus 10 mainly measures a container 20 made of a pressure-resistant member, a gas introduction part 30 above the container 20, an elastic body 40 arranged in the container 20 and suspended from above, and an extension amount of the elastic body. A measuring device 50 is provided.

容器20は100気圧以上の高圧力に耐えうる構造である。また、ガス導入部30には、ガス供給系ラインL1と、真空排気系ラインL2とが接続されている。このガス供給系ラインL1には、ヘリウムガスや吸着ガス(Adsガス)などの気体供給源70が接続され、真空排気系ラインL2には、真空排気装置80が接続され、また、圧力計Pは容器や配管の内圧を計測することができる適当な部位に設けられている(図1のシステム構成図を参照)。この気体供給源70と真空排気装置80を併せて測定雰囲気設定装置という。また、この圧力計Pの圧力信号は、信号線により後述する演算装置60に送られる。 The container 20 has a structure that can withstand a high pressure of 100 atm or higher. Further, a gas supply system line L1 and a vacuum exhaust system line L2 are connected to the gas introduction unit 30. A gas supply source 70 such as helium gas or adsorption gas (Ads gas) is connected to the gas supply system line L1, a vacuum exhaust device 80 is connected to the vacuum exhaust system line L2, and the pressure gauge P is It is provided at an appropriate location where the internal pressure of the container or piping can be measured (see the system configuration diagram of FIG. 1). The gas supply source 70 and the vacuum exhaust device 80 are collectively referred to as a measurement atmosphere setting device. Further, the pressure signal of the pressure gauge P is sent to the arithmetic unit 60 described later through a signal line.

また、弾性体40の下端には吸着剤試料を設置するための保持部(バスケット41が吊り下げられるようにして接続され、弾性体40と保持部(バスケット41との間には弾性体の伸長量を計測する計測装置50が設けられている。計測装置50は、弾性体の伸長に応じて上下に移動する可動コア51と、容器2の外周であって可動コアの周囲近傍に設けられた差動コイル(励磁コイル52と検出コイル53)とを含む差動トランス式位置計測器により構成され、弾性体40の下端と保持部(バスケット41との中間部に設けられる。計測装置50の出力は差動電圧として演算装置60に入力され、ここで差動電圧を弾性体の伸長量に変換し、吸着量を出力すると共に、圧力値と吸着量との関係から等温線を求める。 Further, a holding part ( basket ) 41 for installing the adsorbent sample is connected to the lower end of the elastic body 40 so as to be suspended, and the elastic body 40 and the holding part ( basket ) 41 are connected between the elastic body 40 and the holding part ( basket ) 41. A measuring device 50 is provided for measuring the amount of expansion. The measuring device 50 includes a movable core 51 that moves up and down according to the extension of the elastic body, a differential coil (excitation coil 52 and detection coil 53) provided on the outer periphery of the container 2 and in the vicinity of the periphery of the movable core. It made up of a differential transformer type position measuring device including, disposed in an intermediate portion between the lower end and the holder (basket) 41 of the elastic body 40. The output of the measuring device 50 is input as a differential voltage to the arithmetic device 60. Here, the differential voltage is converted into the amount of expansion of the elastic body, the amount of adsorption is output, and the isotherm from the relationship between the pressure value and the amount of adsorption. Ask for.

図3は、図2の気体吸着量測定装置10の上部を拡大したやや詳細な断面図の一例である。装置本体は架台90により垂直に保持されている。ガス導入部30は、気密性を高めるためのOリング21aを介して上部高圧セル22aと接続されている。架台90と上部高圧セル22aとはセル固定台23によって結合されている。   FIG. 3 is an example of a slightly detailed cross-sectional view in which the upper part of the gas adsorption amount measuring device 10 of FIG. 2 is enlarged. The apparatus main body is held vertically by a gantry 90. The gas introduction part 30 is connected to the upper high-pressure cell 22a through an O-ring 21a for improving airtightness. The gantry 90 and the upper high-pressure cell 22 a are coupled by the cell fixing base 23.

