JP2005069845A - Method and system of phase measurement of light pulse - Google Patents

Method and system of phase measurement of light pulse Download PDF

Info

Publication number
JP2005069845A
JP2005069845A JP2003299463A JP2003299463A JP2005069845A JP 2005069845 A JP2005069845 A JP 2005069845A JP 2003299463 A JP2003299463 A JP 2003299463A JP 2003299463 A JP2003299463 A JP 2003299463A JP 2005069845 A JP2005069845 A JP 2005069845A
Authority
JP
Japan
Prior art keywords
phase
measured
pulse
optical
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003299463A
Other languages
Japanese (ja)
Other versions
JP4439857B2 (en
Inventor
Takashi Mori
隆 森
Hitoshi Kawaguchi
仁司 河口
Takeo Katayama
健夫 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003299463A priority Critical patent/JP4439857B2/en
Publication of JP2005069845A publication Critical patent/JP2005069845A/en
Application granted granted Critical
Publication of JP4439857B2 publication Critical patent/JP4439857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and system of phase measurement of light pulses for obtaining a plurality of short pulse lights by expanding a frequency region interference method to a plurality of light pulses to be measured. <P>SOLUTION: The system is provided with a spectrum measuring means 4 to which a pulse series with a certain time interval including a reference light pulse 2 and a plurality of light pulses to be measured #1 to #n-1 for measuring power spectrum of the pulse series, and a phase calculation means 5 for calculating the phase corresponding to the reference light pulse 2 of a plurality of the light pulses to be measured #1 to #n-1 from the power spectrum. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、周波数領域干渉法による複数の短パルス光の位相測定方法及び装置に係り、特に、光通信や光信号処理の分野において、光パルスの位相を検出、測定する場合に用いられる、ピコ秒、フェムト秒パルスのような短パルス光の測定方法及び装置に関するものである。   The present invention relates to a method and apparatus for measuring a phase of a plurality of short pulse lights by frequency domain interferometry, and in particular, in the fields of optical communication and optical signal processing, it is used for detecting and measuring the phase of an optical pulse. The present invention relates to a method and apparatus for measuring short-pulse light such as seconds and femtosecond pulses.

従来、周波数領域干渉法は、基準光パルスと被測定光パルスを時間τだけ離して合波し、周波数領域で干渉したスペクトルを測定して、被測定光パルスの基準光パルスに対する位相を求める手法である(下記非特許文献1参照)。   Conventionally, frequency domain interferometry is a technique in which a reference optical pulse and a measured optical pulse are separated by a time τ and a spectrum that interferes in the frequency domain is measured to determine the phase of the measured optical pulse with respect to the reference optical pulse. (See Non-Patent Document 1 below).

光のキャリア周波数は非常に高いため、光波の波形を直接観測することは極めて困難である。このため、上記した干渉を用いた位相測定が用いられており、その一つに周波数領域干渉法(Spectral interferometry)がある。周波数領域干渉法は、時間軸上で離れたパルスが周波数軸上では重なりあって干渉が発生する現象を利用したものである。具体的には、基準光パルスと被測定光パルスを時間τだけずらして合波し、そのパワースペクトルを測定することにより、被測定光パルスの基準光パルスに対する相対位相を算出する方法である。   Since the optical carrier frequency is very high, it is very difficult to directly observe the waveform of the light wave. For this reason, phase measurement using the above-described interference is used, and one of them is frequency domain interferometry (Spectrum interferometry). The frequency domain interferometry utilizes a phenomenon in which pulses that are separated on the time axis overlap each other on the frequency axis to cause interference. Specifically, this is a method of calculating the relative phase of the measured optical pulse with respect to the reference optical pulse by combining the reference optical pulse and the measured optical pulse while shifting them by time τ and measuring the power spectrum.

図11はかかる従来の光パルスの位相測定装置の構成図である。   FIG. 11 is a block diagram of such a conventional optical pulse phase measuring apparatus.

この図において、101は被測定光パルス100が入力されるタイミング調整手段、103はこのタイミング調整手段101の出力光と基準光パルス102が合波される合波手段、104はこの合波手段103によって合波された出力光が入力されるスペクトル測定手段、105はこのスペクトル測定手段104からの出力が入力される位相算出手段であり、この位相算出手段105は、フーリエ変換部106、フーリエ変換成分抽出部107、横軸移動部108、フーリエ逆変換部109、逆正接(tan-1)計算部110を備えている。 In this figure, 101 is a timing adjusting means for inputting the measured light pulse 100, 103 is a multiplexing means for combining the output light of this timing adjusting means 101 and the reference light pulse 102, and 104 is this multiplexing means 103. The spectrum measuring means 105 to which the output light combined by the signal is input is a phase calculating means to which the output from the spectrum measuring means 104 is input. The phase calculating means 105 includes a Fourier transform unit 106 and a Fourier transform component. The extraction unit 107, the horizontal axis movement unit 108, the inverse Fourier transform unit 109, and the inverse tangent (tan −1 ) calculation unit 110 are provided.

そこで、タイミング調整手段101で被測定光パルス100と基準光パルス102の時間間隔が適切な値τになるように調整する。これらのパルスを合波手段103で合波し、スペクトル測定手段104で、パワースペクトルを測定する。位相算出手段105では、測定されたパワースペクトルをフーリエ変換部106でフーリエ変換し、フーリエ変換成分抽出部107でフーリエ変換結果から時間差τに相当するフーリエ変換成分を抽出し、横軸移動部108でフーリエ変換成分を時間軸上で原点に移動し、フーリエ逆変換部109で移動された成分をフーリエ逆変換し、逆正接(tan-1)計算部110でフーリエ逆変換結果の実数部と虚数部から逆正接(tan-1)を計算して位相を求める。 Therefore, the timing adjusting unit 101 adjusts the time interval between the measured light pulse 100 and the reference light pulse 102 so as to have an appropriate value τ. These pulses are combined by the combining means 103, and the power spectrum is measured by the spectrum measuring means 104. In the phase calculation means 105, the measured power spectrum is Fourier-transformed by the Fourier transform unit 106, the Fourier transform component extraction unit 107 extracts the Fourier transform component corresponding to the time difference τ from the Fourier transform result, and the horizontal axis moving unit 108 The Fourier transform component is moved to the origin on the time axis, the component moved by the Fourier inverse transform unit 109 is subjected to Fourier inverse transform, and the inverse tangent (tan −1 ) calculation unit 110 performs the real part and the imaginary part of the Fourier inverse transform result. To calculate the arc tangent (tan -1 ) to obtain the phase.

以下に、従来の周波数領域干渉法の詳細を示す。   Details of the conventional frequency domain interferometry are shown below.

