JP2005069696A - Strength evaluation method of resin sheet - Google Patents

Strength evaluation method of resin sheet Download PDF

Info

Publication number
JP2005069696A
JP2005069696A JP2003208601A JP2003208601A JP2005069696A JP 2005069696 A JP2005069696 A JP 2005069696A JP 2003208601 A JP2003208601 A JP 2003208601A JP 2003208601 A JP2003208601 A JP 2003208601A JP 2005069696 A JP2005069696 A JP 2005069696A
Authority
JP
Japan
Prior art keywords
resin sheet
polarizing plate
optical compensation
compensation layer
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003208601A
Other languages
Japanese (ja)
Inventor
Masayuki Kawai
雅之 河合
Junichi Adachi
準一 安達
Shuji Yano
周治 矢野
Hisashi Yamaoka
尚志 山岡
Kanako Wasai
奏子 和才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003208601A priority Critical patent/JP2005069696A/en
Publication of JP2005069696A publication Critical patent/JP2005069696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating crack resistance quantitatively and simply with excellent repeatability, concerning a strength evaluation method for a resin sheet. <P>SOLUTION: This strength evaluation method for the resin sheet is characterized by using a member having a prescribed shape such as a cylindrical body, winding the resin sheet on the outside of the member, and evaluating the crack resistance of the resin sheet. In this case, the resin sheet is preferably a polarizing plate with an optical compensation layer formed by sticking the optical compensation layer comprising a material immobilized by polymerization to the polarizing plate. In addition, a plurality of similar-shaped bodies having different dimensions are preferably used respectively as the member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂シートの強度評価方法に関するもので、例えば、視野角特性を改善した液晶表示装置およびそれに用いられる光学補償フィルムの強度評価方法として特に有用である。
【0002】
【従来の技術】
液晶表示装置は様々な情報処理装置の表示装置として広く使われている。しかしながら、現在最も普及している薄膜トランジスタにより駆動するねじれネマティック型液晶表示装置は、斜め方向から見た場合にコントラストが低下し、階調表示で明るさが逆転する現象が起こることにより表示特性が低下するという視野角特性を有している。この特性を改善するために、支持体上に配向膜を形成し、その上にディスコティックネマティック相を傾斜配向し、重合したフィルムが報告されている(例えば特許公報1および2参照)。
【0003】
また、視野角特性を改良する方式として、垂直配向型液晶(VAモード)表示装置が提案されている。これは、垂直配向の液晶を光学的に視野角補償するための光学補償板(位相差板)を適用することで広い視野角特性を発現することが知られている。光学補償板としては、例えば高分子フィルムを延伸した位相差板や、液晶ポリマーの配向フィルムや重合性液晶材料を配向後、重合により固定化したもの層などからなる。光学補償板に重合性液晶材料を配向後、重合により固定化したもの層を用いると、液晶材料の配向が容易である、薄型化が図れる、光学設計が容易であるなどの利点がある。重合性液晶材料を配向後、重合により固定化した層は、透明基材や偏光板などで支持することが必要であり、通常は偏光板に光学補償層を貼り合わせて供されるが、層自体が薄くて脆いために、光学補償層付偏光板を液晶パネルに貼り合わせる際のハンドリング時に光学補償層付偏光板を屈曲したり、セパレータを剥離する際や貼り付け時の局部的な圧力などで、光学補償層が割れ、表示が不均一になる問題があった。
【0004】
このような問題を検討する上においては、当該光学補償層の耐割れ性を如何に評価するかが重要であり、従来は光学補償層付偏光板を適当な角度で手で折り曲げて割れを目視観察する方法や、実際パネルへの貼り合せ工程へ投入して不具合が無いかを観察する方法などが行われていた。
【0005】
【特許文献1】
特許第2692035号公報
【特許文献2】
特許第2802719号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記方法では、以下のような問題点が生じることがある。
光学補償層付偏光板を折り曲げて割れを目視観察する方法では、偏光板を手で折り曲げることになり、偏光板に掛かる負荷の絶対値が作業ごとに異なり、偏光板に対して局部的な負荷による割れの発生も無視できない。つまり、こうした方法では、偏光板の定量性や再現性に乏しい。
【0007】
また、実際パネルへの貼り合せ工程へ投入して不具合が無いか観察する方法の方法では、偏光板の不良によって工程の全体に影響を与えるという不都合を回避することが難しく、結果を出すために多大な時間と労力を必要とするなど、割れ性評価方法としては不適切なものであった。