耐圧製の容器20は、複数の部品が組み合わされた細長い筒状の形状であり、内管24aをサヤ管24bが覆いそれを外周上方に設けたグランド25a及びカラー25bが支持する構造となっている。このグランド25aはねじ込み式で上部高圧セル22aに接続するようになっている。内管24aの中心部上方(ガス導入部30の下端)から弾性体(例えばコイルスプリング)40が吊り下げられ、さらに、弾性体40の下端からバスケット(不図示)が吊り下げられる。バスケット部サヤ管28は、気密性を高めるためのメタルCリング又はO−リング21bを介して、下部高圧セル22bと接続されている。また、下部高圧セル22bにはフランジ26が締付ボルト27により結合され、この部分で本体下部と切り離しできるようになっている。 The pressure resistant container 20 has an elongated cylindrical shape in which a plurality of parts are combined, and the inner tube 24a is covered by a sheath tube 24b and is supported by a ground 25a and a collar 25b provided on the outer periphery. Yes. This gland 25a is screwed and connected to the upper high voltage cell 22a. An elastic body (for example, a coil spring) 40 is suspended from above the central portion of the inner tube 24a (the lower end of the gas introduction section 30), and a basket (not shown) is suspended from the lower end of the elastic body 40. The basket section sheath tube 28 is connected to the lower high-pressure cell 22b via a metal C ring or O-ring 21b for improving airtightness. Further, a flange 26 is coupled to the lower high-pressure cell 22b by a fastening bolt 27 so that this portion can be separated from the lower part of the main body.

上述のように弾性体40と保持部(バスケット41との間には可動コア51が取り付けられ、コア51の周囲の高圧セル外部には差動コイル(励磁コイル52と検出コイル53)が設けられている(図2参照)。可動コア51は弾性体25の伸び縮み量に応じて上下に移動することができ、その移動量は差動トランス式位置計測器により正確に検知される。 As described above, the movable core 51 is attached between the elastic body 40 and the holding portion ( basket ) 41, and the differential coil (excitation coil 52 and detection coil 53) is provided outside the high voltage cell around the core 51. (See FIG. 2). The movable core 51 can move up and down according to the amount of expansion and contraction of the elastic body 25, and the amount of movement is accurately detected by a differential transformer type position measuring instrument.

弾性体40、保持部(バスケット)41、容器20、内管24a及び高圧セルサヤ管24b、導入されるガスと接触する可能性があるため、測定ガスと反応しにくい材料を用いることが好ましい。そのような材料として、従来から石英が知られており、石英を用いても良い。 Since the elastic body 40, the holding part (basket) 41, the container 20, the inner tube 24a, and the high-pressure cell sheath tube 24b may come into contact with the introduced gas, it is preferable to use a material that does not easily react with the measurement gas. Quartz is conventionally known as such a material, and quartz may be used.

しかし、石英は高価でしかも破損しやすく取り扱いが難しいため、本件発明者たちは、代替材料を検討した結果、ステンレス鋼を用いることができることを見いだした。   However, since quartz is expensive and easily damaged and difficult to handle, the present inventors have examined alternative materials and found that stainless steel can be used.

ステンレス鋼の中でも、特に耐腐食性が高くガスの吸着性の低いステンレス鋼、例えば、通常のステンレスに微量のモリブデンを添加したSUS316(18Cr−12Ni−2Mo合金)を用いたところ、石英製コイルスプリングの代替材料として事実上問題なく使用できることを見いだした。このようにSUS316のようなステンレス鋼をこのような高圧吸着ガスの測定装置という用途に用いることは知られていなかったことである。   Among stainless steels, especially when stainless steel with high corrosion resistance and low gas adsorption, such as SUS316 (18Cr-12Ni-2Mo alloy) in which a small amount of molybdenum is added to normal stainless steel, a quartz coil spring is used. It has been found that it can be used practically as an alternative material. Thus, it has not been known to use stainless steel such as SUS316 for such a high-pressure adsorption gas measuring device.

なお、SUS316には、炭素の含有量をより低くしてより吸着しにくくしたSUS316Lというタイプなどもあり、その他、SUS310Sなど吸着性の低いステンレス鋼を用いても良い。ただし、SUS304(18Cr−8Ni合金)などは、SUS316などと比べると低コストである反面、相対的に若干ではあるがやや吸着性が高い。   Note that SUS316 includes a type called SUS316L that has a lower carbon content and is less likely to be adsorbed. In addition, stainless steel having a low adsorbability such as SUS310S may be used. However, SUS304 (18Cr-8Ni alloy) and the like are less expensive than SUS316 and the like, but are relatively slightly adsorbable.

