JP2005069726A - Method for evaluating organometal compound - Google Patents

Method for evaluating organometal compound Download PDF

Info

Publication number
JP2005069726A
JP2005069726A JP2003209400A JP2003209400A JP2005069726A JP 2005069726 A JP2005069726 A JP 2005069726A JP 2003209400 A JP2003209400 A JP 2003209400A JP 2003209400 A JP2003209400 A JP 2003209400A JP 2005069726 A JP2005069726 A JP 2005069726A
Authority
JP
Japan
Prior art keywords
organometallic compound
ratio
gas
container
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209400A
Other languages
Japanese (ja)
Inventor
Atsushi Sai
篤 齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003209400A priority Critical patent/JP2005069726A/en
Publication of JP2005069726A publication Critical patent/JP2005069726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the characteristics of an organometal compound in an actual use and the reactivity, thermal stability and pyrolyzing characteristics in an environment wherein the organometal compound and a reaction gas are allowed to coexist directly. <P>SOLUTION: In this method for evaluating the organometal compound, an organometal compound raw material for use in forming a membrane by chemical vapor deposition is evaluated by a differential scanning calorimetric method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、FeRAM(Ferroelectric Random Access Memory;強誘電体メモリー)、DRAM(Dynamic Random Access Memory)等の誘電体メモリー、誘電体フィルター等に用いられる複合酸化物系誘電体薄膜、半導体デバイスのバリア膜、強誘電体用酸化物膜などを有機金属化学蒸着法(Metal Organic Chemical Vapor Deposition;以下、MOCVD法という。)や液相成長法により形成するための原料として好適な有機金属化合物の評価方法に関する。更に詳しくは、有機金属化合物を示差走査熱量測定法(Differential Thermal Calorimetry;以下、DSC法という。)を用いて評価する方法に関するものである。
【0002】
【従来の技術】
従来、薄膜形成用原料である有機金属化合物の物性を評価する方法としては、有機金属化合物を熱重量測定(Thermogravimetry;以下、TGという。)法を用いて気化率などを測定する方法が知られている。例えば、合成した有機金属化合物をTG法によってその有機金属化合物の気化性、熱安定性等の特性についての評価を行っている(例えば、特許文献1参照。)。この特許文献1に示される評価方法のように、有機金属化合物をTG法によって測定することにより、有機金属化合物の低温側におけるTG減量や、有機金属化合物に含まれる不純物金属含有量などを評価することができる。TG法は、物質の温度を調節されたプログラムに従って変化させながら、その物質の質量を温度の関数として測定する技法である。有機金属化合物のTG測定方法は、有機金属化合物を入れた測定容器を所定の温度プロファイルで加熱し、測定容器内の有機金属化合物の加熱温度による重量変化を測定するものである。従来、TG法による有機金属化合物の評価では、有機金属化合物が加熱されることで徐々に気化してその重量を減らし、測定終了時における測定容器内に残る残物が少ない化合物ほど、薄膜形成用原料として熱安定性、気化特性、純度等が優れていると評価することが多かった。
【0003】
一方、本発明者らは、市販の有機金属化合物原料を使用して種々の薄膜の成膜実験を繰返し行ったところ、原料によっては、TG法で良好な気化率を示す原料であっても、成膜速度の安定性や形成される複合金属酸化物薄膜組成の均一性に乏しく、また、原料の供給用ポンプに詰まりをもたらすことがあるなど、安定して成膜を行うことができないことを知見した。
そこで本発明者らは、化学蒸着によって薄膜を形成するための有機金属化合物をガスクロマトグラフ質量分析(Gas Chromatograph − Mass Spectrometry;以下、GC−MSという。)法によって評価する薄膜形成用原料の評価方法を提案した(例えば、特許文献2参照。)。特許文献2に示された有機金属化合物をGC−MS法によって測定し、有機金属化合物の単量体の割合が原料の80重量%以上である場合に合格品であると判定することで、原料バッチごとの薄膜形成用原料の成膜安定性を適切に評価した。
【0004】
【特許文献1】
特開2003−81908号公報(段落
【0024】等)
【特許文献2】
特開平10−282081号公報(
【請求項1】及び
【請求項2】)
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1に示されるTG法による評価や、上記特許文献2に示されるGC−MS法による評価は、実際に有機金属化合物を用いて薄膜を形成する場合の薄膜形成条件とは異なる環境で測定して評価を行っていた。従って、評価した気化性や熱安定性が必ずしも実際に有機金属化合物を用いて薄膜を形成する場合には効果的な安定性評価であるとはいえなかった。
【0006】
本発明の目的は、有機金属化合物の実際の用途における特性を評価し得る有機金属化合物の評価方法を提供することにある。
本発明の別の目的は、有機金属化合物と反応ガスとを直接的に共存させた環境での反応性、熱的安定性及び熱分解特性を評価し得る有機金属化合物の評価方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、化学蒸着によって薄膜を形成するための有機金属化合物原料を示差走査熱量測定法によって評価することを特徴とする有機金属化合物の評価方法である。
請求項1に係る発明では、有機金属化合物の実際の用途に併せた特性を評価することができる。
【0008】
請求項2に係る発明は、図1及び図2に示すように、(a) 第1密閉容器に有機金属化合物及び反応ガスを第1の割合で封入する工程と、(b) 第1比較容器に熱量既知の熱量標準物質及び不活性ガスを所定の割合で封入する工程と、(c) 第1密閉容器と第1比較容器を不活性ガス雰囲気下、所定の温度プロファイルで昇温して加熱する工程と、(d) 第1密閉容器が消費したエネルギと第1比較容器が消費したエネルギとの差を示差走査熱量測定法によって測定する工程と、(e) 測定結果から第1曲線を作成する工程と、(f) 第1曲線のピーク点と転移開始点と転位終了点で囲まれる面積から第1密閉容器に封入した有機金属化合物の第1熱量を求める工程と、(g) 有機金属化合物及び反応ガスを上記(a)工程で封入した第1割合とは異なる第2割合で第2密閉容器に封入する工程と、(h) 第2比較容器に熱量既知の熱量標準物質及び不活性ガスを上記(b)工程と略同一の割合で封入する工程と、(i) 第2密閉容器と第2比較容器を不活性ガス雰囲気下、上記(c)工程と略同一の温度プロファイルで昇温して加熱する工程と、(j) 第2密閉容器が消費したエネルギと第2比較容器が消費したエネルギとの差を示差走査熱量測定法によって測定する工程と、(k) 測定結果から第2曲線を作成する工程と、(l) 第2曲線のピーク点と転移開始点と転位終了点で囲まれる面積から第2密閉容器に封入した有機金属化合物の第2熱量を求める工程と、(m) 上記(f)工程の結果と上記(l)工程の結果から、第1割合に対する第1熱量と、第2割合に対する第2熱量をそれぞれプロットし検量線を作成する工程と、(n) 作成した検量線の傾きから有機金属化合物と反応ガスとの反応性及び熱的分解性を評価する工程とを含むことを特徴とする有機金属化合物の評価方法である。
請求項2に係る発明では、上記工程(a)〜工程(n)を経ることにより、有機金属化合物と反応ガスとを直接的に共存させた環境での反応性、熱的安定性、熱分解特性を評価することができる。
【0009】
請求項3に係る発明は、請求項2に係る発明であって、(o) 有機金属化合物及び反応ガスの封入割合を(a)工程で封入した第1割合及び(g)工程で封入した第2割合とは異なる割合に変えて(g)工程〜(l)工程を1又は2以上繰返す工程を更に含む評価方法である。
請求項3に係る発明では、上記工程(o)を更に含むことで、より精度の高い有機金属化合物と反応ガスとの検量線が得られる。
【0010】
請求項4に係る発明は、請求項2又は3に係る発明であって、有機金属化合物に含まれる金属がZr、Hf、Si、Ti、Ta、V、Cu、Pr、Pb及びYからなる群より選ばれた1種又は2種以上である評価方法である。
請求項5に係る発明は、請求項2又は3に係る発明であって、反応ガスがO、O、空気、NHガス、HN−NH、水蒸気及びHからなる群より選ばれた1又は2以上のガスを含む評価方法である。
請求項6に係る発明は、請求項2に係る発明であって、有機金属化合物及び反応ガスの封入割合が、容積比(反応ガス/有機金属化合物)で5〜90%の範囲にある評価方法である。
請求項7に係る発明は、請求項2に係る発明であって、温度プロファイルが、2〜10℃/minの昇温速度、室温〜600℃の温度範囲である評価方法である。
【0011】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
通常、有機金属化合物を用いて薄膜を形成する場合、図12に示すような成膜装置に設けられた成膜室10内に有機金属化合物ガスとともにO、H、NH等、これらの反応ガスを供給している。成膜室10は所定の温度に加熱され、有機金属化合物ガスと反応ガスはそれらが共存した状態で熱分解を起こし、基板13等の表面に所望の薄膜を形成する。従って、仮にTG法によって有機金属化合物自体の熱安定性、気化特性、純度等を測定したとしても、それは単に有機金属化合物自体の評価であって、薄膜形成用原料としての有機金属化合物の評価とは直結しない。即ち、薄膜形成用原料としての有機金属化合物の評価を行う場合、実際に反応させる反応ガスと共存している環境のもとで測定しなければ、効果的な評価をすることができない。
【0012】
本発明者は、反応性分解を示しやすい有機金属化合物ほど、微量の反応ガス雰囲気下で分解生成物が生じやすいことから、DSC装置の測定容器に所定の割合で有機金属化合物と反応ガスを封入してDSC測定を行い、この封入割合を様々な割合に代えて繰返しDSC測定を行ったところ、異なる封入割合によって、DSC曲線のピークエリアとサンプル量と反応ガス量の割合との1次比例直線関係が得られ、更にこの直線の傾きが大きいほど分解特性に優れ、かつ、成膜速度の相関が好ましく得られることを見出した。DSC法は、測定サンプルの熱容量、融点等の物性、並びに相転移、融解、反応等の熱的な変化に伴うエンタルピー変化を測定する方法である。一般的には、有機物や無機物の吸熱、発熱、相転移点等の情報比熱容量、蒸発熱等を調べる一次元的な評価方法として使用されている。その測定方法としては、測定試料と基準物質をそれぞれ別々の密閉容器に入れて、同時に一定速度で加熱又は冷却し、その時の2つの物質間の温度差を測定するものである。通常のDSC測定では、空気、若しくは窒素やアルゴン等の不活性ガス雰囲気下で密閉容器内に測定試料を入れて、密閉容器を密封する空気空隙充填が用いられている。
【0013】