【0008】
そこで、本発明は、偏光板と接着した光学補償層付偏光板の光学補償層に生じる割れを防止する検討を行う上で、各種検討条件における耐割れ性を再現良く定量的かつ簡便に評価する方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、樹脂シートの強度評価方法について鋭意研究したところ、下記の方法によって、樹脂シートの耐割れ性を再現良く定量的かつ簡便に評価するできることを見出し、本発明を完成するに至った。
【0010】
本発明は、樹脂シートの強度評価方法において、円筒等所定の形状の部材を用い、当該樹脂シートを当該部材の外側に巻き付け、当該樹脂シートの耐割れ性を評価することを特徴とする。こうした評価方法によって、従来行うことができなかった耐割れ性を、再現良く、定量的かつ簡便に評価することができる。
【0011】
また、本発明は、前記樹脂シートが重合により固定化したものから成る光学補償層と偏光板を接着した光学補償層付偏光板である場合に特に有効である。こうしたシートについては、液晶表示装置などに装着する前段階での強度評価が特に重要であり、従来定量的かつ簡便に行うことができなかった評価方法の実現は実用面において非常に優位である。
【0012】
さらに、前記強度評価方法において、前記部材を複数個かつ異なる寸法の相似形状体を用いて行うことが好適である。複数の条件での試験を行うことで、シート上の割れが発生する条件をより的確に定量性をもって検知することができるため、精度の高い耐割れ性の評価を行うことができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
本発明は、樹脂シートの強度評価方法において、円筒等所定の形状の部材を用い、当該樹脂シートを当該部材の外側に巻き付け、当該樹脂シートの耐割れ性を評価することを特徴とする。例えば、所定の管径を有する円筒部材にシートを巻くことによって、シートに対して掛かる負荷を同一条件にすることができるため、樹脂シートの強度を客観的且つ定量的に評価することができる。両面の特性が異なるシートの場合には、円筒部材に巻き付ける面を特定することで、引張強度または圧縮強度のいずれかの評価の設定が可能である。また、両方の面を円筒部材に接するように巻きつけることで、樹脂シートの引張強度および圧縮強度の両者を評価することができる。こうした評価方法によって、従来行うことができなかった耐割れ性を、再現良く、定量的かつ簡便に評価することができる。
【0014】
本発明の具体的な態様の一例を図1に示す。つまり、所定の大きさに切り出された樹脂シート1を円筒部材2に巻きつけている状態を示している。樹脂シート1のA面には評価の対象となる薄膜が設けられている。
(1)反対側のB面が円筒部材2と密接するように、樹脂シート1が巻かれた後、取り外されたシート1のA面での割れの発生を目視で確認する。このとき、薄膜に対しては、引張応力が掛かることとなり、薄膜の引張強度を評価することができる。
(2)逆に、A面を円筒部材2と密接するように巻き付けると、圧縮応力が掛かることになり、薄膜の圧縮強度を評価することができる。
(3)また、(1)(2)を順に(順序は任意)巻き付けることで、薄膜の引張強度および圧縮強度の両者を評価することができる。
【0015】
このとき、樹脂シート1の形状は、適当な評価しやすい形状とすることができる。特定用途に使用される場合には、その使用条件に合致した形状が望ましいが、一般には評価装置あるいは評価の作業性を考慮した形状が設定されることが多い。
【0016】
円筒部材2としては、ガラス管や金属棒もしくはそれに類似した器具であれば限定なくこれを使用できる。円筒部材2の直径については、実工程を勘案し適宜決定され、部材2の表面を研磨等により滑り止め加工を施す等の処理をすることも可能であり、樹脂シート1の使用条件に合わせた部材2の形状変更も可能である。つまり、フラットパネルではなく中央に膨らみを有するパネルに使用する場合には、円筒部材2をストレートではなく中膨らみ形状の円筒を用いることも可能である。また、強度を客観的に評価できる場合にあっては、部材の形状は上記に限定されるものでなく、任意の形状に対しても本発明が適用できることはいうまでもない。
【0017】
割れ性の評価方法としては、樹脂シート1を円筒部材2に一定回数巻きつけた後、光学補償層の割れの有無または割れた本数により評価することができるが、巻きつけ回数は実工程を勘案し適宜決めることができる。
【0018】
また、本発明は、前記樹脂シートが重合により固定化したものから成る光学補償層と偏光板を接着した光学補償層付偏光板である場合に特に有効である。同一素材のシートの場合、割れ特性を含む各種特性は比較的揃っており、特性評価も比較的ラフな確認で問題が生じることは少ないが、光学補償層付偏光板のように異なる素材または異なる処理を行った素材を接合した樹脂シートにあっては、それぞれの素材の特性のばらつきの組合せとともに接合の状態のばらつきによってシート全体の割れ特性が異なるため、正確性・再現性の優れた特性評価が必要とされる。また、液晶表示装置などに装着した後の段階で強度評価をするとすれば、装置に固定された状態での評価となり、十分な特性評価を行うことは実質的に困難であるとともに、不良品が生じた場合にあっては装置から取り外す等余分な作業を必要とするが、本発明を適用した評価方法では、こうした問題点の発生なく評価することが可能となり、実用面において非常に優位である。
【0019】
さらに、前記強度評価方法において、前記部材を複数個かつ異なる寸法の相似形状体を用いて行うことが好適である。一般に樹脂シートの割れは、いくつかの要因が重なって起こることが多く、1つの条件のみでシートの強度を評価することは必ずしも適切でないことが多い。特に液晶表示装置などに装着する上記偏光板にあっては、装置の形状や取付け状態によって様々な方向からの負荷が掛かることとなり、所定範囲のシートの負荷特性を求めることでシートの活用の可能性を事前に判断可能となる。つまり、複数の条件での試験を行うことで、シート上の割れが発生する条件をより高い定量性をもって検知することができる。
【0020】
例えば、図1のように樹脂シート1を円筒部材2に巻き付け、以下の手順によって評価する方法が考えられる。
(1)所定の形状の樹脂シート1および管径の異なる円筒部材2を複数用意し、
(2)1のシート1のいずれかの面を、1の部材2の外面に巻き付ける。
(3)すぐに取り外した後、シート1表面の割れの有無を目視で評価する。このとき、部材2と接触した面だけでなく、非接触面も評価することについては上述の通りである。
(4)次に、別のシート1のいずれかの面を、別の部材2の外面に巻き付ける。このとき、別の部材2は、(2)の部材と管径が異なる相似形状体、つまり、管径の異なる円筒形が好ましい。
(5)次に、(3)と同様に評価する。