基準光パルスの電界の時間波形をe0 (t)、被測定光パルスの電界の時間波形をe1 (t)とする。被測定光パルスを時間τだけずらして2つのパルスを合波すると、全電界e(t)は、 The time waveform of the electric field of the reference light pulse is e 0 (t), and the time waveform of the electric field of the light pulse to be measured is e 1 (t). When the measured light pulse is shifted by time τ and the two pulses are combined, the total electric field e (t) is

Figure 2005069845
である。e0 (t)のフーリエ変換をE0 (ω),e1 (t)のフーリエ変換をE1 (ω)とすると、全パワースペクトルI(ω)は、
Figure 2005069845
It is. When the Fourier transform of e 0 (t) is E 0 (ω) and the Fourier transform of e 1 (t) is E 1 (ω), the total power spectrum I (ω) is

Figure 2005069845
で表される。Fはフーリエ変換を表す。ここで、E0 (ω)のパワースペクトルをI0 (ω)、位相を0(基準位相)、E1 (ω)のパワースペクトルをI1 (ω)、位相をφ1 (ω)とすると、
Figure 2005069845
It is represented by F represents a Fourier transform. Here, if the power spectrum of E 0 (ω) is I 0 (ω), the phase is 0 (reference phase), the power spectrum of E 1 (ω) is I 1 (ω), and the phase is φ 1 (ω). ,

Figure 2005069845
(7)式の第3項と第4項は、1つのパルスのパワースペクトルには見られない振動で、基準光パルスと被測定光パルスの周波数領域での干渉である。この干渉項に被測定光パルスの位相φ1 が含まれているので、以下干渉項を抽出する方法を示す。ここで、
Figure 2005069845
The third and fourth terms of equation (7) are vibrations that are not found in the power spectrum of one pulse, and are interference in the frequency domain of the reference light pulse and the measured light pulse. Since this interference term includes the phase φ 1 of the optical pulse to be measured, a method for extracting the interference term will be described below. here,

Figure 2005069845
とおくと、I(ω)は、
Figure 2005069845
I (ω) is

Figure 2005069845
で表される。次にI(ω)をフーリエ変換する。周波数の関数であるI(ω)をフーリエ変換すると単位の上では時間の関数となる。
Figure 2005069845
It is represented by Next, Fourier transform is performed on I (ω). When I (ω), which is a function of frequency, is Fourier transformed, it becomes a function of time in terms of units.

Figure 2005069845
Figure 2005069845
Figure 2005069845
Figure 2005069845

Figure 2005069845
Figure 2005069845
Figure 2005069845
Figure 2005069845

周波数領域干渉法は、次のような特長を持つ。まず、パワースペクトルの測定のみで良いので、測定系が簡単である。また、2次高調波発生のような大きな光パワーを要する非線形現象を使用していないので、比較的感度が高い。さらに、パワースペクトルの測定は、受光器や電気回路の応答速度が遅くてもよく、容易に短パルスの測定が可能である。短パルスのパワースペクトルを測定するためには広い波長範囲のスペクトルを測定する必要があるが、これは現在の分光器の技術で容易に実現できる。
L.Lepetit,et al.,J.Opt.Soc.Am.B,vol.12,no.12,pp.2467−2474,1995
The frequency domain interferometry has the following features. First, the measurement system is simple because only power spectrum measurement is required. Further, since a non-linear phenomenon requiring a large optical power such as second harmonic generation is not used, the sensitivity is relatively high. Furthermore, the power spectrum may be measured with a short response time because the response speed of the light receiver or the electric circuit may be slow. In order to measure the power spectrum of a short pulse, it is necessary to measure a spectrum in a wide wavelength range, which can be easily realized with the current spectroscopic technology.
L. Lepetit, et al. , J .; Opt. Soc. Am. B, vol. 12, no. 12, pp. 2467-2474, 1995

しかしながら、従来の周波数領域干渉法は、1つのパルスの位相しか測定できない。もし複数のパルスを測定する場合は、1パルス毎に測定する必要がある。また、複数のパルスが連なったパルス列の場合は、1つずつパルスを分離抽出して測定する必要がある。さらに、高速なパルスを分離するには高速な変調器等が必要となり、高価で複雑になるという問題があった。   However, conventional frequency domain interferometry can only measure the phase of one pulse. If a plurality of pulses are measured, it is necessary to measure every pulse. Further, in the case of a pulse train in which a plurality of pulses are connected, it is necessary to separately extract and measure the pulses one by one. Further, in order to separate high-speed pulses, a high-speed modulator or the like is required, and there is a problem that it is expensive and complicated.

本発明は、上記課題を解決するために、従来の周波数領域干渉法を複数個のパルスに拡張し、基準光パルスと複数の被測定光パルスを時間間隔τずつずらして合波し、そのパワースペクトルを測定することにより、1回の測定で複数の被測定光パルスの位相を算出することができるようにする。   In order to solve the above problems, the present invention extends the conventional frequency domain interferometry to a plurality of pulses, combines the reference light pulse and the plurality of light pulses to be measured with a time interval τ, and combines the power. By measuring the spectrum, the phase of a plurality of light pulses to be measured can be calculated in one measurement.

すなわち、本発明は、周波数領域干渉法を複数の被測定光パルスに拡張し、複数の短パルス光の位相を求める光パルスの位相測定方法及び装置を提供することを目的とする。   That is, an object of the present invention is to provide an optical pulse phase measurement method and apparatus for obtaining the phases of a plurality of short pulse lights by extending the frequency domain interferometry to a plurality of optical pulses to be measured.

本発明は、上記目的を達成するために、
〔1〕光パルスの位相測定方法において、基準光パルスと複数の被測定光パルスが各々異なるタイミングに位置する光の周波数領域で干渉したパワースペクトルを測定するスペクトル測定過程と、このパワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出過程とを有する。
In order to achieve the above object, the present invention provides
[1] In the optical pulse phase measurement method, a spectrum measurement process for measuring a power spectrum in which a reference optical pulse and a plurality of measured optical pulses interfere with each other in light frequency regions positioned at different timings, A phase calculating step of calculating phases of a plurality of measured light pulses with respect to the reference light pulse.

〔2〕光パルスの位相測定方法において、基準光パルスと複数の被測定光パルスを一定時間間隔に調整するタイミング調整過程と、前記基準光パルスと前記複数の被測定光パルスを合波する合波過程と、前記合波された光のパワースペクトルを測定するスペクトル測定過程と、前記パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出過程とを有する。   [2] In the optical pulse phase measurement method, a timing adjustment process for adjusting the reference light pulse and the plurality of measured light pulses at a constant time interval, and a combination of the reference light pulse and the plurality of measured light pulses. A wave process; a spectrum measurement process for measuring a power spectrum of the combined light; and a phase calculation process for calculating phases of the plurality of light pulses to be measured with respect to the reference light pulse from the power spectrum.