(差動トランス式位置計測器について)
図4(a)は、図3における計測装置50(差動トランス式位置計測器)の部分を拡大した断面図を示している。計測装置50は可動コア51と差動コイル(励磁コイル52と一対の検出コイル53a、53b)とからなる。コイルの配線は先端柳線処理されたフロンレックスケーブル54を通じて装置外部から電気信号をやりとりすることができる。
可動コイル51の初期位置をNP(Null Position)とし、このときの差動電圧(出力電圧)を基準電圧とする。
図4(b)は、差動トランスの動作原理について説明するための図であり、その基本回路について説明している。計測装置50は可動コア51と差動コイル(励磁コイル52と一対の検出コイル53a、53b)とがこの図のように配線されている。但し、回路中の黒丸は巻きはじめを表している。
(Differential transformer type position measuring instrument )
4A shows an enlarged cross-sectional view of a portion of the measuring device 50 (differential transformer type position measuring device) in FIG. The measuring device 50 includes a movable core 51 and a differential coil (excitation coil 52 and a pair of detection coils 53a and 53b). Coil wiring can exchange electrical signals from the outside of the apparatus through a front-reel-cable-treated front cable.
The initial position of the movable coil 51 is NP (Null Position), and the differential voltage (output voltage) at this time is the reference voltage.
FIG. 4B is a diagram for explaining the operation principle of the differential transformer, and its basic circuit is explained. In the measuring device 50, a movable core 51 and a differential coil (excitation coil 52 and a pair of detection coils 53a, 53b) are wired as shown in this figure. However, the black circle in the circuit represents the beginning of winding.

差動トランス は励磁コイル(一次コイル)の両端ABに交流電圧VABを加え、励磁コイルに電磁結合する検出コイル(二次コイル)の両端CDに誘導される交流電圧VCDを検出して可動部の変位を検出する。 The differential transformer is movable by applying AC voltage V AB to both ends AB of the excitation coil (primary coil) and detecting AC voltage V CD induced at both ends CD of the detection coil (secondary coil) electromagnetically coupled to the excitation coil. The displacement of the part is detected.

本発明に係る高圧気体吸着量測定装置はマイクログラムオーダーの重量変化を極めて正確に求めることを目的とするため、弾性体40に吊り下げられる可動コア51及びバスケットの重量は、なるべく軽いことが好ましい。吸着量と比べて可動コアとバスケットの重量の総和が極端に大きいと測定感度が低下してしまうためである。   Since the high-pressure gas adsorption amount measuring device according to the present invention aims to obtain a change in weight on the order of micrograms very accurately, the weight of the movable core 51 and the basket suspended from the elastic body 40 is preferably as light as possible. . This is because if the total sum of the weights of the movable core and the basket is extremely large compared with the amount of adsorption, the measurement sensitivity is lowered.

具体的には、可動コアとして、市販の可動コアよりもサイズが小さく、保持部(バスケット41に使用する石英もできる限り肉厚の薄いものを使用するとよい。こうすると、一般的な可動コアに対して約3割程度重量を減少することができた。 Specifically, it is preferable to use a movable core that is smaller in size than a commercially available movable core and that is as thin as possible for the quartz used for the holding portion ( basket ) 41. In this way, the weight could be reduced by about 30% with respect to a general movable core.

試作した差動コイルによるとコイルスプリングの移動量を4μm単位で求めることができ、これによって、マイクログラムオーダーの重量変化を求めることができた。   According to the prototyped differential coil, the amount of movement of the coil spring can be determined in units of 4 μm, and thus the change in weight on the order of micrograms can be determined.

(高圧気体吸着量測定システムについて)
本システムで測定可能な気体の吸着剤は特に制限がないが、本システムは、その開発の背景として吸着特性の良い吸着剤として知られる「ナノポーラス物質」などの測定を想定したものである。ナノポーラス物質とは、ナノメートルオーダーの細孔径からなる細孔構造を持ちこのため比表面積が大きい物質であり、例えばカーボンナノチューブ、モレキュラーシーブ等がこれに該当する。また、吸着剤に吸着する物質は、高圧下の密閉容器に封入されるため、本明細書において「気体」というときは、超臨界気体などを含むものとする。
(About high pressure gas adsorption measurement system)
The gas adsorbent that can be measured by this system is not particularly limited, but this system assumes measurement of “nanoporous materials” known as adsorbents with good adsorption characteristics as the background of its development. The nanoporous material is a material having a pore structure having a pore size on the order of nanometers and a large specific surface area. Examples thereof include carbon nanotubes and molecular sieves. Further, since the substance adsorbed on the adsorbent is enclosed in a sealed container under high pressure, the term “gas” in this specification includes supercritical gas and the like.

次に、本システムを用いた吸着量測定方法について図1及び図2を参照して説明する。   Next, an adsorption amount measuring method using this system will be described with reference to FIGS.