(6)(4)から(5)を繰り返し、(3)および(5)を含めたこのときの評価を、管径をパラメータとして整理し、対象樹脂シートの強度を評価する。このときの評価方法については、例えば、実施例2における評価結果をまとめた図2に示す方法が挙げられる。つまり、管径を変化させたときの割れ数の変化をグラフ化すれば、当該シートの割れの発生および増加傾向を定量化することができ、装置取付け時に掛かる最大負荷あるいは長期使用時の継続的負荷に関する耐久性を推定する参照値として使用することができる。例えば、割れが発生する管径の大きさ(図2の例では、「約15mm」)は、シートの強度を示すものと評価することが可能である。一方、増加係数(図2の例では、「約3mm/10割れ数」)はシート特性のばらつき幅、あるいはシートの柔軟度と評価することも可能である。
【0021】
以上は、特に光学補償層付偏光板について、本発明の適用は非常に有効であることから、主として樹脂シートについて述べたが、同様の技術は、他の素材あるいは、それと樹脂シートとの組み合わせについても適用されるものである。
【0022】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例になんら限定されるものではない。
<光学補償層付偏光板の作製>
コレステリック液晶モノマー(BASF社製PALIOCOLOR−LC242、LC756混合物)を硬化させてなる光学補償層を、アクリレート系粘着剤を介して偏光板に転写し、さらにその光学補償層上に粘着加工した、光学補償層付偏光板を作製した。さらに詳細を以下に説明する。
【0023】
(1)塗工液の調製
重合性ネマティック液晶である下記〔化1〕を90重量部、重合性カイラル剤として下記〔化2〕を10重量部、レベリング剤としてBYK361(BYKケミー社製)を0. 05重量部、UV開始剤としてイルガキュア907(チバスペシャリティーケミカルズ社製)5重量部を溶媒メチルエチルケトン(300重量部)に溶解させ、塗工液を得た。塗工液の粘度は2.2mPa・sであった。
【0024】
【化1】

Figure 2005069696
【化2】
Figure 2005069696
【0025】
(2)偏光板の作製
ヨウ素を含有するポリビニルアルコール系フィルムからなる偏光子(厚み30μm)の両側にTACよりなる保護層(厚み80μm)をアクリル系粘着剤を用いて積層させ、偏光板を作製した。
【0026】
(3)補償板の作製
高延伸PET(T−60)(帝人社製)に前記塗工液をマイクログラビア法で塗工し、100℃に昇温して配向させ、紫外線照射により配向を固定し、補償層を形成した。ヘリックスのピッチは0.12μmであった。次にアクリル系粘着剤を介して上記偏光板を積層させ、高延伸PETを剥離することにより、補償板を得た。
【0027】
<実施例1>
この偏光板を10枚作製し、5cm×15cmに切り出したものを、光学補償層を外側にして直径50mm〜10mmの円筒状ガラス管に一回巻きつけ、すぐに取り外した後、光学補償層の割れの有無を目視で評価した。結果を下記表1に示す。
【表1】
Figure 2005069696
表1の結果が示すように、本サンプルは、直径25mm以下10mm以上に相当する耐割れ性を有する。ここでは、引張応力による光学補償層の割れの有無を目視で評価したが、むろん圧縮応力による影響および両者を評価することができることはいうまでもない。このように、本発明の評価方法によれば定量的かつ簡便に割れ評価を行うことができる。
【0028】
<実施例2>
上記実施例1の結果を参考として、同様に、10枚の切り出した偏光板を光学補償層を外側にして、直径25mm〜10mmの円筒状ガラス管に一回巻きつけ、すぐに取り外した後、光学補償層の割れの有無を目視で評価した。結果を図2に示す。結果が示すように、本サンプルは、直径16mm以下13mm以上、さらには推定約15mmに相当する耐割れ性を有する。本評価方法によれば、より精度の高い定量的かつ簡便に割れ評価を行うことができる。
【0029】
【発明の効果】
以上のように、本発明を適用した樹脂シートの強度評価方法によって、従来行うことができなかった耐割れ性を、再現良く、定量的かつ簡便に評価することができる。
【0030】
また、本発明は、前記樹脂シートが光学補償層付偏光板である場合には、液晶表示装置などに装着する前段階での強度評価が特に重要であり、従来定量的かつ簡便に行うことができなかった評価方法の実現は実用面において非常に優位である。
【0031】
さらに、前記強度評価方法を複数の条件での試験を行うことで、シート上の割れが発生する条件をより定量性をもって検知することができるため、精度の高い耐割れ性の評価を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の態様の一例を示す説明図
【図2】本評価方法に基く評価結果の一例を示す説明図
【符号の説明】
1 樹脂シート
2 円筒部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the strength of a resin sheet, and is particularly useful, for example, as a method for evaluating the strength of a liquid crystal display device with improved viewing angle characteristics and an optical compensation film used therefor.
[0002]
[Prior art]
Liquid crystal display devices are widely used as display devices for various information processing apparatuses. However, twisted nematic liquid crystal display devices driven by thin film transistors, which are most widely used at present, have low contrast when viewed from an oblique direction, and display characteristics deteriorate due to the phenomenon that brightness is reversed in gradation display. It has a viewing angle characteristic. In order to improve this characteristic, a polymerized film in which an alignment film is formed on a support and a discotic nematic phase is inclined and aligned thereon has been reported (see, for example, Patent Documents 1 and 2).