〔3〕上記〔1〕又は〔2〕記載の光パルスの位相測定方法において、前記位相算出過程は、前記パワースペクトルを複数のフーリエ変換成分に分離する過程と、該複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する過程とを含む。   [3] In the optical pulse phase measurement method according to [1] or [2], the phase calculation step includes a step of separating the power spectrum into a plurality of Fourier transform components, and the plurality of Fourier transform components from the plurality of Fourier transform components. Calculating a phase of a plurality of optical pulses to be measured.

〔4〕上記〔1〕又は〔2〕記載の光パルスの位相測定方法において、前記位相算出過程は、前記パワースペクトルをフーリエ変換する過程と、このフーリエ変換結果を一定時間間隔で複数の成分に分離する過程と、各成分を時間軸上で移動する過程と、移動された各成分をフーリエ逆変換する過程と、このフーリエ逆変換結果から前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する過程とを含む。   [4] In the optical pulse phase measurement method described in [1] or [2] above, the phase calculation process includes a process of Fourier transforming the power spectrum, and the Fourier transform result is converted into a plurality of components at regular time intervals. A process of separating, a process of moving each component on the time axis, a process of inversely transforming each of the moved components, and a phase of the plurality of optical pulses to be measured with respect to the reference light pulse from the result of the inverse Fourier transform The process of calculating.

〔5〕上記〔1〕又は〔2〕記載の光パルスの位相測定方法において、前記位相算出過程は、前記パワースペクトルに正弦波を乗算して時間軸上で移動する過程と、フィルタにより複数のフーリエ変換成分を抽出する過程と、この複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する過程とを含む。   [5] In the optical pulse phase measurement method according to [1] or [2], the phase calculation process includes a process of multiplying the power spectrum by a sine wave and moving on a time axis, and a plurality of filters by a filter. A process of extracting a Fourier transform component and a process of calculating phases of the plurality of measured optical pulses from the plurality of Fourier transform components are included.

〔6〕上記〔3〕、〔4〕又は〔5〕記載の光パルスの位相測定方法において、前記フーリエ変換成分から前記複数の被測定光パルスの位相を算出する過程は、複数の被測定光パルスの位相の初期値を設定し、複数の被測定光パルスの位相の値の修正を繰り返して前記複数の被測定光パルスの位相を求める過程を含む。   [6] In the optical pulse phase measurement method described in [3], [4] or [5] above, the process of calculating the phases of the plurality of optical pulses to be measured from the Fourier transform component includes a plurality of optical signals to be measured. A step of setting an initial value of the phase of the pulse and repeatedly correcting the phase value of the plurality of measured optical pulses to obtain the phase of the plurality of measured optical pulses.

〔7〕基準光パルスと複数の被測定光パルスを含む一定時間間隔のパルス列が入力され、該パルス列のパワースペクトルを測定するスペクトル測定手段と、前記パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出手段とを具備する。   [7] A pulse train having a constant time interval including a reference light pulse and a plurality of light pulses to be measured is input, spectrum measuring means for measuring a power spectrum of the pulse train, and the plurality of light pulses to be measured from the power spectrum. Phase calculating means for calculating a phase with respect to the reference light pulse.

〔8〕光パルスの位相測定装置において、基準光パルスと複数の被測定光パルスを一定時間間隔に調整するタイミング調整手段と、前記基準光パルスと前記複数の被測定光パルスを合波する合波手段と、前記合波された光のパワースペクトルを測定するスペクトル測定手段と、前記パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出手段とを具備する。   [8] In the optical pulse phase measurement apparatus, a timing adjustment unit that adjusts the reference light pulse and the plurality of measured light pulses at a constant time interval, and a combination of the reference light pulse and the plurality of measured light pulses. Wave measuring means; spectrum measuring means for measuring a power spectrum of the combined light; and phase calculating means for calculating a phase of the plurality of light pulses to be measured with respect to the reference light pulse from the power spectrum.

〔9〕上記〔7〕又は〔8〕記載の光パルスの位相測定装置において、前記位相算出手段は、前記パワースペクトルを複数のフーリエ変換成分に分離する手段と、この複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する手段とを含む。   [9] In the optical pulse phase measurement device according to [7] or [8], the phase calculation means includes means for separating the power spectrum into a plurality of Fourier transform components; Means for calculating the phase of a plurality of optical pulses to be measured.

〔10〕上記〔7〕又は〔8〕記載の光パルスの位相測定装置において、前記位相算出手段は、前記パワースペクトルをフーリエ変換する手段と、このフーリエ変換結果を一定時間間隔で複数の成分に分離する手段と、各成分を時間軸上で移動する手段と、移動された各成分をフーリエ逆変換する手段と、このフーリエ逆変換結果から前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する手段とを含む。   [10] In the optical pulse phase measurement apparatus according to [7] or [8], the phase calculation means includes means for Fourier transforming the power spectrum, and the Fourier transform result is converted into a plurality of components at regular time intervals. Means for separating, means for moving each component on the time axis, means for inversely transforming each moved component, and phase of the plurality of optical pulses to be measured with respect to the reference light pulse from the result of inverse Fourier transform Calculating means.

〔11〕上記〔7〕又は〔8〕記載の光パルスの位相測定装置において、前記位相算出手段は、前記パワースペクトルに正弦波を乗算して時間軸上で移動する手段と、フィルタにより複数のフーリエ変換成分を抽出する手段と、この複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する手段とを含む。   [11] In the optical pulse phase measurement device according to [7] or [8], the phase calculation means includes a means for multiplying the power spectrum by a sine wave and moving on a time axis, and a filter. Means for extracting a Fourier transform component, and means for calculating the phase of the plurality of optical pulses to be measured from the plurality of Fourier transform components.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(A)複数の光パルスの位相をまとめて測定することができ、複数の光パルスを分離して1つずつ測定する必要が無くなる。   (A) The phases of a plurality of light pulses can be measured collectively, and it is not necessary to separate the plurality of light pulses and measure them one by one.

(B)簡単な構成で感度が高く、受光器の速度に依存せずに短パルスの測定が可能である。   (B) The sensitivity is high with a simple configuration, and short pulses can be measured without depending on the speed of the light receiver.

(C)本発明を光ラベル認識に応用すると、簡便な構成でラベルを認識することができる。   (C) When the present invention is applied to optical label recognition, a label can be recognized with a simple configuration.