本発明ではあえて密閉容器の空隙に反応ガスを充填し、複数の封入割合で封入した測定試料を数種類用意し、空隙に存在する反応ガスと測定試料の加熱による有機金属化合物の形態変化をDSC法でモニターし、反応と分解をCVDリアクターもしくは気化器等の装置に置き換えて反応を見出す手法として新たに採用した。この手法を用いればモニター上でガスとサンプルの直接反応による分解温度を見つけることができる。また、これらの反応ガスと薄膜形成用原料である有機金属化合物を一緒に加熱し、薄膜形成用原料を評価するような発想は、未だ全く行われていない。
【0014】
本発明はこのような知見に基づいて完成されたものである。即ち、本発明の有機金属化合物の評価方法は、化学蒸着によって薄膜を形成するための有機金属化合物原料を示差走査熱量測定法によって評価することを特徴とする。本発明の評価方法により、有機金属化合物の実際の用途に併せた特性を評価することができる。
【0015】
具体的な評価方法を、図1及び図2に基づいて以下に説明する。
先ず、図1に示すように、第1密閉容器に有機金属化合物及び反応ガスを第1の割合で封入する(工程(a))。本発明における有機金属化合物に含まれる金属としては、Zr、Hf、Si、Ti、Ta、V、Cu、Pr、Pb及びYからなる群より選ばれた1種又は2種以上が選択される。これらの金属に配位する配位化合物やその配位数は特に限定されず、従来より知られているような配位化合物が1種又は2種以上配位した有機金属化合物であれば、本発明の評価方法における測定対象となり得る。また反応ガスとしては、O、O、空気、NHガス、HN−NH、水蒸気及びHからなる群より選ばれた1又は2以上のガスを含むガスが挙げられる。反応ガスは測定対象である有機金属化合物の用途に併せて選択することが好ましい。即ち、例えば形成したい薄膜が酸化物膜である場合、反応ガスはO、O、空気等が選択され、形成したい薄膜が窒化膜である場合、反応ガスは空気、NHガス、HN−NH等が選択される。第1密閉容器は図3に示すように、一般的なDSCの測定に使用される容器1に薄上蓋2を固着して密閉容器3とする構造でよい。容器の材質としては、SUS316LやSUS304が挙げられる。なお、図3に示す符号4は有機金属化合物を、符号5は反応ガスをそれぞれ示す。有機金属化合物及び反応ガスの封入割合は、容積比(反応ガス/有機金属化合物)で5〜90%の範囲で選択される。容積比が5%未満であると著しい酸化を生じ、容積比が90%を越えると装置上の誤差を生じる。なお、封入した有機金属化合物の容積は、有機金属化合物の比重と重量から算出する。
【0016】
次いで、図1に戻って第1比較容器に熱量既知の熱量標準物質及び不活性ガスを所定の割合で封入する(工程(b))。熱量既知の熱量標準物質としてはインジウム(In)が好ましい。封入割合は第1密閉容器に封入した反応ガス及び有機金属化合物と同程度の割合とする。不活性ガスとしては、窒素、アルゴン等の希ガスが選択される。第1比較容器には前述した第1密閉容器と同構造、同材質のものを使用するのが好ましい。
次に、第1密閉容器と第1比較容器を不活性ガス雰囲気下、所定の温度プロファイルで昇温して加熱する(工程(c))。温度プロファイルは2〜10℃/minの昇温速度、室温〜600℃の温度範囲に規定される。昇温速度が2℃/min未満では著しい酸化を生じ、10℃/minを越えると余剰熱的分解する問題がある。好ましい昇温速度は5〜10℃/minである。測定温度範囲域は600℃を越えてもよいが、一般的な有機金属化合物は600℃以下で分解等を生じるため、上記測定温度を上限とした。
【0017】
次に、第1密閉容器が消費したエネルギと第1比較容器が消費したエネルギとの差を示差走査熱量測定法によって測定し、測定結果から第1曲線を作成する(工程(d)及び工程(e))。
得られた第1曲線のピーク点と転移開始点と転位終了点で囲まれる面積から第1密閉容器に封入した有機金属化合物の第1熱量を求める(工程(f))。得られた第1曲線で示される最も低い転移開始点と転位終了点の2点を繋げたベースラインと、第1曲線とで囲まれたエリアが測定した有機金属化合物が消費した第1熱量である。例えば、第1曲線として図4に示すような2つのピーク点a,bを有し、かつピークの山が重なり合ったDSC曲線が得られた場合、曲線で示される最も低い転移開始点と転位終了点の2点を繋げたベースラインCと、DSC曲線とで囲まれたエリアAとエリアBの和が測定した有機金属化合物が消費した見かけ上の総発熱量となる。山が重なり合っているエリアBの面積は、ピーク点bからその転移終了点近傍までの傾きとほぼ同じ程度の傾きとなるようにピーク点BからベースラインCへと直線bCを引き、ベースラインC、直線bC及びDSC曲線とで囲まれた面積をエリアBとする。同様に、山が重なり合っているエリアAの面積は、転移開始点近傍からピーク点aまでの傾きとほぼ同じ程度の傾きとなるようにベースラインCからピーク点aへと直線Caを引き、ベースラインC、直線Ca及びDSC曲線とで囲まれた面積をエリアAとする。この図4に示すDSC曲線の場合、本発明の評価方法の対象となるエリアはエリアBであり、封入する反応ガス割合が増加するに従って、エリアBの面積が増加する傾向が得られる。
【0018】
続いて図2に示すように、有機金属化合物及び反応ガスを上記(a)工程で封入した第1割合とは異なる第2割合で第2密閉容器に封入する(工程(g))。第2の封入割合は、前述した第1の封入割合とは異なる割合となるように設定する。例えば、第1の封入割合が容積比で20%に設定した場合、第2の封入割合は60%のように第1封入割合とは大きく異なる割合に設定すると、後に続く工程(m)における検量線を作成し易くなる。
次に、第2比較容器に熱量既知の熱量標準物質及び不活性ガスを上記(b)工程と略同一の割合で封入する(工程(h))。この第2比較容器は第1比較容器をそのまま用いてもよい。
【0019】
次に、第2密閉容器と第2比較容器を不活性ガス雰囲気下、上記(c)工程と略同一の温度プロファイルで昇温して加熱する(工程(i))。ここで上記(c)工程と略同一の温度プロファイルとするのは、測定誤差を小さくするためである。
次に、第2密閉容器が消費したエネルギと第2比較容器が消費したエネルギとの差を示差走査熱量測定法によって測定し、測定結果から第2曲線を作成する(工程(j)及び工程(k))。
得られた第2曲線のピーク点と転移開始点と転位終了点で囲まれる面積から第2密閉容器に封入した有機金属化合物の第2熱量を求める(工程(l))。この工程では上記工程(f)で第1熱量を求めた方法と同様の方法で第2熱量を求める。
【0020】
なお、(o)工程として、有機金属化合物及び反応ガスの封入割合を(a)工程で封入した第1割合及び(g)工程で封入した第2割合とは異なる割合に変えて(g)工程〜(l)工程を1又は2以上繰返す工程を更に含んでもよい。工程(o)を更に含むことで、後に続く工程(m)におけるプロット数が増加することになるため、より精度の高い有機金属化合物と反応ガスとの検量線が得られる。
【0021】
上記(f)工程の結果と上記(l)工程の結果から、第1割合に対する第1熱量と、第2割合に対する第2熱量をそれぞれプロットし検量線を作成する(工程(m))。エリア面積である熱量を有機金属化合物試料の重量で除した熱量/試料を縦軸に、封入割合の容積比を横軸にとって第1及び第2熱量をプロットする。この2点のプロットから検量線を作成する。
最後に、作成した検量線の傾きから有機金属化合物と反応ガスとの反応性及び熱的分解性を評価する(工程(n))。検量線の傾きが大きい場合は、成膜速度が大きく、低温分解性が高い傾向を示す。逆に検量線の傾きが小さい場合、成膜速度が小さく、低温分解性が低い傾向を示す。
【0022】
このように、本発明の工程(a)〜工程(n)を、更に工程(o)を経ることで、有機金属化合物と反応ガスが共存した環境での反応性や熱的安定性、熱分解特性を明確に評価することができる。様々な有機金属化合物、反応ガスの種類を変更したり、組合わせたりして、複数種類の検量線を作成し、各検量線の傾きを検討することで、どの組合わせであれば反応性や熱的安定性、熱分解特性がよいのかを明確に評価できる。
【0023】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、有機金属化合物としてHf(ジメチルアミド)(以下、化合物Aという。)を、反応ガスとしてOをそれぞれ用意した。次いで、化合物AをN雰囲気下でSUS製の容器内に入れ、封入割合が容積比(反応ガス/有機金属化合物)で0%となるように密閉容器に封入した。なお、封入割合0%とは、密閉容器の空隙には窒素のみが充填され、酸素は含まれていないことを示す。次に、SUS性の薄上蓋を容器上部にセットし、DSCサンプル作製キットである標準のプレス機を用いて上方よりプレス加工して薄上蓋と容器を圧着することで密閉容器を作製した。同様に、封入割合が容積比(反応ガス/有機金属化合物)で5%、15%及び35%となるように有機金属化合物と反応ガスの割合をそれぞれ変化させて容器に封入して合計4種類の密閉容器を作製した。次に、熱量標準物質としてInを用意し、比較容器にInとNガスとを所定の割合で封入して比較容器を作製した。次に、密閉容器及び比較容器をDSC装置(DSC6200R;セイコーインスツルメンツ社製)の測定炉内にそれぞれにセットし、温度プロファイルを10℃/minの昇温速度で測定温度範囲域を室温〜600℃に設定して加熱測定を行った。なお、DSC装置の測定炉内流通ガスをArとし、その流量を50ml/minに設定した。異なる封入割合で封入した密閉容器についても同様の条件で測定を行い、4本のDSC曲線を得た。図5に封入割合0%の場合のDSC曲線を、図6に封入割合5%の場合のDSC曲線を、図7に封入割合15%の場合のDSC曲線を、図8に封入割合35%の場合のDSC曲線をそれぞれ示す。
【0024】
<実施例2>
化合物Aの代わりにSi(ジメチルアミド)(以下、化合物Bという。)を用い、封入割合を0%、40%、75%及び95%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例3>
化合物Aの代わりにV(メチルシクロペンタジエニド)(以下、化合物Cという。)を用い、封入割合を0%、40%及び63%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例4>
化合物Aの代わりにTa(メチルシクロペンタジエニド)(以下、化合物Dという。)を用い、封入割合を0%、55%、79%及び100%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
【0025】
<実施例5>
化合物Aの代わりにTi(iPrO)(DPM)(以下、化合物Eという。)を用い、封入割合を0%、18%、38%及び60%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例6>
化合物Aの代わりにW(CO)(以下、化合物Fという。)を用い、封入割合を0%、30%、41%及び70%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例7>
化合物Aの代わりにAl(iBuO)(以下、化合物Gという。)を用い、封入割合を0%、55%、79%及び100%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
【0026】
<実施例8>
化合物Aの代わりにZr(ジエチルアミド)(以下、化合物Hという。)を用い、封入割合を0%、45%、73%及び97%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例9>
化合物Aの代わりにNb(ジエチルアミド)(以下、化合物Iという。)を用い、封入割合を0%、58%、85%及び110%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例10>
化合物Aの代わりにPr(アセチルアセトナート)(以下、化合物Jという。)を用い、封入割合を0%、10%、80%及び105%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例11>
化合物Aの代わりにCu(atms)(hfac)(以下、化合物Kという。)を用い、封入割合を0%、28%、60%及び87%とした以外は実施例1と同様にしてそれぞれDSC測定を行った。
【0027】
<実施例12>
反応ガスをOガスからNHガスに代えた以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例13>
反応ガスをOガスからNHガスに代え、封入割合を0%、42%、60%及び85%とした以外は実施例2と同様にしてそれぞれDSC測定を行った。
<実施例14>