[0003]
As a method for improving viewing angle characteristics, a vertical alignment type liquid crystal (VA mode) display device has been proposed. This is known to exhibit a wide viewing angle characteristic by applying an optical compensator (retardation plate) for optically compensating the viewing angle of vertically aligned liquid crystal. The optical compensator includes, for example, a retardation film obtained by stretching a polymer film, a liquid crystal polymer alignment film, or a layer obtained by aligning a polymerizable liquid crystal material and then fixing by polymerization. Using a layer in which a polymerizable liquid crystal material is aligned and then fixed by polymerization is used for the optical compensator plate has advantages such as easy alignment of the liquid crystal material, reduction in thickness, and easy optical design. After aligning the polymerizable liquid crystal material, the layer fixed by polymerization needs to be supported by a transparent substrate or a polarizing plate, and is usually provided with an optical compensation layer attached to the polarizing plate. Because the film itself is thin and brittle, the polarizing plate with an optical compensation layer is bent during handling when the polarizing plate with an optical compensation layer is bonded to a liquid crystal panel, or the local pressure is applied when the separator is peeled off or pasted. Thus, there is a problem that the optical compensation layer is cracked and the display becomes non-uniform.
[0004]
In examining these problems, it is important how to evaluate the crack resistance of the optical compensation layer. Conventionally, the polarizing plate with the optical compensation layer is bent by an appropriate angle by hand, and the crack is visually observed. An observation method and a method of observing whether or not there is a defect after being put into a bonding process to an actual panel have been performed.
[0005]
[Patent Document 1]
Japanese Patent No. 2692035 [Patent Document 2]
Japanese Patent No. 2802719 [0006]
[Problems to be solved by the invention]
However, the above method may cause the following problems.
In the method of bending the polarizing plate with an optical compensation layer and visually observing the crack, the polarizing plate is bent by hand, and the absolute value of the load applied to the polarizing plate differs depending on the work, and the load applied locally to the polarizing plate. The occurrence of cracks due to can not be ignored. That is, in such a method, the quantitative property and reproducibility of the polarizing plate are poor.
[0007]
In addition, in the method of the method of observing whether there is a defect by actually putting it into the bonding process to the panel, it is difficult to avoid the inconvenience that the whole process is affected by the failure of the polarizing plate. This method is inappropriate as a cracking evaluation method because it requires a lot of time and labor.