まず、本発明の原理について説明する。   First, the principle of the present invention will be described.

n個のパルスを時間間隔τで合波し、パワースペクトルを測定する。i番目のパルス電界のフーリエ変換をEi (ω)とすると、パワースペクトルI(ω)は、 N pulses are combined at a time interval τ, and the power spectrum is measured. If the Fourier transform of the i-th pulse electric field is E i (ω), the power spectrum I (ω) is

Figure 2005069845
Figure 2005069845
Figure 2005069845
Figure 2005069845

Figure 2005069845
k=i1 −i2 とおいて変形すると、
Figure 2005069845
When deformed with k = i 1 −i 2 ,

Figure 2005069845
Figure 2005069845
Figure 2005069845
Figure 2005069845

各パルスの強度Ii (ω)が等しいと仮定すると、式(15)は次のように簡単化できる。 Assuming that the intensity I i (ω) of each pulse is equal, equation (15) can be simplified as follows.

Figure 2005069845
これを解くと、パルス位相φi (ω)を求めることができる。
Figure 2005069845
When this is solved, the pulse phase φ i (ω) can be obtained.

図1に本発明の実施例を示す光パルスの位相測定装置の構成図、図2はその光パルスの位相測定装置の位相検出手段の他の実施例の構成図である。   FIG. 1 is a block diagram of an optical pulse phase measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram of another embodiment of phase detecting means of the optical pulse phase measuring apparatus.

この図において、1−1〜1−n-1はタイミング調整手段、2は基準光パルス、3は合波手段、4はスペクトル測定手段、5は位相算出手段であり、この位相算出手段5は、フーリエ変換部6、フーリエ変換成分抽出部7、横軸移動部8、フーリエ逆変換部9、連立方程式の解の計算部10を有している。 In this figure, 1-1 to 1 -n -1 are timing adjusting means, 2 is a reference light pulse, 3 is multiplexing means, 4 is spectrum measuring means, 5 is phase calculating means, and this phase calculating means 5 is A Fourier transform unit 6, a Fourier transform component extraction unit 7, a horizontal axis moving unit 8, a Fourier inverse transform unit 9, and a simultaneous equation solution calculation unit 10.

そこで、タイミング調整手段1−1〜1−n-1で基準光パルス2とn−1個の被測定光パルス#1〜#n−1が適切な時間間隔τになるように調整する。タイミング調整手段1−1〜1−n-1は、機械的に光路長が可変の遅延ライン(ディレイライン)などで実現できる。これらのパルスを光カプラやビームスプリッタなどの合波手段3で合波し、各パルスが時間的に連なった光パルス列にする。ここでは基準光パルス2と複数個の被測定光パルス#1〜#n−1が別々にある場合を示したが、入力光がもともとパルス列の場合はタイミング調整手段1や合波手段3は不要である。 Therefore, the timing adjusting means 1-1 to 1 -n- 1 adjust the reference light pulse 2 and the n-1 measured light pulses # 1 to # n-1 so as to have an appropriate time interval τ. The timing adjusting units 1-1 to 1 -n −1 can be realized by a delay line (delay line) having a mechanically variable optical path length. These pulses are combined by combining means 3 such as an optical coupler or a beam splitter to form an optical pulse train in which each pulse is temporally connected. Here, the case where the reference light pulse 2 and the plurality of measured light pulses # 1 to # n-1 are separately shown is shown. However, when the input light is originally a pulse train, the timing adjusting means 1 and the combining means 3 are not necessary. It is.

次に、光スペクトラムアナライザ等のスペクトル測定手段4により、光パルス列のパワースペクトルを測定する。位相算出手段5は、測定されたパワースペクトルをフーリエ変換する部分であるフーリエ変換部6と、フーリエ変換結果から時間τに相当する間隔で複数のフーリエ変換成分を抽出する部分であるフーリエ変換成分抽出部7と、各フーリエ変換成分を時間軸上で原点に移動する段階である横軸移動部8と、移動された成分を各々フーリエ逆変換する部分であるフーリエ逆変換部9と、このフーリエ逆変換結果から連立補遺定式を解いて被測定光パルスの位相を求める部分である連立方程式の解の計算部10からなる。なお、その光パルスの位相測定装置の位相算出手段5の具体的構成は図2(a)〜(c)として後述する。   Next, the power spectrum of the optical pulse train is measured by the spectrum measuring means 4 such as an optical spectrum analyzer. The phase calculation means 5 includes a Fourier transform unit 6 that is a part that performs Fourier transform on the measured power spectrum, and a Fourier transform component extraction that is a part that extracts a plurality of Fourier transform components from the Fourier transform result at intervals corresponding to time τ. Unit 7, a horizontal axis moving unit 8 that is a stage for moving each Fourier transform component to the origin on the time axis, a Fourier inverse transform unit 9 that is a part that performs inverse Fourier transform on each of the moved components, and this Fourier inverse It consists of a calculation unit 10 for solving simultaneous equations, which is a part for solving the simultaneous supplementary formulation from the conversion result and obtaining the phase of the optical pulse to be measured. The specific configuration of the phase calculation means 5 of the optical pulse phase measuring device will be described later with reference to FIGS.

以下に、本発明の手順を図を用いて示す。   Hereinafter, the procedure of the present invention will be described with reference to the drawings.

図3に基準光パルスと被測定光パルスを合波した光パルス列の時間波形の例を示す。ここでは、最初のパルスを基準光パルスとし、残りの7個を被測定光パルスとする。パルス幅は1ps、パルス間隔τは6.25psである。パルス位相は図4に示すランダムな値とした。   FIG. 3 shows an example of a time waveform of an optical pulse train obtained by combining the reference optical pulse and the measured optical pulse. Here, the first pulse is a reference light pulse, and the remaining seven pulses are light pulses to be measured. The pulse width is 1 ps and the pulse interval τ is 6.25 ps. The pulse phase was a random value shown in FIG.

