JP2005069665A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2005069665A
JP2005069665A JP2003411181A JP2003411181A JP2005069665A JP 2005069665 A JP2005069665 A JP 2005069665A JP 2003411181 A JP2003411181 A JP 2003411181A JP 2003411181 A JP2003411181 A JP 2003411181A JP 2005069665 A JP2005069665 A JP 2005069665A
Authority
JP
Japan
Prior art keywords
drain
heat exchanger
combustion exhaust
heat
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003411181A
Other languages
Japanese (ja)
Other versions
JP4099139B2 (en
Inventor
Toshihiro Kobayashi
敏宏 小林
Tomohiro Ichikawa
智浩 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP2003411181A priority Critical patent/JP4099139B2/en
Priority to US10/917,999 priority patent/US6971335B2/en
Priority to ES04019729T priority patent/ES2330741T3/en
Priority to EP04019729A priority patent/EP1508756B1/en
Priority to DE602004022114T priority patent/DE602004022114D1/en
Publication of JP2005069665A publication Critical patent/JP2005069665A/en
Application granted granted Critical
Publication of JP4099139B2 publication Critical patent/JP4099139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B30/102

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-efficient water heater requiring no neutralization processing of drain water. <P>SOLUTION: A passage of combustion exhaust gas passing through a main heat exchanger 18 is formed to be branched into a first exhaust gas chamber 23 provided with a sub heat exchanger 19 and a second exhaust gas chamber 24 provided with a drain evaporator. Accordingly, the sub heat exchanger 19 and a drain evaporator 100 are provided with high temperature the combustion exhaust passing only through the main heat exchanger 18. Due to this, heat collection is efficiently conducted using combustion exhaust gas having a high temperature in the sub heat exchanger 19, while drain evaporation is efficiently conducted using combustion exhaust gas having a high temperature in a drain evaporator 100. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃焼排気により通水を加熱する熱交換器を備えた給湯器に関する。   The present invention relates to a water heater provided with a heat exchanger that heats water through combustion exhaust.

従来より給湯器の分野においては、給水管、出湯管が接続される熱交換器と、この熱交換器を加熱するバーナと、バーナに燃焼用空気を供給するファンとを備えた給湯器が知られている。
このような給湯器は、バーナにおける燃焼の燃焼排気熱でもって、熱交換器において通水を加熱し、出湯管より温水を供給するように構成される。
2. Description of the Related Art Conventionally, in the field of water heaters, there are known water heaters including a heat exchanger to which a water supply pipe and a hot water discharge pipe are connected, a burner for heating the heat exchanger, and a fan for supplying combustion air to the burner. It has been.
Such a water heater is configured to heat the water in the heat exchanger with the combustion exhaust heat of combustion in the burner and supply hot water from the hot water outlet pipe.

ところで、通常こうした給湯器においては、熱交換器にドレンが発生することを防止するために、熱交換器においては十分に熱回収しないまま高温排気を排出しなくてはならず、高い熱交換率が得られていない。
ドレンは、燃焼排気が露点(およそ50〜60℃)以下になると発生するものであるから、原理的には熱交換器で露点まで熱交換して、ドレンを発生させずに燃焼排気中の顕熱を回収することが可能である。しかしながら、熱交換器には通水部である伝熱管のような局所的な低温部が存在するため、実際には低温部での部分的なドレン発生を防ぐために、燃焼排気をかなりの高温で排出しなければならず、十分な顕熱を回収できていない。
By the way, in such a water heater, in order to prevent drain from being generated in the heat exchanger, high-temperature exhaust gas must be discharged without sufficient heat recovery in the heat exchanger, and a high heat exchange rate Is not obtained.
Since the drain is generated when the combustion exhaust becomes a dew point (approximately 50 to 60 ° C.) or lower, in principle, heat is exchanged to the dew point with a heat exchanger, and the sensible gas in the combustion exhaust is not generated without generating a drain. It is possible to recover heat. However, since the heat exchanger has a local low temperature part such as a heat transfer tube that is a water flow part, the exhaust gas is actually heated at a considerably high temperature in order to prevent partial drain generation in the low temperature part. It must be discharged, and sufficient sensible heat cannot be recovered.