[0008]
Therefore, the present invention evaluates crack resistance under various examination conditions in a reproducible, quantitative, and simple manner in order to prevent cracks occurring in the optical compensation layer of the polarizing plate with an optical compensation layer adhered to the polarizing plate. It is intended to provide a method.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors diligently studied the strength evaluation method of the resin sheet, and found that the crack resistance of the resin sheet can be quantitatively and easily evaluated with good reproducibility by the following method, The present invention has been completed.
[0010]
The present invention is characterized in that, in a method for evaluating the strength of a resin sheet, a member having a predetermined shape such as a cylinder is used, the resin sheet is wound around the outside of the member, and the crack resistance of the resin sheet is evaluated. By such an evaluation method, it is possible to quantitatively and easily evaluate the crack resistance, which could not be performed conventionally, with good reproducibility.
[0011]
In addition, the present invention is particularly effective when the resin sheet is a polarizing plate with an optical compensation layer in which an optical compensation layer formed by fixing the resin sheet by polymerization and a polarizing plate are bonded. For such sheets, strength evaluation prior to mounting on a liquid crystal display device or the like is particularly important, and the realization of an evaluation method that could not be performed quantitatively and simply in the past is very advantageous in practice.
[0012]
Furthermore, in the said strength evaluation method, it is suitable to perform the said member using the similar shape body of two or more and a different dimension. By conducting the test under a plurality of conditions, it is possible to more accurately detect the condition that causes cracks on the sheet with quantitativeness, and therefore it is possible to evaluate the crack resistance with high accuracy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The present invention is characterized in that, in a method for evaluating the strength of a resin sheet, a member having a predetermined shape such as a cylinder is used, the resin sheet is wound around the outside of the member, and the crack resistance of the resin sheet is evaluated. For example, by winding a sheet around a cylindrical member having a predetermined tube diameter, the load applied to the sheet can be made the same condition, so that the strength of the resin sheet can be objectively and quantitatively evaluated. In the case of sheets with different characteristics on both sides, it is possible to set either evaluation of tensile strength or compressive strength by specifying the surface to be wound around the cylindrical member. Moreover, both the tensile strength and compressive strength of a resin sheet can be evaluated by winding both surfaces so that it may contact | connect a cylindrical member. By such an evaluation method, it is possible to quantitatively and easily evaluate the crack resistance, which could not be performed conventionally, with good reproducibility.
[0014]
An example of a specific embodiment of the present invention is shown in FIG. That is, the state where the resin sheet 1 cut out to a predetermined size is wound around the cylindrical member 2 is shown. A thin film to be evaluated is provided on the A surface of the resin sheet 1.
(1) After the resin sheet 1 is wound so that the opposite B surface is in close contact with the cylindrical member 2, the occurrence of cracks on the A surface of the removed sheet 1 is visually confirmed. At this time, a tensile stress is applied to the thin film, and the tensile strength of the thin film can be evaluated.
(2) Conversely, if the A surface is wound so as to be in close contact with the cylindrical member 2, a compressive stress is applied, and the compressive strength of the thin film can be evaluated.
(3) Moreover, both the tensile strength and compressive strength of a thin film can be evaluated by winding (1) and (2) in order (the order is arbitrary).
[0015]
At this time, the shape of the resin sheet 1 can be an appropriate shape that can be easily evaluated. When used for a specific application, a shape that matches the use conditions is desirable, but in general, a shape that takes into consideration an evaluation device or workability of evaluation is often set.
[0016]
The cylindrical member 2 can be used without limitation as long as it is a glass tube, a metal rod, or a similar instrument. The diameter of the cylindrical member 2 is appropriately determined in consideration of an actual process, and the surface of the member 2 can be subjected to processing such as anti-slip processing by polishing or the like, and is matched to the use conditions of the resin sheet 1. The shape of the member 2 can be changed. That is, when using for the panel which has a bulge in the center instead of a flat panel, it is also possible to use the cylinder of the middle bulge shape for the cylindrical member 2 instead of straight. In addition, when the strength can be objectively evaluated, the shape of the member is not limited to the above, and it goes without saying that the present invention can be applied to any shape.
[0017]
As a method for evaluating the cracking property, after the resin sheet 1 is wound around the cylindrical member 2 for a certain number of times, it can be evaluated based on the presence or absence of cracks in the optical compensation layer. It can be determined as appropriate.