この光パルス列のパワースペクトルを図5に示す。このパワースペクトルをフーリエ変換すると図6のようになり、15個のピークが得られる。各ピークは時間間隔τに相当する6.25ps間隔になっており、6.25ps間隔で各フーリエ変換成分に分離することができる。例えば、中央から左側に4つ目の成分を抽出すると図7の破線のようになる。これを時間軸上で原点に移動すると図7の実線のようになる。移動された成分をフーリエ逆変換すると、図8のようになる。この図8ではフーリエ逆変換結果の振幅をグラフに描いているが、実際には複素数である。これを図6の中央から左側に1つ目の成分から7つ目の成分までについて同様に行い、7個のフーリエ逆変換結果を求め、連立方程式を解いて被測定光パルスの位相を算出する。ここでは、図6の中央から左側の成分を利用したが、中央から右側の成分を利用してもよい。   The power spectrum of this optical pulse train is shown in FIG. When this power spectrum is Fourier-transformed, it becomes as shown in FIG. 6, and 15 peaks are obtained. Each peak has an interval of 6.25 ps corresponding to the time interval τ, and can be separated into each Fourier transform component at an interval of 6.25 ps. For example, when the fourth component is extracted from the center to the left side, it becomes as shown by the broken line in FIG. When this is moved to the origin on the time axis, a solid line in FIG. 7 is obtained. FIG. 8 shows the inverse Fourier transform of the moved component. In FIG. 8, the amplitude of the inverse Fourier transform result is plotted on a graph, but it is actually a complex number. This is performed in the same way for the first to seventh components from the center to the left in FIG. 6 to obtain seven inverse Fourier transform results and solve the simultaneous equations to calculate the phase of the optical pulse to be measured. . Here, the left component from the center of FIG. 6 is used, but the right component from the center may be used.

位相算出手段の構成は上記の手段に限られたものではなく、次のような構成としてもよい。   The configuration of the phase calculation means is not limited to the above means, and the following configuration may be adopted.

図2(a)は図1に示したフーリエ変換成分抽出部7と横軸移動部8の順序を入れ換えたものである。図9の破線は、図6のフーリエ変換結果を時間軸上で25ps移動したものである。これより中央の6.25ps幅だけ抽出すると図9の実線のようになり、順序を入れ換えても等価であることがわかる。   FIG. 2A shows the order of the Fourier transform component extraction unit 7 and the horizontal axis movement unit 8 shown in FIG. The broken line in FIG. 9 is obtained by moving the Fourier transform result in FIG. 6 by 25 ps on the time axis. From this, when the center 6.25 ps width is extracted, it becomes a solid line in FIG. 9, and it can be seen that the order is equivalent even if the order is changed.

また、フーリエ変換して一部の成分を抽出しフーリエ逆変換する手順は、バンドパスフィルタで置き換えることができる。バンドパスフィルタはディジタルフィルタの演算で実現することもできる。フーリエ変換して横軸を移動しフーリエ逆変換する手順は、正弦波の乗算で置き換えることができる。正弦波の乗算も数値演算で実現することができる。これより、フーリエ変換しなくても位相算出手段の手順と等価の演算を行うことが可能である。図2(b)の構成では、先にバンドパスフィルタ部11でフーリエ変換成分を抽出し、その後、乗算部13での正弦波の乗算で時間軸上の移動を行う。ここで、12は乗算部13に接続される正弦波発生部である。また、図2(c)の構成では、先に乗算部13で正弦波の乗算で時間軸上の移動を行い、ローパスフィルタ部15でフーリエ変換成分の抽出を行うように構成する。ここで、時間軸上の移動は原点への移動なので、時間軸上の移動後のフーリエ変換成分の抽出は時間軸上で原点付近を抽出することになる。このため、フーリエ変換成分の抽出はローパスフィルタで行う。また、フーリエ変換成分の抽出と時間軸上の移動は、フーリエ変換を使用する方法と使用しない方法を組み合わせることもできる。   Further, the procedure of performing Fourier transform to extract some components and performing inverse Fourier transform can be replaced with a bandpass filter. The bandpass filter can also be realized by a digital filter operation. The procedure of Fourier transform, moving the horizontal axis, and performing inverse Fourier transform can be replaced with sine wave multiplication. Sine wave multiplication can also be realized by numerical calculation. Thus, it is possible to perform an operation equivalent to the procedure of the phase calculation means without performing Fourier transform. In the configuration of FIG. 2B, the Fourier transform component is first extracted by the band pass filter unit 11, and then the movement on the time axis is performed by multiplication of the sine wave by the multiplication unit 13. Here, 12 is a sine wave generator connected to the multiplier 13. In the configuration of FIG. 2C, the multiplication unit 13 is first moved on the time axis by multiplication of a sine wave, and the low-pass filter unit 15 is configured to extract a Fourier transform component. Here, since the movement on the time axis is the movement to the origin, the Fourier transform component after the movement on the time axis is extracted in the vicinity of the origin on the time axis. For this reason, the Fourier transform component is extracted by a low-pass filter. The extraction of the Fourier transform component and the movement on the time axis can be combined with a method using the Fourier transform and a method not using it.

次に、本発明の光パルスの位相測定手順の詳細を数式で説明する。   Next, the details of the phase measurement procedure of the optical pulse of the present invention will be described using mathematical expressions.

i番目のパルスの電界の時間波形をei (t)とし、パルスの時間間隔をτとすると、n個のパルスを合成した全電界e(t)は、 If the time waveform of the electric field of the i-th pulse is e i (t) and the time interval of the pulse is τ, the total electric field e (t) composed of n pulses is

Figure 2005069845
である。ei (t)のフーリエ変換をEi (ω)とすると、全パワースペクトルI(ω)は、
Figure 2005069845
It is. If the Fourier transform of e i (t) is E i (ω), the total power spectrum I (ω) is

Figure 2005069845
で表される。このFはフーリエ変換を表す。ここで、i番目のパルスのパワースペクトルをIi (ω)、位相をφi (ω)とすると、
Figure 2005069845
It is represented by This F represents a Fourier transform. Here, if the power spectrum of the i-th pulse is I i (ω) and the phase is φ i (ω),

Figure 2005069845
となる。k=i1 −i2 とおいて変形すると、
Figure 2005069845
It becomes. When deformed with k = i 1 −i 2 ,

Figure 2005069845
となる。ここで、
Figure 2005069845
It becomes. here,

Figure 2005069845
とおくと、式(23)は、
Figure 2005069845
Then, equation (23) becomes

Figure 2005069845
で表される。式(25)のk=0以外の項が周波数領域での干渉成分である。時間間隔τが大きくなると周波数軸上での振動が速くなり、スペクトル測定の分解能を越えるとパワースペクトルが正しく測定できなくなる。よって、式(25)で表される振動がスペクトル測定の分解能を越えないように時間間隔τを設定する必要がある。また、後述のように時間間隔τはパルス幅よりも長くする必要があるので、この範囲内に時間間隔τを設定する必要がある。次にI(ω)のωを時間とみなしてフーリエ変換を行う。なお、I(ω)は実数のパワースペクトルである。周波数の関数であるI(ω)をフーリエ変換すると単位の上では時間の関数となるが、複素数のE(ω)をフーリエ逆変換してe(t)を求めるのとは異なる。
Figure 2005069845
It is represented by A term other than k = 0 in Equation (25) is an interference component in the frequency domain. When the time interval τ increases, the vibration on the frequency axis becomes faster, and when the spectrum measurement resolution is exceeded, the power spectrum cannot be measured correctly. Therefore, it is necessary to set the time interval τ so that the vibration represented by Expression (25) does not exceed the resolution of spectrum measurement. Further, since the time interval τ needs to be longer than the pulse width as will be described later, it is necessary to set the time interval τ within this range. Next, Fourier transform is performed by regarding ω of I (ω) as time. Note that I (ω) is a real power spectrum. When I (ω), which is a function of frequency, is Fourier-transformed, it becomes a function of time in terms of units, but is different from obtaining e (t) by Fourier-transforming a complex number E (ω).