燃焼排気熱の回収効率(以下、熱効率という)を向上させるために、燃焼排気熱の顕熱のみならず、燃焼排気中の水蒸気を凝縮させることにより潜熱をも回収する潜熱回収型給湯器がある。
潜熱回収型給湯器は、燃焼排気流路の上流側に主に顕熱の回収を目的とする主熱交換器と、下流側に主に潜熱の回収を目的とした副熱交換器とを設ける。
このような潜熱回収型給湯器は、主熱交換器で回収できなかった燃焼排気中の潜熱についても副熱交換器で回収するため、燃焼排気中のほとんどの熱エネルギーが回収できる。
しかしながら、上記の潜熱回収型給湯器において、潜熱回収の過程で凝縮した水蒸気(以下、ドレンという)は、燃焼排気中の硫黄酸化物(SOx)や、窒素酸化物(NOx)と反応して酸性(pH3程度)になるため、下水等の一般排水通路に排出する前に、中和処理をしなければならない。
そのため、従来の潜熱回収型給湯器においては、特許文献1に示すようにドレン中和用の中和装置を設けなければならず、著しくコスト高となっていた。また、中和装置において用いられる中和剤は、一定期間ごとに交換する必要があり、使用者の負担となっていた。
In order to improve the recovery efficiency of combustion exhaust heat (hereinafter referred to as thermal efficiency), there is a latent heat recovery type water heater that recovers not only sensible heat of combustion exhaust heat but also latent heat by condensing water vapor in the combustion exhaust. .
The latent heat recovery type water heater is provided with a main heat exchanger mainly for the purpose of recovering sensible heat on the upstream side of the combustion exhaust passage and a sub heat exchanger mainly for the purpose of recovering latent heat on the downstream side. .
Such a latent heat recovery type water heater recovers most of the heat energy in the combustion exhaust because the sub heat exchanger recovers the latent heat in the combustion exhaust that could not be recovered by the main heat exchanger.
However, in the above-described latent heat recovery type water heater, water vapor (hereinafter referred to as drain) condensed in the process of latent heat recovery reacts with sulfur oxides (SOx) and nitrogen oxides (NOx) in the combustion exhaust gas and becomes acidic. Since it becomes (about pH 3), it must be neutralized before it is discharged into a general drainage passage such as sewage.
Therefore, in the conventional latent heat recovery type water heater, as shown in Patent Document 1, it is necessary to provide a neutralizing device for drain neutralization, which is extremely expensive. In addition, the neutralizing agent used in the neutralizing apparatus needs to be replaced at regular intervals, which is a burden on the user.

そこで、最近では特許文献2に示すように、副熱交換器で発生したドレンを燃焼排気と接触させることにより蒸発させる給湯器の提案がされている。
この給湯器は、同一燃焼排気流路に、主熱交換器と副熱交換器とドレン蒸発器とを備え、主熱交換器において燃焼排気熱中の顕熱を回収し、副熱交換器においてドレンを発生させ、潜熱および副熱交換器で回収しきれなかった顕熱を回収し、ドレン蒸発器において、副熱交換器で発生したドレンを燃焼排気熱を利用して蒸発させる。このような給湯器は、顕熱を回収する主熱交換器においては、燃焼排気流路の最も上流である必要があるが、副熱交換器とドレン蒸発器においては、どちらが上流に備えられてもよい。
この給湯器によれば、副熱交換器で回収された潜熱と同量の熱量がドレンの蒸発に使用されるため、結果的には潜熱の回収は行われないものの、副熱交換器においては露点温度以下まで燃焼排気の温度を下げて燃焼排気熱を回収できる。つまり、副熱交換器においてはドレン発生防止のために不必要に燃焼排気熱を高く保つ必要がなく、通常の給湯器と比較し顕熱について高い回収率を得ることができるのである。
しかも、この場合にはドレンの中和装置を設ける必要がなく安価である。
特開2002−195645 特開2002−98413
Therefore, recently, as shown in Patent Document 2, there has been proposed a water heater that evaporates the drain generated in the auxiliary heat exchanger by bringing it into contact with the combustion exhaust gas.
This water heater includes a main heat exchanger, a sub heat exchanger, and a drain evaporator in the same combustion exhaust flow path, collects sensible heat in the combustion exhaust heat in the main heat exchanger, and drains in the sub heat exchanger. The latent heat and the sensible heat that could not be recovered by the auxiliary heat exchanger are recovered, and in the drain evaporator, the drain generated by the auxiliary heat exchanger is evaporated using the combustion exhaust heat. Such a water heater needs to be the most upstream of the combustion exhaust flow path in the main heat exchanger that recovers sensible heat, but either the auxiliary heat exchanger or the drain evaporator is provided upstream. Also good.
According to this water heater, since the same amount of heat as the latent heat recovered in the auxiliary heat exchanger is used for drain evaporation, the latent heat is not recovered as a result, but in the auxiliary heat exchanger, Combustion exhaust heat can be recovered by lowering the temperature of the combustion exhaust to the dew point temperature or lower. In other words, in the auxiliary heat exchanger, it is not necessary to keep the combustion exhaust heat unnecessarily high in order to prevent the generation of drainage, and it is possible to obtain a higher recovery rate for sensible heat than in a normal water heater.
In addition, in this case, it is not necessary to provide a drain neutralizer and the cost is low.
JP 2002-195645 A JP2002-98413

しかしながら上記従来技術においては、副熱交換器とドレン蒸発器とを同一排気流路に設けていたことから以下の問題点があった。   However, in the above prior art, since the auxiliary heat exchanger and the drain evaporator are provided in the same exhaust flow path, there are the following problems.