[0018]
In addition, the present invention is particularly effective when the resin sheet is a polarizing plate with an optical compensation layer in which an optical compensation layer formed by fixing the resin sheet by polymerization and a polarizing plate are bonded. In the case of a sheet of the same material, various characteristics including crack characteristics are relatively uniform, and it is unlikely that problems will occur due to relatively rough confirmation of characteristics, but different materials such as polarizing plates with optical compensation layers or different In the case of resin sheets bonded with processed materials, the crack characteristics of the entire sheet differ depending on the combination of variations in the characteristics of each material, as well as the variations in the bonding state. Is needed. In addition, if strength evaluation is performed at a stage after being mounted on a liquid crystal display device or the like, it is evaluated in a state of being fixed to the device, and it is substantially difficult to perform sufficient characteristic evaluation, and defective products are In such a case, extra work such as removal from the apparatus is required, but the evaluation method to which the present invention is applied makes it possible to evaluate without occurrence of such problems, which is very advantageous in practical use. .
[0019]
Furthermore, in the said strength evaluation method, it is suitable to perform the said member using the similar shape body of two or more and a different dimension. In general, cracking of a resin sheet often occurs due to overlapping of several factors, and it is often not always appropriate to evaluate the strength of the sheet only under one condition. In particular, in the above polarizing plate mounted on a liquid crystal display device, a load from various directions is applied depending on the shape and mounting state of the device, and the sheet can be utilized by obtaining the load characteristics of the sheet within a predetermined range. Sex can be determined in advance. That is, by performing a test under a plurality of conditions, it is possible to detect a condition in which a crack on the sheet occurs with higher quantitativeness.
[0020]
For example, the method of winding the resin sheet 1 around the cylindrical member 2 as shown in FIG.
(1) Prepare a plurality of resin sheets 1 having a predetermined shape and cylindrical members 2 having different pipe diameters,
(2) One surface of one sheet 1 is wound around the outer surface of one member 2.
(3) After removing immediately, the presence or absence of cracks on the surface of the sheet 1 is visually evaluated. At this time, not only the surface in contact with the member 2 but also the non-contact surface is evaluated as described above.
(4) Next, any surface of another sheet 1 is wound around the outer surface of another member 2. At this time, the another member 2 is preferably a similar shaped body having a tube diameter different from that of the member (2), that is, a cylindrical shape having a different tube diameter.
(5) Next, evaluation is performed in the same manner as in (3).
(6) (4) to (5) are repeated, and the evaluation at this time including (3) and (5) is arranged with the tube diameter as a parameter, and the strength of the target resin sheet is evaluated. As an evaluation method at this time, for example, the method shown in FIG. In other words, if the change in the number of cracks when the pipe diameter is changed is graphed, the occurrence and increase tendency of the cracks in the sheet can be quantified, and the maximum load applied during installation or continuous use during long-term use can be quantified. It can be used as a reference value to estimate durability with respect to load. For example, the size of the pipe diameter at which cracking occurs (in the example of FIG. 2, “about 15 mm”) can be evaluated as indicating the strength of the sheet. On the other hand, the increase coefficient (in the example of FIG. 2, “about 3 mm / 10 crack number”) can be evaluated as the variation width of the sheet characteristics or the flexibility of the sheet.
[0021]
The above is mainly described for the resin sheet because the application of the present invention is very effective especially for the polarizing plate with an optical compensation layer. However, the same technique is applied to other materials or a combination of the resin sheet and the resin sheet. Is also applicable.
[0022]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
<Preparation of polarizing plate with optical compensation layer>
An optical compensation layer obtained by curing an optical compensation layer obtained by curing a cholesteric liquid crystal monomer (a mixture of PALIOCOLOR-LC242 and LC756 manufactured by BASF) onto an polarizing plate through an acrylate-based adhesive, and further performing an adhesive process on the optical compensation layer. A polarizing plate with a layer was produced. Further details will be described below.
[0023]
(1) Preparation of coating liquid 90 parts by weight of the following [Chemical 1], which is a polymerizable nematic liquid crystal, 10 parts by weight of the following [Chemical 2] as a polymerizable chiral agent, and BYK361 (manufactured by BYK Chemie) as a leveling agent. 0. 05 parts by weight and 5 parts by weight of Irgacure 907 (manufactured by Ciba Specialty Chemicals) as a UV initiator were dissolved in the solvent methyl ethyl ketone (300 parts by weight) to obtain a coating solution. The viscosity of the coating solution was 2.2 mPa · s.
[0024]
[Chemical 1]
Figure 2005069696
[Chemical 2]
Figure 2005069696
[0025]
(2) Preparation of polarizing plate A polarizing plate is prepared by laminating a protective layer (thickness 80 μm) made of TAC on both sides of a polarizer (thickness 30 μm) made of a polyvinyl alcohol film containing iodine using an acrylic adhesive. did.