Figure 2005069845
Figure 2005069845
Figure 2005069845
Figure 2005069845

Figure 2005069845
Figure 2005069845
Figure 2005069845
Figure 2005069845

本発明の応用例を図10に示す。   An application example of the present invention is shown in FIG.

入力信号は、光ラベル21と伝送すべきデータで変調されたペイロード22である。ノードでは光ラベル21を認識し、自分宛のデータの場合はドロップし、それ以外はスルーにして他のノードに転送する必要がある。ここで、位相変調されたパルス列を光ラベル21とする。ノードでは、バンドパスフィルタ24である波長を選択し、受光器25で受けて光スイッチ27のスルー/ドロップを制御する。保持回路26はペイロード22の時間だけ光スイッチ27の状態を保持する。例えば、ラベル1のスペクトルにはバンドパスフィルタ24の波長にピークが存在し、光スイッチ27はドロップ側に設定されるが、ラベル2はバンドパスフィルタ24の波長にピークが存在しないので、光スイッチ27はスルー側となる。なお、23は光カプラ、28はタイミング調整用の光ファイバである。   The input signal is an optical label 21 and a payload 22 modulated with data to be transmitted. It is necessary for the node to recognize the optical label 21 and drop it if it is data addressed to itself, otherwise pass it through and transfer it to another node. Here, the phase-modulated pulse train is referred to as an optical label 21. In the node, the wavelength that is the band pass filter 24 is selected and received by the light receiver 25 to control the through / drop of the optical switch 27. The holding circuit 26 holds the state of the optical switch 27 for the time of the payload 22. For example, the spectrum of label 1 has a peak at the wavelength of the bandpass filter 24 and the optical switch 27 is set to the drop side, but the label 2 has no peak at the wavelength of the bandpass filter 24. 27 is a through side. Reference numeral 23 is an optical coupler, and 28 is an optical fiber for timing adjustment.

本発明の光パルス位相測定方法は、パワースペクトルからパルスの位相を求める方法である。これを利用して、ラベルのパルス列の位相変調によって、光スペクトルのピークを変えることが可能であり、いくつかのラベルを作成することができる。   The optical pulse phase measurement method of the present invention is a method for obtaining a pulse phase from a power spectrum. By utilizing this, the peak of the optical spectrum can be changed by phase modulation of the pulse train of the label, and several labels can be created.

以上のように構成したので、本発明により複数の光パルスの位相をまとめて測定することができ、複数の光パルスを分離して1つずつ測定する必要が無くなる。そして、従来の周波数領域干渉法と同様に、簡単な構成で感度が高く、受光器の速度に依存せずに短パルスの測定が可能となる。   Since it comprised as mentioned above, according to this invention, the phase of several optical pulses can be measured collectively, and it becomes unnecessary to isolate | separate several optical pulses and to measure one by one. As in the conventional frequency domain interferometry, the sensitivity is high with a simple configuration, and short pulses can be measured without depending on the speed of the light receiver.

本発明を光ラベル認識に応用すると、簡便な構成でラベルを認識することができる。受光器は、個々のパルスに応答する必要がないため、比較的低速の受光器で高速なパルス列からなるラベルを認識することができる。ペイロードよりも光ラベルのビットレートを低くするといった煩雑で非効率的な設定も不要となる。   When the present invention is applied to optical label recognition, a label can be recognized with a simple configuration. Since the light receiver does not need to respond to individual pulses, a label composed of a high-speed pulse train can be recognized by a relatively low-speed light receiver. A complicated and inefficient setting such as lowering the bit rate of the optical label than the payload is also unnecessary.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明の光パルスの位相測定方法及び装置は、光通信や光信号処理の分野において、光パルスの位相を検出、測定する場合に用いられ、ピコ秒、フェムト秒パルスのような短パルスの測定に適している。   The optical pulse phase measuring method and apparatus of the present invention are used for detecting and measuring the phase of an optical pulse in the field of optical communication and optical signal processing, and measuring short pulses such as picoseconds and femtosecond pulses. Suitable for

本発明の実施例を示す光パルスの位相測定装置の構成図である。It is a block diagram of the optical pulse phase measuring apparatus showing an embodiment of the present invention. 本発明の光パルスの位相測定装置の位相検出手段の他の実施例の構成図である。It is a block diagram of the other Example of the phase detection means of the phase measuring apparatus of the optical pulse of this invention. 本発明の基準光パルスと被測定光パルスを合波した光パルス列の時間波形の一例を示す図である。It is a figure which shows an example of the time waveform of the optical pulse train which combined the reference | standard optical pulse of this invention, and the to-be-measured optical pulse. 基準光パルスと被測定光パルスの位相(パルス#0が基準光パルス)を示す図である。It is a figure which shows the phase (Pulse # 0 is a reference | standard light pulse) of a reference | standard light pulse and a to-be-measured light pulse. 基準光パルスと被測定光パルスを含む光パルス列のパワースペクトルを示す図である。It is a figure which shows the power spectrum of the optical pulse train containing a reference | standard optical pulse and a to-be-measured optical pulse. 本発明の実施例を示すパワースペクトルのフーリエ変換結果(横軸は時間の単位)を示す図である。It is a figure which shows the Fourier-transform result (a horizontal axis is a unit of time) of the power spectrum which shows the Example of this invention. 本発明の実施例を示すフーリエ変換成分の抽出と時間軸上での原点への移動を示す図である。It is a figure which shows the extraction of the Fourier-transform component which shows the Example of this invention, and the movement to the origin on a time axis. 本発明の実施例を示す移動されたフーリエ変換成分のフーリエ逆変換結果を示す図である。It is a figure which shows the Fourier inverse transform result of the moved Fourier-transform component which shows the Example of this invention. 本発明の実施例を示すパワースペクトルのフーリエ変換結果を時間軸上で移動した図である。It is the figure which moved on the time-axis the Fourier-transform result of the power spectrum which shows the Example of this invention. 本発明の実施例を示す光ラベル認識への応用を示す図である。It is a figure which shows the application to the optical label recognition which shows the Example of this invention. 従来の光パルスの位相測定装置の構成図である。It is a block diagram of the conventional phase measurement apparatus of an optical pulse.