反応ガスをOガスからNHガスに代え、封入割合を0%、20%、40%及び60%とした以外は実施例3と同様にしてそれぞれDSC測定を行った。
<実施例15>
反応ガスをOガスからNHガスに代えた以外は実施例4と同様にしてそれぞれDSC測定を行った。
【0028】
<実施例16>
反応ガスをOガスからNHガスに代え、封入割合を0%、21%、45%及び63%とした以外は実施例5と同様にしてそれぞれDSC測定を行った。
<実施例17>
反応ガスをOガスからNHガスに代え、封入割合を0%、35%、48%及び70%とした以外は実施例6と同様にしてそれぞれDSC測定を行った。
<実施例18>
反応ガスをOガスからNHガスに代え、封入割合を0%、40%、63%及び93%とした以外は実施例7と同様にしてそれぞれDSC測定を行った。
<実施例19>
反応ガスをOガスからNHガスに代え、封入割合を0%、50%、78%及び98%とした以外は実施例8と同様にしてそれぞれDSC測定を行った。
【0029】
<実施例20>
反応ガスをOガスからNHガスに代え、封入割合を0%、55%及び83%とした以外は実施例9と同様にしてそれぞれDSC測定を行った。
<実施例21>
反応ガスをOガスからNHガスに代え、封入割合を0%、10%、76%及び105%とした以外は実施例10と同様にしてそれぞれDSC測定を行った。
<実施例22>
反応ガスをOガスからNHガスに代え、封入割合を0%、28%、60%及び85%とした以外は実施例11と同様にしてそれぞれDSC測定を行った。
【0030】
<実施例23>
反応ガスをOガスから水蒸気(水)に代えた以外は実施例1と同様にしてそれぞれDSC測定を行った。
<実施例24>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、42%、75%及び90%とした以外は実施例2と同様にしてそれぞれDSC測定を行った。
<実施例25>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、20%、40%及び60%とした以外は実施例3と同様にしてそれぞれDSC測定を行った。
<実施例26>
反応ガスをOガスから水蒸気(水)に代えた以外は実施例4と同様にしてそれぞれDSC測定を行った。
【0031】
<実施例27>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、20%、43%及び65%とした以外は実施例5と同様にしてそれぞれDSC測定を行った。
<実施例28>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、36%、44%及び70%とした以外は実施例6と同様にしてそれぞれDSC測定を行った。
<実施例29>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、40%、65%及び95%とした以外は実施例7と同様にしてそれぞれDSC測定を行った。
<実施例30>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、54%、78%及び95%とした以外は実施例8と同様にしてそれぞれDSC測定を行った。
【0032】
<実施例31>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、45%、70%及び85%とした以外は実施例9と同様にしてそれぞれDSC測定を行った。
<実施例32>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、10%、58%及び110%とした以外は実施例10と同様にしてそれぞれDSC測定を行った。
<実施例33>
反応ガスをOガスから水蒸気(水)に代え、封入割合を0%、25%、58%及び85%とした以外は実施例11と同様にしてそれぞれDSC測定を行った。
【0033】
<評価1>
実施例1〜実施例11においてそれぞれ得られたDSC曲線から得られた各熱量を求め、この各熱量を有機金属化合物と反応ガスの割合ごとにプロットし、検量線を作成した。同様に実施例12〜実施例22、実施例23〜実施例33においても得られたDSC曲線から得られた各熱量を求め、この各熱量を有機金属化合物と反応ガスの割合ごとにプロットし、検量線を作成した。実施例1〜実施例11における検量線を図9に、実施例12〜実施例22における検量線を図10に、実施例23〜実施例33における検量線を図11にそれぞれ示す。
【0034】
図9〜図11から明らかなように、傾きが大きい、即ち成膜速度が大きく、かつ低温分解性が大きい傾向にある化合物は化合物A、化合物E及び化合物Fであった。また傾きが小さい、即ち成膜速度が悪く、かつ低温分解性が悪い傾向にある化合物はJであった。図9〜図11を比較すると異なる反応ガスを封入していても上記傾向が見られ、また有機金属化合物の種類が同じでも、反応ガスの違いによって、検量線の傾きの大きさがそれぞれ若干異なっていることが判った。
【0035】
<評価2>
有機金属化合物A〜Kを用いて次のような試験を行った。
先ず、基板として表面に厚さ5000ÅのSiOを形成したSi基板を4枚ずつ用意し、基板を図12に示すMOCVD装置の成膜室に設置した。次いで、基板温度を250℃、気化温度を80℃、圧力を約665Pa(5torr)にそれぞれ設定した。反応ガスとしてOガス、NHガス及び水蒸気をそれぞれ用い、その分圧を500ccmとした。次に、キャリアガスとしてHeガスを用い、有機金属化合物を0.01cc/分の割合でそれぞれ供給し、成膜時間が1分、5分、10分及び20分となったときにそれぞれ1枚ずつ成膜室より取出し、成膜を終えた基板上の薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。得られた成膜時間あたりの膜厚の結果を表1〜表3にそれぞれ示す。
【0036】
【表1】

Figure 2005069726
【0037】
【表2】
Figure 2005069726
【0038】
【表3】
Figure 2005069726
【0039】
表1〜表3より明らかなように、使用した反応ガスの種類によって膜厚に若干のばらつきはみられるが、化合物A、化合物E及び化合物Fが成膜速度が高く、化合物Jは成膜速度が低い傾向を示す結果となった。この表1の結果は前述した実施例1〜11の図9に示す検量線に対応し、表2の結果は前述した実施例12〜22の図10に示す検量線に対応し、表3の結果は前述した実施例23〜33の図11に示す検量線にそれぞれ対応している。この結果から本発明の評価方法は、実際の薄膜形成環境における、有機金属化合物と反応ガスとを直接的に共存させた環境での反応性、熱的安定性、熱分解特性を評価することができていることが判った。
【0040】
【発明の効果】
以上述べたように、本発明の有機金属化合物の評価方法は、化学蒸着によって薄膜を形成するための有機金属化合物原料を示差走査熱量測定法によって評価することを特徴とする。有機金属化合物の実際の用途における特性を評価することができる。具体的には、上記工程(a)〜工程(n)を経ることにより、有機金属化合物と反応ガスとを直接的に共存させた環境での反応性、熱的安定性及び熱分解特性を評価することができる。
【図面の簡単な説明】
【図1】本発明の評価方法における工程(a)〜工程(f)を示すフロー図。
【図2】本発明の評価方法における工程(g)〜工程(n)を示すフロー図。
【図3】有機金属化合物と反応ガスを所定の割合で封入した密閉容器の断面構成図。
【図4】本実施の形態における2つのピーク点a,bを有し、かつピークの山が重なり合った第1曲線を示す図。
【図5】実施例1における封入割合を0%としたときのDSC曲線を示す図。
【図6】実施例1における封入割合を5%としたときのDSC曲線を示す図。
【図7】実施例1における封入割合を15%としたときのDSC曲線を示す図。
【図8】実施例1における封入割合を35%としたときのDSC曲線を示す図。
【図9】実施例1〜11における化合物A〜Kの検量線を示す図。
【図10】実施例12〜22における化合物A〜Kの検量線を示す図。
【図11】実施例23〜33における化合物A〜Kの検量線を示す図。
【図12】MOCVD装置の概略図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric film such as a FeRAM (Ferroelectric Random Access Memory) and a DRAM (Dynamic Random Access Memory), a complex oxide dielectric thin film used for a dielectric filter, and a barrier film of a semiconductor device. Further, the present invention relates to a method for evaluating an organometallic compound suitable as a raw material for forming an oxide film for a ferroelectric material by a metal organic chemical vapor deposition (hereinafter referred to as MOCVD method) or a liquid phase growth method. . More specifically, the present invention relates to a method for evaluating an organometallic compound using a differential scanning calorimetry (hereinafter referred to as DSC method).
[0002]
[Prior art]
Conventionally, as a method for evaluating the physical properties of an organometallic compound that is a raw material for forming a thin film, a method for measuring a vaporization rate or the like of an organometallic compound by using a thermogravimetry (hereinafter referred to as TG) method is known. ing. For example, the synthesized organometallic compound is evaluated for characteristics such as vaporization and thermal stability of the organometallic compound by a TG method (see, for example, Patent Document 1). As in the evaluation method shown in Patent Document 1, by measuring the organometallic compound by the TG method, the TG loss on the low temperature side of the organometallic compound, the impurity metal content contained in the organometallic compound, and the like are evaluated. be able to. The TG method is a technique for measuring the mass of a substance as a function of temperature while changing the temperature of the substance according to a controlled program. In the TG measurement method for an organometallic compound, a measurement container containing an organometallic compound is heated with a predetermined temperature profile, and a change in weight due to the heating temperature of the organometallic compound in the measurement container is measured. Conventionally, in the evaluation of organometallic compounds by the TG method, the organometallic compound is gradually vaporized by heating to reduce its weight, and a compound with less residue remaining in the measurement container at the end of measurement is used for thin film formation. In many cases, the raw materials were evaluated as having excellent thermal stability, vaporization characteristics, purity, and the like.