[0026]
(3) Preparation of compensation plate The above coating solution is applied to highly stretched PET (T-60) (manufactured by Teijin Ltd.) by a microgravure method, heated to 100 ° C. and aligned, and the alignment is fixed by ultraviolet irradiation. Then, a compensation layer was formed. The helix pitch was 0.12 μm. Next, the said polarizing plate was laminated | stacked through the acrylic adhesive, and the compensation board was obtained by peeling highly stretched PET.
[0027]
<Example 1>
10 sheets of this polarizing plate were cut out to 5 cm × 15 cm, wound once around a cylindrical glass tube with a diameter of 50 mm to 10 mm with the optical compensation layer on the outside, and immediately removed, The presence or absence of cracks was visually evaluated. The results are shown in Table 1 below.
[Table 1]
Figure 2005069696
As the results in Table 1 show, this sample has crack resistance corresponding to a diameter of 25 mm or less and 10 mm or more. Here, the presence or absence of cracks in the optical compensation layer due to the tensile stress was visually evaluated, but it goes without saying that the influence of the compressive stress and both can be evaluated. Thus, according to the evaluation method of the present invention, the crack evaluation can be performed quantitatively and easily.
[0028]
<Example 2>
With reference to the results of Example 1 above, similarly, 10 cut out polarizing plates were wound once around a cylindrical glass tube having a diameter of 25 mm to 10 mm with the optical compensation layer outside, and immediately removed, The presence or absence of cracks in the optical compensation layer was visually evaluated. The results are shown in FIG. As the results show, this sample has crack resistance equivalent to a diameter of 16 mm or less, 13 mm or more, and an estimated about 15 mm. According to this evaluation method, it is possible to perform the crack evaluation with higher accuracy, quantitatively and simply.
[0029]
【The invention's effect】
As described above, the resin sheet strength evaluation method to which the present invention is applied can be used to quantitatively and easily evaluate the crack resistance, which could not be performed conventionally, with good reproducibility.
[0030]
Further, in the present invention, when the resin sheet is a polarizing plate with an optical compensation layer, it is particularly important to evaluate the strength before mounting on a liquid crystal display device, etc. Realization of the evaluation method that could not be performed is very advantageous in practical use.
[0031]
Furthermore, by performing a test under a plurality of conditions for the strength evaluation method, it is possible to detect the condition on which cracks occur on the sheet with more quantitativeness, and therefore it is possible to evaluate the crack resistance with high accuracy. it can.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention. FIG. 2 is an explanatory diagram showing an example of an evaluation result based on the evaluation method.
1 Resin sheet 2 Cylindrical member

Claims (3)

樹脂シートの強度評価方法において、円筒等所定の形状の部材を用い、当該樹脂シートを当該部材の外側に巻き付け、当該樹脂シートの耐割れ性を評価することを特徴とする樹脂シートの強度評価方法。In a resin sheet strength evaluation method, a resin sheet strength evaluation method characterized by using a member having a predetermined shape such as a cylinder, winding the resin sheet around the outside of the member, and evaluating crack resistance of the resin sheet. . 前記樹脂シートが、重合により固定化したものから成る光学補償層と偏光板を接着した光学補償層付偏光板であることを特徴とする請求項1に記載の樹脂シートの強度評価方法。2. The method for evaluating the strength of a resin sheet according to claim 1, wherein the resin sheet is a polarizing plate with an optical compensation layer formed by bonding an optical compensation layer formed by polymerization and a polarizing plate. 前記強度評価方法において、前記部材を複数個かつ異なる寸法の相似形状体を用いて行うことを特徴とする請求項1または2に記載の樹脂シートの強度評価方法。3. The method for evaluating the strength of a resin sheet according to claim 1 or 2, wherein in the strength evaluation method, a plurality of the members are used using similar shapes having different dimensions.