まず、容器20の保持部(バスケット41に吸着剤を設置する。次に、真空ポンプ(2a、2b)により真空排気系ラインL2から容器内を脱気して真空状態に設定する。この状態で、差動トランスの励磁コイルに交流電圧を印加し、検出コイルの電圧(この電圧が基準電位となる。)を測定する。次に、ガス供給系ラインL1から吸着ガスを所定の圧力となるまで導入する。また、必要により、恒温槽3の温度制御装置により、所定の温度とする。ガスの導入により吸着剤にガスが吸着し、可動コア51が下方へ移動し平衡状態で停止する。ガス導入前後の検出コイルの電圧差から可動コア51の移動量すなわちコイルスプリングの伸長量が求められ、予め求めておいた伸長量と重さの関係から演算装置60において吸着剤に吸着した気体の重量が求められる。 First, an adsorbent is installed in the holding part ( basket ) 41 of the container 20. Next, the inside of the container is evacuated from the evacuation system line L2 by a vacuum pump (2a, 2b) and set in a vacuum state. In this state, an AC voltage is applied to the excitation coil of the differential transformer, and the voltage of the detection coil (this voltage becomes the reference potential) is measured. Next, the adsorbed gas is introduced from the gas supply system line L1 until a predetermined pressure is reached. Moreover, it is set as predetermined temperature with the temperature control apparatus of the thermostat 3 as needed. By introducing the gas, the gas is adsorbed on the adsorbent, and the movable core 51 moves downward and stops in an equilibrium state. The amount of movement of the movable core 51, that is, the extension amount of the coil spring, is obtained from the voltage difference between the detection coils before and after the gas introduction, and the gas adsorbed on the adsorbent in the arithmetic unit 60 is calculated from the relationship between the extension amount and the weight obtained in advance. Weight is required.

なお、厳密にいうと吸着剤は高圧気体雰囲気下におかれているため、浮力を受けている。このため、より精度良く吸着量を求めるためには、いわゆる浮力補正が必要となる場合もある。浮力補正は公知の方法により容易に計算できるためここでは説明を省略する。演算装置60に予め浮力補正の計算式を入れておき、補正値を自動計算するようにしてもよい。   Strictly speaking, since the adsorbent is placed in a high-pressure gas atmosphere, it receives buoyancy. For this reason, so-called buoyancy correction may be required in order to obtain the adsorption amount with higher accuracy. Since the buoyancy correction can be easily calculated by a known method, the description is omitted here. A calculation formula for buoyancy correction may be entered in the arithmetic device 60 in advance, and the correction value may be automatically calculated.

以上のような測定を繰り返し、等温線(吸着量と圧力の関係を示すグラフ)など各種のデータを求め、吸着剤の特性を解析することに役立てることができる。   By repeating the above measurement, various data such as an isotherm (a graph showing the relationship between the adsorption amount and the pressure) can be obtained and used for analyzing the characteristics of the adsorbent.

本システムによると、吸着量がまず電圧として求められた後、重量に変換されるので、扱う物理量が電圧という点において、従来のような光学的に移動量を求めるものと比べ、システム化が容易である。また、差動トランスによる測定は、光学式の変位測定装置と比べ測定感度及び測定範囲が共に大きいという利点もある。さらに、光学式の変位測定装置を用いた従来の測定装置に比べて一層小型に製造でき、しかも安価に提供することができる。   According to this system, the amount of adsorption is first determined as voltage and then converted to weight, so that the physical quantity handled is easier to systemize compared to conventional methods that optically determine the amount of movement. It is. In addition, the measurement using the differential transformer has an advantage that both the measurement sensitivity and the measurement range are larger than those of the optical displacement measuring device. Furthermore, it can be manufactured more compactly than a conventional measuring apparatus using an optical displacement measuring apparatus, and can be provided at a low cost.

本発明に係る気体吸着量測定装置は、燃料電池などの分野で注目されている高圧気体吸着剤の吸着量を正確に測定する用途に用いることができる。また、燃料電池など以外の分野、例えば、半導体製造技術の分野で現在研究が進められている低誘電体薄膜などの多孔度特性を測定することなどに適用することもできる。   The gas adsorption amount measuring apparatus according to the present invention can be used for the purpose of accurately measuring the adsorption amount of a high-pressure gas adsorbent that is attracting attention in the field of fuel cells and the like. Further, the present invention can be applied to measurement of porosity characteristics of a low dielectric thin film or the like currently being studied in fields other than fuel cells, for example, in the field of semiconductor manufacturing technology.