[0003]
On the other hand, the present inventors have repeatedly conducted various thin film formation experiments using commercially available organometallic compound raw materials. Depending on the raw materials, even if the raw materials exhibit a good vaporization rate by the TG method, Insufficient film formation speed and uniformity of the composite metal oxide thin film composition formed, and clogging of the raw material supply pump. I found out.
Therefore, the present inventors have evaluated the organometallic compound for forming a thin film by chemical vapor deposition, using a gas chromatograph-mass spectrometry (hereinafter referred to as GC-MS) method. (For example, refer to Patent Document 2). By measuring the organometallic compound disclosed in Patent Document 2 by the GC-MS method and determining that the proportion of the organometallic compound monomer is 80% by weight or more of the raw material, the raw material is The film formation stability of the raw material for forming a thin film for each batch was appropriately evaluated.
[0004]
[Patent Document 1]
JP 2003-81908 A (paragraph
Etc.)
[Patent Document 2]
JP-A-10-282081 (
Claims 1 and
(Claim 2))
[0005]
[Problems to be solved by the invention]
However, the evaluation by the TG method shown in the above-mentioned Patent Document 1 and the evaluation by the GC-MS method shown in the above-mentioned Patent Document 2 are different from the thin film formation conditions in the case of actually forming a thin film using an organometallic compound. It was measured and evaluated in the environment. Therefore, the evaluated vaporization and thermal stability are not necessarily effective stability evaluations when a thin film is actually formed using an organometallic compound.
[0006]
The objective of this invention is providing the evaluation method of the organometallic compound which can evaluate the characteristic in the actual use of an organometallic compound.
Another object of the present invention is to provide an organometallic compound evaluation method capable of evaluating reactivity, thermal stability, and thermal decomposition characteristics in an environment in which an organometallic compound and a reactive gas coexist directly. It is in.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an organometallic compound evaluation method characterized in that an organometallic compound raw material for forming a thin film by chemical vapor deposition is evaluated by differential scanning calorimetry.
In the invention which concerns on Claim 1, the characteristic combined with the actual use of the organometallic compound can be evaluated.
[0008]
As shown in FIGS. 1 and 2, the invention according to claim 2 includes: (a) a step of sealing the organometallic compound and the reaction gas in a first ratio in a first sealed container; and (b) a first comparison container. A step of encapsulating a known calorific standard substance and an inert gas at a predetermined ratio, and (c) heating the first sealed container and the first comparison container with a predetermined temperature profile in an inert gas atmosphere. (D) a step of measuring the difference between the energy consumed by the first sealed container and the energy consumed by the first comparison container by the differential scanning calorimetry, and (e) creating a first curve from the measurement result. And (f) obtaining a first heat quantity of the organometallic compound enclosed in the first sealed container from an area surrounded by the peak point of the first curve, the transition start point, and the dislocation end point; and (g) the organometallic. The compound and the reaction gas are sealed in the step (a). A step of sealing in a second sealed container at a second ratio different from the one ratio, and (h) a second reference container filled with a calorimetric standard substance and an inert gas with a known calorie at a rate substantially the same as the above step (b). And (i) heating and heating the second sealed container and the second comparison container in an inert gas atmosphere with substantially the same temperature profile as in the above (c) process, and (j) the second sealed container A step of measuring the difference between the energy consumed by the container and the energy consumed by the second comparative container by differential scanning calorimetry, (k) creating a second curve from the measurement result, and (l) a second curve. A step of obtaining the second heat quantity of the organometallic compound enclosed in the second sealed container from the area surrounded by the peak point, the transition start point, and the dislocation end point, (m) the result of the step (f) and the above (l) From the result of the process, to the first heat amount and the second ratio to the first ratio Plotting each second heat quantity to create a calibration curve, and (n) evaluating the reactivity and thermal decomposability of the organometallic compound and the reaction gas from the slope of the created calibration curve. This is a characteristic method for evaluating an organometallic compound.