JP2003208601A 2003-08-25 2003-08-25 Strength evaluation method of resin sheet Pending JP2005069696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208601A JP2005069696A (en) 2003-08-25 2003-08-25 Strength evaluation method of resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208601A JP2005069696A (en) 2003-08-25 2003-08-25 Strength evaluation method of resin sheet

Publications (1)

Publication Number Publication Date
JP2005069696A true JP2005069696A (en) 2005-03-17

Family

ID=34401813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208601A Pending JP2005069696A (en) 2003-08-25 2003-08-25 Strength evaluation method of resin sheet

Country Status (1)

Country Link
JP (1) JP2005069696A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506168A (en) * 2006-10-04 2010-02-25 コーニング インコーポレイテッド Method and apparatus for durability test of sheet of brittle material
JP2011226940A (en) * 2010-04-21 2011-11-10 Ube Ind Ltd Evaluation method for impact property of tube, producing method for tube, and tube with excellent impact toughness
CN103558093A (en) * 2013-09-13 2014-02-05 友达光电股份有限公司 Flexible board bending test device and test method
WO2019004728A1 (en) * 2017-06-29 2019-01-03 주식회사 엘지화학 Jig assembly comprising bend jig, bend tensile strength measuring device including same, and bend tensile strength measuring method using same
US10996150B2 (en) 2017-06-29 2021-05-04 Lg Chem, Ltd. Jig assembly comprising bending jig and apparatus and method for measuring bending tensile strength using the same
WO2022230895A1 (en) * 2021-04-27 2022-11-03 日東電工株式会社 Bending inspection method
CN116973242A (en) * 2023-09-22 2023-10-31 江苏华恬节能科技有限公司 Polyurethane product high-temperature illumination deformation detection equipment and detection method thereof
JP7388201B2 (en) 2020-01-17 2023-11-29 株式会社オートネットワーク技術研究所 Stress evaluation method, bending workability evaluation method, and metal member manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506168A (en) * 2006-10-04 2010-02-25 コーニング インコーポレイテッド Method and apparatus for durability test of sheet of brittle material
JP2011226940A (en) * 2010-04-21 2011-11-10 Ube Ind Ltd Evaluation method for impact property of tube, producing method for tube, and tube with excellent impact toughness
CN103558093A (en) * 2013-09-13 2014-02-05 友达光电股份有限公司 Flexible board bending test device and test method
WO2019004728A1 (en) * 2017-06-29 2019-01-03 주식회사 엘지화학 Jig assembly comprising bend jig, bend tensile strength measuring device including same, and bend tensile strength measuring method using same
CN109923395A (en) * 2017-06-29 2019-06-21 株式会社Lg化学 Clamp assembly including bending fixture and the device and method using its measurement bending tensile strength
US10996150B2 (en) 2017-06-29 2021-05-04 Lg Chem, Ltd. Jig assembly comprising bending jig and apparatus and method for measuring bending tensile strength using the same
CN109923395B (en) * 2017-06-29 2022-02-11 株式会社Lg化学 Clamp assembly including bending clamp, and apparatus and method for measuring bending tensile strength using the same
JP7388201B2 (en) 2020-01-17 2023-11-29 株式会社オートネットワーク技術研究所 Stress evaluation method, bending workability evaluation method, and metal member manufacturing method
WO2022230895A1 (en) * 2021-04-27 2022-11-03 日東電工株式会社 Bending inspection method
CN116973242A (en) * 2023-09-22 2023-10-31 江苏华恬节能科技有限公司 Polyurethane product high-temperature illumination deformation detection equipment and detection method thereof
CN116973242B (en) * 2023-09-22 2023-11-28 江苏华恬节能科技有限公司 Polyurethane product high-temperature illumination deformation detection equipment and detection method thereof

Similar Documents

Publication Publication Date Title
KR102506476B1 (en) Adhesive layer for flexible image display devices, laminate for flexible image display devices, and flexible image display device
JP6363930B2 (en) Optical film with adhesive, method for producing the same, and method for producing an image display device
JP6122812B2 (en) Polarizing plate and image display device
TW201200917A (en) Polarizing plate and liquid crystal display comprising the same
TW200918999A (en) Method for manufacturing display device
TW200916887A (en) Method for manufacturing display device
JP2006201401A (en) Liquid crystal display device
TW201124499A (en) Optical-use pressure-sensitive adhesive sheet
KR20180092891A (en) Polarizing film, image display apparatus, and method of producing polarizing film
JP2005069696A (en) Strength evaluation method of resin sheet
TWI715683B (en) Composite polarizing plate and image display device including the same
CN114670514A (en) Display device and substrate laminate
JP6668312B2 (en) Polarizing film, image display device, and method for manufacturing polarizing film
KR20230076854A (en) Polarizer and image display device
JP2009151048A (en) Liquid crystal display device and polarizing plate
TW201739624A (en) Method for producing laminated optical film
Davis-Purcell et al. Adhesion-induced fingering instability in thin elastic films under strain
JP7005803B1 (en) Laminate
JP7089093B2 (en) Polarizing plate and image display device
TWI820331B (en) Manufacturing method of thin circular polarizing plate
CN108415115B (en) Polarizing film, image display device, and method for producing polarizing film
TW202229942A (en) Polarizing plate, cover glass-equipped polarizing plate, and image display device
TW201302960A (en) Method for manufacturing polarizing plate, polarizing plate and liquid crystal display device
TW202102908A (en) Optical laminate and display device wherein the optical laminate is capable of suppressing peeling when being bent
JP6528141B2 (en) Optical laminate manufacturing method