本発明の気体吸着量測定システムの一実施例を示す図である。It is a figure which shows one Example of the gas adsorption amount measuring system of this invention. 本発明の気体吸着量測定装置の概要を示す図である。It is a figure which shows the outline | summary of the gas adsorption amount measuring apparatus of this invention. 本発明の気体吸着量測定装置の断面図を示す図である。It is a figure which shows sectional drawing of the gas adsorption amount measuring apparatus of this invention. 差動トランスの動作原理を示すための図である。It is a figure for showing the principle of operation of a differential transformer.

符号の説明Explanation of symbols

10 高圧気体吸着量測定装置
20 容器
30 ガス導入部
70、80 測定雰囲気設定装置
40 弾性体
41 保持部(バスケット)
50 計測装置(差動トランス式位置計測器)
51 可動コア
52 励磁コイル
53 検出コイル
60 演算装置
P 圧力計
DESCRIPTION OF SYMBOLS 10 High pressure gas adsorption amount measuring apparatus 20 Container 30 Gas introduction part 70, 80 Measurement atmosphere setting apparatus 40 Elastic body 41 Holding part (basket)
50 Measuring device (differential transformer type position measuring instrument)
51 Movable Core 52 Excitation Coil 53 Detection Coil 60 Arithmetic Unit P Pressure Gauge

JP2003299504A 2003-08-25 2003-08-25 Apparatus and system for measuring amount of gas adsorption Pending JP2005069848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299504A JP2005069848A (en) 2003-08-25 2003-08-25 Apparatus and system for measuring amount of gas adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299504A JP2005069848A (en) 2003-08-25 2003-08-25 Apparatus and system for measuring amount of gas adsorption

Publications (2)

Publication Number Publication Date
JP2005069848A JP2005069848A (en) 2005-03-17
JP2005069848A5 true JP2005069848A5 (en) 2006-10-05

Family

ID=34404694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299504A Pending JP2005069848A (en) 2003-08-25 2003-08-25 Apparatus and system for measuring amount of gas adsorption

Country Status (1)

Country Link
JP (1) JP2005069848A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572297B2 (en) * 2005-08-30 2010-11-04 国立大学法人信州大学 Device for measuring properties of porous materials
CN109781573A (en) * 2019-01-22 2019-05-21 西南石油大学 It is a kind of high containing CO2、H2The analogue measurement device and method of water content in the natural gas of S
CN110108591A (en) * 2019-03-28 2019-08-09 合肥国轩高科动力能源有限公司 A kind of evaluation method of cathode of lithium battery SBR absorbent
KR102341461B1 (en) * 2020-06-26 2021-12-21 한국표준과학연구원 Method of evaluating hydrogen permeation properties

Similar Documents

Publication Publication Date Title
Czanderna et al. Microweighing in vacuum and controlled environments
JPS62223640A (en) System for detecting leakage in liquid storage tank
Shkolin et al. Measurement of carbon-nanotube adsorption of energy-carrier gases for alternative energy systems
Joy Methods and techniques for the determination of specific surface by gas adsorption
JP2003512664A (en) Method and apparatus for telemetry of physical properties inside a closed container
JP2005069848A5 (en)
JP2005069848A (en) Apparatus and system for measuring amount of gas adsorption
US4563892A (en) Total dissolved gas pressure measuring device
US8485014B2 (en) Apparatus and methods for imbalance compensation
JP2002277369A (en) Instrument for measuring gas adsorption amount
JP3756919B2 (en) How to measure dead volume fluctuation
RU2732199C1 (en) Bench for measuring adsorption of gases and vapors by gravimetric method and method of its operation
Shkolin et al. Method to measure the deformation of nanoporous materials induced by the adsorption of gases and vapors
CN211955049U (en) Hydrate-containing sediment mechanical property detection device
US4893495A (en) Oxygen sensing method and apparatus
Venkateshan et al. Measurement of pressure
RU2766188C1 (en) Methods and test bench for measuring deformation of granules of nanoporous materials, stimulated by adsorption or temperature by dilatometric method
JP3612413B2 (en) Variation measurement method
JP3027331B2 (en) Adsorption amount measuring method and apparatus using temperature-compensated constant volume adsorption apparatus
Yang et al. The magnetic suspension balance: 40 years of advancing densimetry and sorption science
Jousten Gauges for fine and high vacuum
Sydenham Nanometre stability of Invar and quartz suspended in catenary
Jayakantha et al. Low cost automated instrumentation for the measurement of the specific surface area of powders by the Brunauer–Emmett–Teller (BET) method
Wiegleb Physical Gas Sensors
Blayden A versatile electromagnetic balance