In the invention according to claim 2, the reactivity, thermal stability, and thermal decomposition in an environment in which the organometallic compound and the reactive gas are directly coexisted through the steps (a) to (n). Properties can be evaluated.
[0009]
The invention according to claim 3 is the invention according to claim 2, wherein (o) the first ratio in which the organometallic compound and the reaction gas are encapsulated in the step (a) and the first ratio in the step (g) are encapsulated. The evaluation method further includes a step of changing the step (g) to the step (l) one or more times by changing to a proportion different from the two proportions.
In the invention which concerns on Claim 3, the calibration curve of a more highly accurate organometallic compound and reaction gas is obtained by further including the said process (o).
[0010]
The invention according to claim 4 is the invention according to claim 2 or 3, wherein the metal contained in the organometallic compound is composed of Zr, Hf, Si, Ti, Ta, V, Cu, Pr, Pb and Y. It is the evaluation method which is 1 type, or 2 or more types selected more.
The invention according to claim 5 is the invention according to claim 2 or 3, wherein the reaction gas is O. 2 , O 3 , Air, NH 3 Gas, H 2 N-NH 2 , Water vapor and H 2 O 2 It is the evaluation method containing 1 or 2 or more gas selected from the group which consists of.
The invention according to claim 6 is the invention according to claim 2, wherein the sealing ratio of the organometallic compound and the reaction gas is in the range of 5 to 90% by volume ratio (reaction gas / organometallic compound). It is.
The invention according to claim 7 is the evaluation method according to claim 2, wherein the temperature profile is a temperature rising rate of 2 to 10 ° C./min and a temperature range of room temperature to 600 ° C.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
Usually, when a thin film is formed using an organometallic compound, an organic metal compound gas and O are placed in a deposition chamber 10 provided in a deposition apparatus as shown in FIG. 2 , H 2 , NH 3 These reaction gases are supplied. The film forming chamber 10 is heated to a predetermined temperature, and the organometallic compound gas and the reaction gas undergo thermal decomposition in the state where they coexist, thereby forming a desired thin film on the surface of the substrate 13 or the like. Therefore, even if the thermal stability, vaporization characteristics, purity, etc. of the organometallic compound itself are measured by the TG method, it is merely an assessment of the organometallic compound itself, and the evaluation of the organometallic compound as a raw material for forming a thin film. Is not directly connected. That is, when evaluating an organometallic compound as a raw material for forming a thin film, effective evaluation cannot be performed unless measurement is performed in an environment coexisting with a reaction gas to be actually reacted.
[0012]
The inventor of the present invention encloses an organometallic compound and a reaction gas at a predetermined ratio in a measurement vessel of a DSC apparatus because an organic metal compound that easily exhibits reactive decomposition tends to generate a decomposition product in a trace amount of reaction gas atmosphere. DSC measurement was performed, and this encapsulation ratio was changed to various ratios and repeated DSC measurement was performed. As a result, a linear proportional line between the peak area of the DSC curve, the sample amount, and the reaction gas amount was obtained depending on different encapsulation ratios. It was found that the relationship was obtained, and that the greater the slope of this straight line, the better the decomposition characteristics and the better the correlation of the film formation rate. The DSC method is a method for measuring physical properties such as a heat capacity and a melting point of a measurement sample, and an enthalpy change associated with a thermal change such as phase transition, melting, and reaction. In general, it is used as a one-dimensional evaluation method for examining information specific heat capacity, heat of evaporation, etc. of endothermic, exothermic and phase transition points of organic and inorganic substances. As a measuring method, a measurement sample and a reference substance are put in separate sealed containers, and heated or cooled at a constant rate at the same time, and a temperature difference between the two substances at that time is measured. In normal DSC measurement, air gap filling is used in which a measurement sample is placed in a sealed container in an atmosphere of an inert gas such as air or nitrogen or argon, and the sealed container is sealed.
[0013]
In the present invention, a reaction gas is filled in a space in a sealed container and several kinds of measurement samples are prepared by enclosing at a plurality of enclosing ratios, and a change in the shape of the organometallic compound due to heating of the reaction gas and the measurement sample present in the space is measured by the DSC method. The reaction and decomposition were replaced with a device such as a CVD reactor or a vaporizer, which was newly adopted as a method for finding the reaction. Using this method, the decomposition temperature due to the direct reaction between the gas and the sample can be found on the monitor. Moreover, the idea of heating together these reaction gas and the organometallic compound which is a thin film forming raw material, and evaluating the thin film forming raw material has not been performed at all yet.
[0014]
The present invention has been completed based on such findings. That is, the organometallic compound evaluation method of the present invention is characterized in that an organometallic compound raw material for forming a thin film by chemical vapor deposition is evaluated by a differential scanning calorimetry method. With the evaluation method of the present invention, it is possible to evaluate the characteristics combined with the actual use of the organometallic compound.
[0015]
A specific evaluation method will be described below with reference to FIGS.
First, as shown in FIG. 1, an organometallic compound and a reaction gas are sealed in a first sealed container at a first ratio (step (a)). As the metal contained in the organometallic compound in the present invention, one or more selected from the group consisting of Zr, Hf, Si, Ti, Ta, V, Cu, Pr, Pb and Y are selected. The coordination compound coordinated to these metals and the number of coordination thereof are not particularly limited, and any of the conventionally known coordination compounds can be used as long as it is an organometallic compound in which one or more coordination compounds are coordinated. It can be a measurement object in the evaluation method of the invention. As the reaction gas, O 2 , O 3 , Air, NH 3 Gas, H 2 N-NH 2 , Water vapor and H 2 O 2 And a gas containing one or more gases selected from the group consisting of: The reaction gas is preferably selected according to the use of the organometallic compound to be measured. That is, for example, when the thin film to be formed is an oxide film, the reaction gas is O 2 , O 3 When the thin film to be formed is a nitride film, the reaction gas is air, NH, etc. 3 Gas, H 2 N-NH 2 Etc. are selected. As shown in FIG. 3, the first sealed container may have a structure in which a thin upper lid 2 is fixed to a container 1 used for general DSC measurement to form a sealed container 3. Examples of the material of the container include SUS316L and SUS304. In addition, the code | symbol 4 shown in FIG. 3 shows an organometallic compound, and the code | symbol 5 shows reaction gas, respectively. The sealing ratio of the organometallic compound and the reaction gas is selected in a range of 5 to 90% in terms of volume ratio (reaction gas / organometallic compound). When the volume ratio is less than 5%, significant oxidation occurs, and when the volume ratio exceeds 90%, an error on the apparatus occurs. The volume of the encapsulated organometallic compound is calculated from the specific gravity and weight of the organometallic compound.
[0016]
Next, returning to FIG. 1, a calorific standard substance and an inert gas having a known calorific value are sealed in the first comparison container at a predetermined ratio (step (b)). Indium (In) is preferred as the calorie standard material with a known calorific value. The enclosure ratio is the same as the reaction gas and organometallic compound enclosed in the first sealed container. A rare gas such as nitrogen or argon is selected as the inert gas. It is preferable to use the first comparison container having the same structure and the same material as the first sealed container.
Next, the first sealed container and the first comparison container are heated with a predetermined temperature profile in an inert gas atmosphere (step (c)). The temperature profile is defined by a temperature increase rate of 2 to 10 ° C./min and a temperature range of room temperature to 600 ° C. When the rate of temperature rise is less than 2 ° C./min, significant oxidation occurs, and when it exceeds 10 ° C./min, there is a problem of excessive thermal decomposition. A preferable temperature increase rate is 5 to 10 ° C./min. Although the measurement temperature range may exceed 600 ° C., since a general organometallic compound decomposes at 600 ° C. or less, the above measurement temperature is set as the upper limit.
[0017]
Next, the difference between the energy consumed by the first sealed container and the energy consumed by the first comparison container is measured by the differential scanning calorimetry, and a first curve is created from the measurement result (step (d) and step ( e)).