符号の説明Explanation of symbols

1−1〜1−n-1 タイミング調整手段
2 基準光パルス
3 合波手段
4 スペクトル測定手段
5 位相算出手段
6 フーリエ変換部
7 フーリエ変換成分抽出部
8 横軸移動部
9 フーリエ逆変換部
10 連立方程式の解の計算部
11 バンドパスフィルタ部
12 正弦波発生部
13 乗算部
15 ローパスフィルタ部
21 光ラベル
22 伝送すべきデータで変調されたペイロード
23 光カプラ
24 バンドパスフィルタ
25 受光器
26 保持回路
27 光スイッチ
28 タイミング調整用の光ファイバ
1-1 to 1 -n- 1 timing adjusting means 2 reference light pulse 3 combining means 4 spectrum measuring means 5 phase calculating means 6 Fourier transform unit 7 Fourier transform component extracting unit 8 horizontal axis moving unit 9 Fourier inverse transform unit 10 simultaneous Calculation unit for equation solution 11 Bandpass filter unit 12 Sine wave generation unit 13 Multiplying unit 15 Lowpass filter unit 21 Optical label 22 Payload modulated with data to be transmitted 23 Optical coupler 24 Bandpass filter 25 Light receiver 26 Retention circuit 27 Optical switch 28 Optical fiber for timing adjustment

Claims (11)

(a)基準光パルスと複数の被測定光パルスが各々異なるタイミングに位置する光の周波数領域で干渉したパワースペクトルを測定するスペクトル測定過程と、
(b)該パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出過程とを有することを特徴とする光パルスの位相測定方法。
(A) a spectrum measurement process for measuring a power spectrum in which a reference light pulse and a plurality of light pulses to be measured interfere with each other in the frequency domain of light positioned at different timings;
(B) a phase calculation process for calculating a phase of the plurality of optical pulses to be measured with respect to the reference optical pulse from the power spectrum.
(a)基準光パルスと複数の被測定光パルスを一定時間間隔に調整するタイミング調整過程と、
(b)前記基準光パルスと前記複数の被測定光パルスを合波する合波過程と、
(c)前記合波された光のパワースペクトルを測定するスペクトル測定過程と、
(d)前記パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出過程とを有することを特徴とする光パルスの位相測定方法。
(A) a timing adjustment process for adjusting the reference light pulse and the plurality of light pulses to be measured at fixed time intervals;
(B) a multiplexing process for combining the reference light pulse and the plurality of light pulses to be measured;
(C) a spectrum measurement process for measuring a power spectrum of the combined light;
(D) a phase calculation process for calculating a phase of the plurality of optical pulses to be measured with respect to the reference optical pulse from the power spectrum.
請求項1又は2記載の光パルスの位相測定方法において、前記位相算出過程は、前記パワースペクトルを複数のフーリエ変換成分に分離する過程と、該複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する過程とを含むことを特徴とする光パルスの位相測定方法。   3. The optical pulse phase measurement method according to claim 1, wherein the phase calculation step includes a step of separating the power spectrum into a plurality of Fourier transform components, and the plurality of optical pulses to be measured from the plurality of Fourier transform components. A method for measuring the phase of an optical pulse, comprising: calculating a phase of the optical pulse. 請求項1又は2記載の光パルスの位相測定方法において、前記位相算出過程は、前記パワースペクトルをフーリエ変換する過程と、該フーリエ変換結果を一定時間間隔で複数の成分に分離する過程と、各成分を時間軸上で移動する過程と、移動された各成分をフーリエ逆変換する過程と、該フーリエ逆変換結果から前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する過程とを含むことを特徴とする光パルスの位相測定方法。   3. The optical pulse phase measurement method according to claim 1, wherein the phase calculation step includes a step of Fourier transforming the power spectrum, a step of separating the Fourier transform result into a plurality of components at regular time intervals, and A process of moving the components on the time axis, a process of Fourier transforming each moved component, and a process of calculating the phase of the plurality of optical pulses to be measured with respect to the reference light pulse from the Fourier transform result. A method for measuring a phase of an optical pulse, comprising: 請求項1又は2記載の光パルスの位相測定方法において、前記位相算出過程は、前記パワースペクトルに正弦波を乗算して時間軸上で移動する過程と、フィルタにより複数のフーリエ変換成分を抽出する過程と、該複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する過程とを含むことを特徴とする光パルスの位相測定方法。   3. The optical pulse phase measurement method according to claim 1, wherein the phase calculation step includes a step of multiplying the power spectrum by a sine wave and moving on a time axis, and extracting a plurality of Fourier transform components by a filter. And a phase calculating method for calculating the phase of the plurality of optical pulses to be measured from the plurality of Fourier transform components. 請求項3、4又は5記載の光パルスの位相測定方法において、前記フーリエ変換成分から前記複数の被測定光パルスの位相を算出する過程は、複数の被測定光パルスの位相の初期値を設定し、複数の被測定光パルスの位相の値の修正を繰り返して前記複数の被測定光パルスの位相を求める過程を含むことを特徴とする光パルスの位相測定方法。   6. The optical pulse phase measuring method according to claim 3, wherein the step of calculating the phase of the plurality of measured optical pulses from the Fourier transform component sets an initial value of the phase of the plurality of measured optical pulses. A phase measurement method for an optical pulse comprising the step of repeatedly correcting the phase values of the plurality of optical pulses to be measured to obtain the phases of the plurality of optical pulses to be measured. (a)基準光パルスと複数の被測定光パルスを含む一定時間間隔のパルス列が入力され、該パルス列のパワースペクトルを測定するスペクトル測定手段と、
(b)前記パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出手段とを具備することを特徴とする光パルスの位相測定装置。
(A) a spectrum measuring means for inputting a pulse train having a constant time interval including a reference light pulse and a plurality of light pulses to be measured, and measuring a power spectrum of the pulse train;
(B) An optical pulse phase measuring device comprising phase calculating means for calculating a phase of the plurality of optical pulses to be measured with respect to the reference optical pulse from the power spectrum.
(a)基準光パルスと複数の被測定光パルスを一定時間間隔に調整するタイミング調整手段と、
(b)前記基準光パルスと前記複数の被測定光パルスを合波する合波手段と、
(c)前記合波された光のパワースペクトルを測定するスペクトル測定手段と、
(d)前記パワースペクトルから前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する位相算出手段とを具備することを特徴とする光パルスの位相測定装置。
(A) timing adjusting means for adjusting the reference light pulse and the plurality of light pulses to be measured at fixed time intervals;
(B) multiplexing means for multiplexing the reference light pulse and the plurality of measured light pulses;
(C) spectrum measuring means for measuring a power spectrum of the combined light;
(D) An optical pulse phase measuring device comprising phase calculating means for calculating a phase of the plurality of optical pulses to be measured with respect to the reference optical pulse from the power spectrum.
請求項7又は8記載の光パルスの位相測定装置において、前記位相算出手段は、前記パワースペクトルを複数のフーリエ変換成分に分離する手段と、該複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する手段とを含むことを特徴とする光パルスの位相測定装置。   9. The optical pulse phase measuring apparatus according to claim 7 or 8, wherein the phase calculating means separates the power spectrum into a plurality of Fourier transform components, and the plurality of measured optical pulses from the plurality of Fourier transform components. And a means for calculating the phase of the optical pulse. 請求項7又は8記載の光パルスの位相測定装置において、前記位相算出手段は、前記パワースペクトルをフーリエ変換する手段と、該フーリエ変換結果を一定時間間隔で複数の成分に分離する手段と、各成分を時間軸上で移動する手段と、移動された各成分をフーリエ逆変換する手段と、該フーリエ逆変換結果から前記複数の被測定光パルスの前記基準光パルスに対する位相を算出する手段とを含むことを特徴とする光パルスの位相測定装置。   9. The optical pulse phase measuring apparatus according to claim 7 or 8, wherein said phase calculating means includes means for Fourier transforming said power spectrum, means for separating said Fourier transform result into a plurality of components at regular time intervals, and Means for moving the components on the time axis, means for inversely transforming each of the moved components, and means for calculating the phase of the plurality of optical pulses to be measured with respect to the reference light pulse from the inverse Fourier transform result An optical pulse phase measuring device comprising: 請求項7又は8記載の光パルスの位相測定装置において、前記位相算出手段は、前記パワースペクトルに正弦波を乗算して時間軸上で移動する手段と、フィルタにより複数のフーリエ変換成分を抽出する手段と、該複数のフーリエ変換成分から前記複数の被測定光パルスの位相を算出する手段とを含むことを特徴とする光パルスの位相測定装置。   9. The optical pulse phase measuring apparatus according to claim 7 or 8, wherein said phase calculating means extracts a plurality of Fourier transform components by means for multiplying said power spectrum by a sine wave and moving on a time axis, and a filter. And a means for calculating the phase of the plurality of optical pulses to be measured from the plurality of Fourier transform components.
JP2003299463A 2003-08-25 2003-08-25 Optical pulse phase measuring method and apparatus Expired - Fee Related JP4439857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299463A JP4439857B2 (en) 2003-08-25 2003-08-25 Optical pulse phase measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299463A JP4439857B2 (en) 2003-08-25 2003-08-25 Optical pulse phase measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2005069845A true JP2005069845A (en) 2005-03-17
JP4439857B2 JP4439857B2 (en) 2010-03-24