まず、ドレン蒸発器を副熱交換器よりも排気流路の下流に設けた場合には、燃焼排気熱はドレン蒸発器に達するまでに、その大部分を主熱交換器および副熱交換器により回収されてしまう。燃焼排気の温度が下がるのにともない、燃焼排気の飽和湿度は低下してしまい、実際の湿度に近くなってしまうが、一般に、通常状態における水分の空気中への蒸発速度R[kg/hr・m3]は、次式のように空気の飽和湿度Hw[kg/kg]と実際の湿度H[kg/kg]との差に比例することが知られており、飽和湿度に近い湿度を持つ燃焼排気とドレンとを接触させても、ドレンはなかなか蒸発しない。
(蒸発速度R)=(定数k)×((飽和湿度Hw)−(実際の湿度H))
そのため、上記の場合には、回収したドレンを完全に蒸発させるため熱交換器における燃焼排気熱の回収率をわざわざ制限する必要がある。
First, when the drain evaporator is provided downstream of the auxiliary heat exchanger, the most of the combustion exhaust heat reaches the drain evaporator by the main heat exchanger and the auxiliary heat exchanger. It will be collected. As the temperature of the combustion exhaust gas decreases, the saturation humidity of the combustion exhaust gas decreases and becomes close to the actual humidity. In general, however, the evaporation rate R [kg / hr · m3] is known to be proportional to the difference between the saturation humidity Hw [kg / kg] of air and the actual humidity H [kg / kg], as shown by the following equation, and combustion having a humidity close to saturation humidity Even if exhaust and drain are brought into contact with each other, the drain does not readily evaporate.
(Evaporation rate R) = (constant k) × ((saturated humidity Hw) − (actual humidity H))
Therefore, in the above case, in order to completely evaporate the collected drain, it is necessary to bother limiting the recovery rate of the combustion exhaust heat in the heat exchanger.

また、ドレン蒸発器を副熱交換器よりも燃焼排気流路の上流に設けた場合には、燃焼排気の熱エネルギーは、副熱交換器に達するまでに、ドレン蒸発器においてドレンを液体から気体に変換する際に利用されてしまう。つまり、燃焼排気の熱エネルギーは気体の潜熱に変換されてしまうことから、副熱交換器に達する燃焼排気の温度は低くなってしまうが、一般に、状態変化をしない(顕熱回収)場合の熱交換速度は、燃焼排気熱と伝熱管の温度との差に比例する。
従って、副熱交換器における燃焼排気の温度が低くなることにより顕熱回収率は低下してしまう。
Further, when the drain evaporator is provided upstream of the combustion exhaust passage from the auxiliary heat exchanger, the heat energy of the combustion exhaust is changed from a liquid to a gas in the drain evaporator before reaching the auxiliary heat exchanger. It will be used when converting to. In other words, since the heat energy of the combustion exhaust gas is converted into the latent heat of the gas, the temperature of the combustion exhaust gas reaching the sub heat exchanger is lowered, but in general, the heat in the case of no state change (sensible heat recovery) The exchange rate is proportional to the difference between the combustion exhaust heat and the heat transfer tube temperature.
Therefore, the sensible heat recovery rate decreases as the temperature of the combustion exhaust gas in the auxiliary heat exchanger decreases.

上記課題を解決する本発明請求項1記載の給湯器は、
燃焼室内で燃料を燃焼するバーナと、
上記バーナの燃焼排気から顕熱を回収して伝熱管内の通水を加熱する主熱交換器と、
上記主熱交換器を通過した燃焼排気から、該主熱交換器で回収しきれなかった顕熱に加えて潜熱を回収して伝熱管内の通水を加熱する副熱交換器と
上記副熱交換器での潜熱回収によって発生したドレンを加熱して蒸発させるドレン蒸発器と、
を備えた給湯器において、
上記主熱交換器を通過した燃焼排気の排気通路に、上記副熱交換器と上記ドレン蒸発器とを互いに排気通路における上流・下流の関係にならないように並列に配置したことを要旨とする。
The water heater according to claim 1 of the present invention for solving the above-mentioned problems is
A burner that burns fuel in the combustion chamber;
A main heat exchanger that recovers sensible heat from the combustion exhaust of the burner to heat the water flow in the heat transfer tube;
A sub heat exchanger that recovers latent heat in addition to sensible heat that could not be recovered by the main heat exchanger from the combustion exhaust that has passed through the main heat exchanger, and heats the water in the heat transfer tubes, and the sub heat A drain evaporator that heats and evaporates the drain generated by the recovery of latent heat in the exchanger;
In the water heater with
The gist is that the auxiliary heat exchanger and the drain evaporator are arranged in parallel in the exhaust passage of the combustion exhaust that has passed through the main heat exchanger so as not to be in an upstream / downstream relationship in the exhaust passage.