The first calorific value of the organometallic compound sealed in the first sealed container is determined from the area surrounded by the peak point, the transition start point, and the dislocation end point of the obtained first curve (step (f)). The first heat quantity consumed by the organometallic compound measured by the area surrounded by the first curve and the base line connecting the lowest transition start point and the dislocation end point shown in the first curve obtained. is there. For example, when a DSC curve having two peak points a and b as shown in FIG. 4 as the first curve and overlapping peak peaks is obtained, the lowest transition start point and dislocation end indicated by the curve are obtained. The sum of the area A and the area B surrounded by the baseline C connecting the two points and the DSC curve is the apparent total calorific value consumed by the measured organometallic compound. The area of the area B where the mountains overlap is drawn by drawing a straight line bC from the peak point B to the base line C so that the slope is almost the same as the slope from the peak point b to the vicinity of the transition end point. The area surrounded by the straight line bC and the DSC curve is defined as area B. Similarly, the area of the area A where the mountains overlap is drawn with a straight line Ca from the base line C to the peak point a so that the slope is almost the same as the slope from the vicinity of the transition start point to the peak point a. An area surrounded by the line C, the straight line Ca, and the DSC curve is defined as an area A. In the case of the DSC curve shown in FIG. 4, the area to be evaluated by the evaluation method of the present invention is area B, and the area B tends to increase as the ratio of the reaction gas to be sealed increases.
[0018]
Subsequently, as shown in FIG. 2, the organometallic compound and the reaction gas are sealed in the second sealed container at a second rate different from the first rate sealed in the step (a) (step (g)). The second encapsulation ratio is set to be a ratio different from the first encapsulation ratio described above. For example, when the first enclosure ratio is set to 20% by volume, the second enclosure ratio is set to a ratio greatly different from the first enclosure ratio, such as 60%, and the calibration in the subsequent step (m) is performed. This makes it easier to create lines.
Next, a calorific standard substance having a known calorific value and an inert gas are sealed in the second comparison container at a rate substantially the same as that in the step (b) (step (h)). As the second comparison container, the first comparison container may be used as it is.
[0019]
Next, the second sealed container and the second comparison container are heated and heated in an inert gas atmosphere with substantially the same temperature profile as in step (c) (step (i)). The reason why the temperature profile is substantially the same as that in the step (c) is to reduce the measurement error.
Next, the difference between the energy consumed by the second sealed container and the energy consumed by the second comparison container is measured by differential scanning calorimetry, and a second curve is created from the measurement result (step (j) and step ( k)).
The second heat quantity of the organometallic compound enclosed in the second sealed container is determined from the area surrounded by the peak point, the transition start point, and the dislocation end point of the obtained second curve (step (l)). In this step, the second heat quantity is obtained by the same method as the method for obtaining the first heat quantity in the step (f).
[0020]
In addition, as the step (o), the sealing ratio of the organometallic compound and the reaction gas is changed to a ratio different from the first ratio sealed in the step (a) and the second ratio sealed in the step (g) (g). The step of repeating the step (l) 1 or 2 or more may be further included. By further including the step (o), the number of plots in the subsequent step (m) increases, so that a more accurate calibration curve between the organometallic compound and the reaction gas can be obtained.
[0021]
From the result of the step (f) and the result of the step (l), the first heat amount with respect to the first rate and the second heat amount with respect to the second rate are plotted to create a calibration curve (step (m)). The first and second calories are plotted with the calorific value obtained by dividing the calorific value as the area area by the weight of the organometallic compound sample / sample on the vertical axis and the volume ratio of the enclosing ratio on the horizontal axis. A calibration curve is created from these two plots.
Finally, the reactivity and thermal decomposability between the organometallic compound and the reactive gas are evaluated from the slope of the prepared calibration curve (step (n)). When the slope of the calibration curve is large, the deposition rate is high and the low-temperature decomposability tends to be high. On the contrary, when the slope of the calibration curve is small, the film formation rate is low and the low-temperature decomposability tends to be low.
[0022]
As described above, the steps (a) to (n) of the present invention are further passed through the step (o), so that the reactivity, thermal stability, and thermal decomposition in an environment in which the organometallic compound and the reactive gas coexist are present. The characteristics can be clearly evaluated. Various types of organometallic compounds and reaction gas types can be changed or combined to create multiple types of calibration curves, and the slope of each calibration curve can be examined. It is possible to clearly evaluate whether thermal stability and thermal decomposition characteristics are good.
[0023]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, Hf (dimethylamide) as an organometallic compound 4 (Hereinafter referred to as Compound A) as the reactive gas O 2 Prepared. Compound A is then converted to N 2 It put in the container made from SUS under atmosphere, and it enclosed with the airtight container so that the enclosure ratio might be 0% by volume ratio (reaction gas / organometallic compound). In addition, the enclosure ratio of 0% indicates that the air gap of the sealed container is filled with only nitrogen and does not contain oxygen. Next, an SUS thin upper lid was set on the upper part of the container, and a hermetic container was produced by pressing the thin upper lid and the container by pressing from above using a standard press machine which is a DSC sample production kit. Similarly, the ratio of the organometallic compound and the reactive gas is changed so that the enclosing ratio is 5%, 15% and 35% in the volume ratio (reactive gas / organometallic compound), and the total 4 kinds are enclosed in the container. An airtight container was prepared. Next, In is prepared as a calorimetric standard substance, and In and N are prepared in a comparison container. 2 Gas was sealed at a predetermined ratio to prepare a comparative container. Next, the sealed container and the comparative container are set in the measuring furnace of the DSC apparatus (DSC6200R; manufactured by Seiko Instruments Inc.), respectively, and the temperature profile is measured at a temperature rising rate of 10 ° C./min. The heating measurement was carried out with setting. The flow gas in the measurement furnace of the DSC apparatus was Ar, and the flow rate was set to 50 ml / min. Measurements were performed under the same conditions for sealed containers sealed at different sealing ratios, and four DSC curves were obtained. FIG. 5 shows a DSC curve when the encapsulation rate is 0%, FIG. 6 shows a DSC curve when the encapsulation rate is 5%, FIG. 7 shows a DSC curve when the encapsulation rate is 15%, and FIG. Each DSC curve is shown.
[0024]
<Example 2>
Si (dimethylamide) instead of compound A 4 (Hereinafter referred to as Compound B), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 40%, 75%, and 95%.
<Example 3>
V (methylcyclopentadienide) instead of compound A 2 (Hereinafter referred to as Compound C), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 40%, and 63%.
<Example 4>
Ta (methylcyclopentadienide) instead of compound A 2 H 3 (Hereinafter referred to as Compound D), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 55%, 79%, and 100%.
[0025]
<Example 5>
Ti (iPrO) instead of Compound A 2 (DPM) 2 (Hereinafter referred to as Compound E), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 18%, 38%, and 60%.
<Example 6>
W (CO) instead of Compound A 5 (Hereinafter referred to as Compound F), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 30%, 41%, and 70%.
<Example 7>
Al (iBuO) instead of compound A 3 (Hereinafter referred to as Compound G), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 55%, 79%, and 100%.
[0026]
<Example 8>
Zr (diethylamide) instead of compound A 4 (Hereinafter referred to as Compound H), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 45%, 73%, and 97%.
<Example 9>
Nb (diethylamide) instead of compound A 4 (Hereinafter referred to as Compound I), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 58%, 85%, and 110%.
<Example 10>
Pr (acetylacetonate) instead of compound A 3 (Hereinafter referred to as Compound J), and DSC measurement was performed in the same manner as in Example 1 except that the encapsulation ratio was 0%, 10%, 80%, and 105%.
<Example 11>
DSC was used in the same manner as in Example 1 except that Cu (atms) (hfac) (hereinafter referred to as Compound K) was used instead of Compound A, and the encapsulation ratio was changed to 0%, 28%, 60% and 87%. Measurements were made.
[0027]
<Example 12>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 1 except that the gas was used.
<Example 13>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 2 except that the sealing ratio was changed to 0%, 42%, 60%, and 85% instead of gas.
<Example 14>
React gas is O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 3 except that the sealing ratio was changed to 0%, 20%, 40%, and 60% instead of gas.
<Example 15>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 4 except that the gas was used.
[0028]
<Example 16>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 5 except that the sealing ratio was changed to 0%, 21%, 45%, and 63% instead of gas.
<Example 17>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 6 except that the sealing ratio was changed to 0%, 35%, 48%, and 70% instead of gas.
<Example 18>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 7 except that the sealing ratio was changed to 0%, 40%, 63%, and 93% instead of gas.
<Example 19>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 8 except that the sealing ratio was changed to 0%, 50%, 78%, and 98% instead of gas.
[0029]
<Example 20>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 9 except that the sealing ratio was changed to 0%, 55%, and 83% instead of gas.
<Example 21>
React gas as O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 10 except that the sealing ratio was changed to 0%, 10%, 76%, and 105% instead of gas.
<Example 22>
React gas is O 2 NH from gas 3 DSC measurement was performed in the same manner as in Example 11 except that the sealing ratio was changed to 0%, 28%, 60%, and 85% instead of gas.