Family

ID=34404667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299463A Expired - Fee Related JP4439857B2 (en) 2003-08-25 2003-08-25 Optical pulse phase measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4439857B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145070A1 (en) * 2008-05-30 2009-12-03 日本電信電話株式会社 Wavelength‑multiplexed signal measurement device and method
WO2010116918A1 (en) * 2009-03-29 2010-10-14 国立大学法人長岡技術科学大学 Relative phase detector, relative phase detecting method and information reading device
CN114001835A (en) * 2021-11-01 2022-02-01 深圳大学 Real-time spectral measurement system and method for ultrashort pulse

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145070A1 (en) * 2008-05-30 2009-12-03 日本電信電話株式会社 Wavelength‑multiplexed signal measurement device and method
CN102027345B (en) * 2008-05-30 2012-04-25 日本电信电话株式会社 Wavelength-multiplexed signal measurement device and method
JP4949514B2 (en) * 2008-05-30 2012-06-13 日本電信電話株式会社 Wavelength multiplexed optical signal measuring apparatus and method
US8401808B2 (en) 2008-05-30 2013-03-19 Nippon Telegraph And Telephone Corporation Wavelength-multiplexed optical signal measurement device and the method thereof
WO2010116918A1 (en) * 2009-03-29 2010-10-14 国立大学法人長岡技術科学大学 Relative phase detector, relative phase detecting method and information reading device
CN114001835A (en) * 2021-11-01 2022-02-01 深圳大学 Real-time spectral measurement system and method for ultrashort pulse
CN114001835B (en) * 2021-11-01 2024-02-13 深圳大学 System and method for measuring ultra-short pulse real-time spectrum

Also Published As

Publication number Publication date
JP4439857B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4803846B2 (en) Optical signal synchronous sampling apparatus and method, and optical signal monitoring apparatus and method using the same
CN110207821B (en) Method and system for acquiring frequency domain information of ultrafast optical field
US7298489B2 (en) Method and apparatus for characterizing the electric field of periodic and non-periodic optical signals
JP5380647B2 (en) Optical signal sampling apparatus and method, and optical signal monitoring apparatus and method using the same
US9467223B2 (en) System and method for broadband signal disambiguation based on sub-sampled analog optical links employing sample rate modulation
CN107219002A (en) A kind of ultrahigh resolution spectral measurement method and system
CN110186578B (en) Method and system for acquiring three-domain information of ultrafast light field
JP4047630B2 (en) Performance monitoring method in optical communication system
JP2004132719A (en) Optical sampling method, system, and program
US20040227949A1 (en) Interferometric method and apparatus for the characterization of optical pulses
JP5604042B2 (en) Optical signal quality monitoring apparatus and method
JP4439857B2 (en) Optical pulse phase measuring method and apparatus
JP5042701B2 (en) Optical sampling apparatus and optical sampling method
WO2003042722A9 (en) All-optical timing jitter measurement system and method
JP5366139B2 (en) Optical signal waveform measuring device
Konatham et al. On-the-fly continuous time varying frequency filtering of broadband microwave signals
JP5372447B2 (en) Sampling device and signal monitor
JP3696369B2 (en) Short optical pulse waveform regeneration method
JP4436305B2 (en) Optical pulse measuring device and optical pulse measuring method
Zhou Reaching the Frequency Resolution Limit in a Single-Shot Spectrum of an Ultra-Short Signal Pulse Using an Analog Optical Auto-Correlation Technique
CN105048273B (en) A kind of method of shake synchronization time reduced in lens light source synchronization time
JP2019113510A (en) measuring device
JP5271791B2 (en) Optical signal waveform measuring method, apparatus and program
JP3821802B2 (en) Jitter measuring device
EP2495541A1 (en) Relative phase detector, relative phase detecting method and information reading device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350