[0030]
<Example 23>
React gas is O 2 DSC measurement was performed in the same manner as in Example 1 except that the gas was changed to water vapor (water).
<Example 24>
React gas is O 2 DSC measurements were performed in the same manner as in Example 2 except that the gas was replaced with water vapor (water) and the encapsulation ratio was changed to 0%, 42%, 75%, and 90%.
<Example 25>
React gas is O 2 DSC measurement was performed in the same manner as in Example 3, except that the gas was replaced with water vapor (water) and the encapsulation ratio was changed to 0%, 20%, 40%, and 60%.
<Example 26>
React gas is O 2 DSC measurement was performed in the same manner as in Example 4 except that the gas was replaced with water vapor (water).
[0031]
<Example 27>
React gas is O 2 DSC measurement was performed in the same manner as in Example 5 except that the gas was replaced with water vapor (water) and the encapsulation ratio was 0%, 20%, 43%, and 65%.
<Example 28>
React gas is O 2 DSC measurement was performed in the same manner as in Example 6 except that the gas was replaced with water vapor (water) and the encapsulation ratio was changed to 0%, 36%, 44%, and 70%.
<Example 29>
React gas is O 2 DSC measurement was performed in the same manner as in Example 7 except that the gas was replaced with water vapor (water) and the encapsulation ratio was 0%, 40%, 65%, and 95%.
<Example 30>
React gas is O 2 DSC measurement was performed in the same manner as in Example 8 except that the gas was replaced with water vapor (water) and the encapsulation ratio was changed to 0%, 54%, 78%, and 95%.
[0032]
<Example 31>
React gas is O 2 DSC measurements were performed in the same manner as in Example 9 except that the gas was replaced with water vapor (water) and the encapsulation ratio was changed to 0%, 45%, 70%, and 85%.
<Example 32>
React gas is O 2 DSC measurement was performed in the same manner as in Example 10 except that the gas was replaced with water vapor (water) and the encapsulation ratio was 0%, 10%, 58%, and 110%.
<Example 33>
React gas is O 2 DSC measurement was performed in the same manner as in Example 11 except that the gas was replaced with water vapor (water) and the encapsulation ratio was 0%, 25%, 58%, and 85%.
[0033]
<Evaluation 1>
Each calorific value obtained from the DSC curve obtained in each of Examples 1 to 11 was obtained, and each calorific value was plotted for each ratio of the organometallic compound and the reaction gas to prepare a calibration curve. Similarly, the amounts of heat obtained from the DSC curves obtained in Example 12 to Example 22 and Example 23 to Example 33 were determined, and each amount of heat was plotted for each proportion of the organometallic compound and the reaction gas. A calibration curve was created. FIG. 9 shows calibration curves in Examples 1 to 11, FIG. 10 shows calibration curves in Examples 12 to 22, and FIG. 11 shows calibration curves in Examples 23 to 33, respectively.
[0034]
As is clear from FIGS. 9 to 11, compounds having a large inclination, that is, a film forming rate and a tendency to have a high low temperature decomposability were Compound A, Compound E, and Compound F. Further, J was a compound having a small inclination, that is, a low film formation rate and a low-temperature decomposability. 9 to 11, the above-mentioned tendency is observed even when different reaction gases are sealed, and the slope of the calibration curve is slightly different depending on the reaction gas even if the type of the organometallic compound is the same. I found out.
[0035]
<Evaluation 2>
The following tests were performed using organometallic compounds A to K.
First, the surface of the substrate is 5000 mm thick SiO 2 Four Si substrates on each of which were formed were prepared, and the substrates were placed in the film formation chamber of the MOCVD apparatus shown in FIG. Subsequently, the substrate temperature was set to 250 ° C., the vaporization temperature was set to 80 ° C., and the pressure was set to about 665 Pa (5 torr). O as reaction gas 2 Gas, NH 3 Gas and water vapor were used, respectively, and the partial pressure was 500 ccm. Next, He gas is used as a carrier gas, and an organometallic compound is supplied at a rate of 0.01 cc / min. When the film formation time is 1 minute, 5 minutes, 10 minutes, and 20 minutes, one sheet each. Each film was taken out from the film formation chamber, and the film thickness of the thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image. The obtained film thickness results per film formation time are shown in Tables 1 to 3, respectively.
[0036]
[Table 1]
Figure 2005069726
[0037]
[Table 2]
Figure 2005069726
[0038]
[Table 3]
Figure 2005069726
[0039]
As is clear from Tables 1 to 3, although the film thickness varies slightly depending on the type of reaction gas used, Compound A, Compound E and Compound F have high film formation rates, and Compound J has a film formation rate. The result showed a low tendency. The results of Table 1 correspond to the calibration curves shown in FIG. 9 of Examples 1 to 11 described above, and the results of Table 2 correspond to the calibration curves shown in FIG. 10 of Examples 12 to 22 described above. The results correspond to the calibration curves shown in FIG. 11 of Examples 23 to 33 described above. From this result, the evaluation method of the present invention can evaluate reactivity, thermal stability, and thermal decomposition characteristics in an environment where an organometallic compound and a reactive gas coexist directly in an actual thin film formation environment. It turned out that it was made.
[0040]
【The invention's effect】
As described above, the organometallic compound evaluation method of the present invention is characterized in that an organometallic compound raw material for forming a thin film by chemical vapor deposition is evaluated by a differential scanning calorimetry method. The properties of the organometallic compound in the actual application can be evaluated. Specifically, through the steps (a) to (n), the reactivity, thermal stability and thermal decomposition characteristics in an environment in which the organometallic compound and the reactive gas coexist directly are evaluated. can do.
[Brief description of the drawings]
FIG. 1 is a flowchart showing steps (a) to (f) in an evaluation method of the present invention.
FIG. 2 is a flowchart showing steps (g) to (n) in the evaluation method of the present invention.
FIG. 3 is a cross-sectional configuration diagram of a sealed container in which an organometallic compound and a reaction gas are sealed at a predetermined ratio.
FIG. 4 is a diagram showing a first curve having two peak points a and b and overlapping peak peaks in the present embodiment.
5 is a diagram showing a DSC curve when the encapsulation rate in Example 1 is 0%. FIG.
6 is a diagram showing a DSC curve when the encapsulation ratio in Example 1 is 5%. FIG.
FIG. 7 is a diagram showing a DSC curve when the encapsulation rate in Example 1 is 15%.
FIG. 8 is a diagram showing a DSC curve when the encapsulation rate in Example 1 is 35%.
FIG. 9 is a graph showing calibration curves of compounds A to K in Examples 1 to 11.
FIG. 10 is a calibration curve of compounds A to K in Examples 12 to 22.
FIG. 11 shows a calibration curve of compounds A to K in Examples 23 to 33.
FIG. 12 is a schematic view of an MOCVD apparatus.

Claims (7)

化学蒸着によって薄膜を形成するための有機金属化合物原料を示差走査熱量測定法によって評価することを特徴とする有機金属化合物の評価方法。An organic metal compound evaluation method for evaluating an organic metal compound raw material for forming a thin film by chemical vapor deposition by a differential scanning calorimetry method. (a) 第1密閉容器に有機金属化合物及び反応ガスを第1の割合で封入する工程と、
(b) 第1比較容器に熱量既知の熱量標準物質及び不活性ガスを所定の割合で封入する工程と、
(c) 前記第1密閉容器と前記第1比較容器を不活性ガス雰囲気下、所定の温度プロファイルで昇温して加熱する工程と、
(d) 前記第1密閉容器が消費したエネルギと前記第1比較容器が消費したエネルギとの差を示差走査熱量測定法によって測定する工程と、
(e) 前記測定結果から第1曲線を作成する工程と、
(f) 前記第1曲線のピーク点と転移開始点と転位終了点で囲まれる面積から前記第1密閉容器に封入した有機金属化合物の第1熱量を求める工程と、
(g) 有機金属化合物及び反応ガスを前記(a)工程で封入した第1割合とは異なる第2割合で第2密閉容器に封入する工程と、
(h) 第2比較容器に熱量既知の熱量標準物質及び不活性ガスを前記(b)工程と略同一の割合で封入する工程と、
(i) 前記第2密閉容器と前記第2比較容器を不活性ガス雰囲気下、前記(c)工程と略同一の温度プロファイルで昇温して加熱する工程と、
(j) 前記第2密閉容器が消費したエネルギと前記第2比較容器が消費したエネルギとの差を示差走査熱量測定法によって測定する工程と、
(k) 前記測定結果から第2曲線を作成する工程と、
(l) 前記第2曲線のピーク点と転移開始点と転位終了点で囲まれる面積から前記第2密閉容器に封入した有機金属化合物の第2熱量を求める工程と、
(m) 前記(f)工程の結果と前記(l)工程の結果から、第1割合に対する第1熱量と、第2割合に対する第2熱量をそれぞれプロットし検量線を作成する工程と、
(n) 前記作成した検量線の傾きから前記有機金属化合物と前記反応ガスとの反応性及び熱的分解性を評価する工程と
を含むことを特徴とする有機金属化合物の評価方法。
(A) enclosing the organometallic compound and the reaction gas in a first ratio in a first sealed container;
(B) a step of enclosing a calorific standard substance and an inert gas having a known calorific value in a first comparison container at a predetermined ratio;
(C) heating and heating the first sealed container and the first comparison container under a predetermined temperature profile in an inert gas atmosphere;
(D) measuring the difference between the energy consumed by the first sealed container and the energy consumed by the first comparison container by a differential scanning calorimetry method;
(E) creating a first curve from the measurement results;
(F) obtaining a first heat quantity of the organometallic compound enclosed in the first sealed container from an area surrounded by a peak point of the first curve, a transition start point, and a dislocation end point;
(G) encapsulating the organometallic compound and the reaction gas in the second sealed container at a second ratio different from the first ratio encapsulated in the step (a);
(H) a step of encapsulating a calorific standard substance and an inert gas having a known calorific value in a second comparison container at a rate substantially the same as the step (b);
(I) heating and heating the second sealed container and the second comparison container in an inert gas atmosphere with substantially the same temperature profile as in the step (c);
(J) measuring the difference between the energy consumed by the second sealed container and the energy consumed by the second comparison container by a differential scanning calorimetry method;
(K) creating a second curve from the measurement result;
(L) obtaining a second heat quantity of the organometallic compound sealed in the second sealed container from an area surrounded by a peak point, a transition start point and a dislocation end point of the second curve;
(M) From the result of the step (f) and the result of the step (l), plotting the first heat quantity with respect to the first ratio and the second heat quantity with respect to the second ratio to create a calibration curve;
(N) A method for evaluating the organometallic compound, comprising evaluating the reactivity and thermal decomposability between the organometallic compound and the reactive gas from the slope of the prepared calibration curve.
(o) 有機金属化合物及び反応ガスの封入割合を前記(a)工程で封入した第1割合及び前記(g)工程で封入した第2割合とは異なる割合に変えて前記(g)工程〜前記(l)工程を1又は2以上繰返す工程を更に含む請求項2記載の評価方法。(O) Step (g) to step described above are performed by changing the enclosure ratio of the organometallic compound and the reaction gas to a ratio different from the first ratio enclosed in the step (a) and the second ratio enclosed in the step (g). (L) The evaluation method according to claim 2, further comprising a step of repeating the step one or more times. 有機金属化合物に含まれる金属がZr、Hf、Si、Ti、Ta、V、Cu、Pr、Pb及びYからなる群より選ばれた1種又は2種以上である請求項2又は3記載の評価方法。The metal according to claim 2 or 3, wherein the metal contained in the organometallic compound is one or more selected from the group consisting of Zr, Hf, Si, Ti, Ta, V, Cu, Pr, Pb and Y. Method. 反応ガスがO、O、空気、NHガス、HN−NH、水蒸気及びHからなる群より選ばれた1又は2以上のガスを含む請求項2又は3記載の評価方法。The reaction gases O 2, O 3, air, NH 3 gas, H 2 N-NH 2, according to claim 2 or 3, wherein including one or more gas selected from the group consisting of water vapor and H 2 O 2 Evaluation methods. 有機金属化合物及び反応ガスの封入割合が、容積比(反応ガス/有機金属化合物)で5〜90%の範囲にある請求項2記載の評価方法。The evaluation method according to claim 2, wherein an encapsulation ratio of the organometallic compound and the reaction gas is in the range of 5 to 90% in terms of volume ratio (reaction gas / organometallic compound). 温度プロファイルが、2〜10℃/minの昇温速度、室温〜600℃の温度範囲である請求項2記載の評価方法。The evaluation method according to claim 2, wherein the temperature profile is a temperature increase rate of 2 to 10 ° C / min and a temperature range of room temperature to 600 ° C.
JP2003209400A 2003-08-28 2003-08-28 Method for evaluating organometal compound Pending JP2005069726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209400A JP2005069726A (en) 2003-08-28 2003-08-28 Method for evaluating organometal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209400A JP2005069726A (en) 2003-08-28 2003-08-28 Method for evaluating organometal compound

Publications (1)

Publication Number Publication Date
JP2005069726A true JP2005069726A (en) 2005-03-17

Family

ID=34402351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209400A Pending JP2005069726A (en) 2003-08-28 2003-08-28 Method for evaluating organometal compound

Country Status (1)

Country Link
JP (1) JP2005069726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041089A3 (en) * 2005-09-29 2007-06-07 Praxair Technology Inc Organometallic compounds and methods of use thereof
US7547796B2 (en) 2005-09-29 2009-06-16 Praxair Technology, Inc. Organometallic compounds, processes for the preparation thereof and methods of use thereof
JP2011043374A (en) * 2009-08-20 2011-03-03 Sumitomo Chemical Co Ltd Heat stability evaluation method of sample
US7959986B2 (en) 2006-08-09 2011-06-14 Praxair Technology, Inc. Organometallic compounds, processes for the preparation thereof and methods of use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041089A3 (en) * 2005-09-29 2007-06-07 Praxair Technology Inc Organometallic compounds and methods of use thereof
US7547796B2 (en) 2005-09-29 2009-06-16 Praxair Technology, Inc. Organometallic compounds, processes for the preparation thereof and methods of use thereof
US7959986B2 (en) 2006-08-09 2011-06-14 Praxair Technology, Inc. Organometallic compounds, processes for the preparation thereof and methods of use thereof
JP2011043374A (en) * 2009-08-20 2011-03-03 Sumitomo Chemical Co Ltd Heat stability evaluation method of sample

Similar Documents

Publication Publication Date Title
US8017184B2 (en) β-diketiminate ligand sources and metal-containing compounds thereof, and systems and methods including same
Kang et al. Thermodynamic Calculations and Metallorganic Chemical Vapor Deposition of Ruthenium Thin Films Using Bis (ethyl‐π‐cyclopentadienyl) Ru for Memory Applications
Popovici et al. Atomic layer deposition of strontium titanate films using Sr (# 2# 1Cp) 2 and Ti (OMe) 4
JP7148377B2 (en) Raw material for chemical vapor deposition comprising a ruthenium complex and chemical vapor deposition method using said raw material for chemical vapor deposition
Knaut et al. In-situ real-time ellipsometric investigations during the atomic layer deposition of ruthenium: A process development from [(ethylcyclopentadienyl)(pyrrolyl) ruthenium] and molecular oxygen
US10763001B2 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
Maeng et al. Atomic layer deposition of Ta-based thin films: Reactions of alkylamide precursor with various reactants
JP2012006858A (en) Organoruthenium compound for use in chemical vapor deposition, and chemical vapor deposition method employing the same
WO2021153639A1 (en) Chemical vapor deposition raw material comprising organic ruthenium compound, and chemical vapor deposition method using said chemical vapor deposition raw material
KR19990080919A (en) Aluminum complex derivative for chemical vapor deposition and production of the same derivative
Bönhardt et al. Formation of highly conformal spinel lithium titanate thin films based on a novel three-step atomic layer deposition process
JP2005069726A (en) Method for evaluating organometal compound
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
KR20150116430A (en) Group 2 imidazolate formulations for direct liquid injection
Katamreddy et al. Advanced precursor development for Sr and Ti based oxide thin film applications
Niskanen et al. Thermogravimetric study of volatile precursors for chemical thin film deposition. Estimation of vapor pressures and source temperatures
JPH11302286A (en) Barium strontium beta-diketonate and is production and production of barium strontium-containing oxide dielectric thin film using the same
WO2010061955A1 (en) Container containing cobalt carbonyl complex and cobalt carbonyl complex composition
Dey et al. Growth and nanostructure of conformal ruthenium films by liquid-source metalorganic chemical vapor deposition
EP2520690A1 (en) Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
Selvakumar et al. Synthesis and thermal analysis of yttrium metallorganic complexes for evaluation as chemical vapor deposition precursors
JP6885871B2 (en) High-purity tungsten hexacarbonyl for solid source delivery
Hunks et al. Germanium ALD/CVD Precursors for Deposition of Ge/GeTe Films
JP4277515B2 (en) ORGANIC ZIRCINE COMPOSITE AND METHOD FOR SYNTHESIZING THE SAME, SOLUTION RAW MATERIAL CONTAINING THE SAME, AND METHOD FOR DEFORMING LEAD ZIRCONATE TITANATE THIN FILM
KR100367346B1 (en) Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909