上記構成を有する本発明の請求項1記載の給湯器は、主熱交換器を通過した燃焼排気の通路に副熱交換器とドレン蒸発器を互いに排気通路における上流・下流の関係にならないように並列に配置したため、副熱交換器とドレン蒸発器とにはそれぞれ主熱交換器のみを通過した高温の燃焼排気が供給される。
そのため、副熱交換器においては高い温度の燃焼排気を用いて熱回収が効率よく行われるとともに、ドレン蒸発器においては高い温度の燃焼排気を用いてドレンの蒸発が効率よく行われる。
つまり、燃焼排気と副伝熱管との間で熱交換を行う副熱交換器においては、熱移動速度の観点から高温の燃焼排気を供給するのが望ましいとともに、ドレンを燃焼排気の熱を利用し蒸発させるドレン蒸発器においても、蒸発能力の高い高温の燃焼排気を供給するのが望ましいが、本発明においては副熱交換器、およびドレン蒸発器の両方に高温の燃焼排気を供給することができる。
従って、ドレン蒸発器においては、高温の燃焼排気を用いてドレンを効率よく蒸発させることができるとともに、副熱交換器においては高温の燃焼排気より効率よく燃焼排気熱の回収を行うことができる。
In the hot water heater according to claim 1 of the present invention having the above-described configuration, the auxiliary heat exchanger and the drain evaporator are not connected to each other upstream and downstream in the exhaust passage in the passage of the combustion exhaust that has passed through the main heat exchanger. Since they are arranged in parallel, high-temperature combustion exhaust gas that has passed through only the main heat exchanger is supplied to the auxiliary heat exchanger and the drain evaporator.
For this reason, in the auxiliary heat exchanger, heat recovery is efficiently performed using high-temperature combustion exhaust gas, and in the drain evaporator, drain evaporation is efficiently performed using high-temperature combustion exhaust gas.
In other words, in the secondary heat exchanger that performs heat exchange between the combustion exhaust and the secondary heat transfer tube, it is desirable to supply high-temperature combustion exhaust from the viewpoint of heat transfer speed, and drain is used to utilize the heat of the combustion exhaust. Also in the drain evaporator to be evaporated, it is desirable to supply high-temperature combustion exhaust gas having a high evaporation capability. However, in the present invention, high-temperature combustion exhaust gas can be supplied to both the auxiliary heat exchanger and the drain evaporator. .
Accordingly, the drain evaporator can efficiently evaporate the drain using the high-temperature combustion exhaust gas, and the auxiliary heat exchanger can recover the combustion exhaust heat more efficiently than the high-temperature combustion exhaust gas.

以上説明した本発明の構成、作用を一層明らかにするために、以下、本発明の給湯器における好的な実施形態について説明する。   In order to further clarify the configuration and operation of the present invention described above, a preferred embodiment of the water heater of the present invention will be described below.

本実施形態の給湯器は、図1に示すように、器具ケーシング12内に燃焼室20が設けられ、その下方にDCモータ48と連結した給気ファン36が取り付けられる。尚、器具ケーシング12には、外気を燃焼用空気として取り込むための給気口30が形成される。   As shown in FIG. 1, the water heater of this embodiment is provided with a combustion chamber 20 in the appliance casing 12, and an air supply fan 36 connected to a DC motor 48 is attached below the combustion chamber 20. The appliance casing 12 has an air supply port 30 for taking outside air as combustion air.

燃焼室20内には、下から順に、燃料ガスと給気ファン36からの一次空気との混合ガスを燃焼するバーナ22と、バーナ22からの燃焼排気の殆どの顕熱を回収する主熱交換器18とが設けられる。主熱交換器18の上方には、主熱交換器18を通過したまだ高温の排気が流れる高温排気室21が形成され、この高温排気室21の側方に第1排気室23、第2排気室24が上下に分岐して設けられる。この第1排気室23、第2排気室24は、高温排気室の中段側方に設けられた排気分岐部200により、それぞれ独立した排気通路を形成し、しかも、互いに排気通路における上流・下流の関係にならないように並列に配置される。
第1排気室23には、主熱交換器18で回収しきれなかった顕熱と潜熱とを回収する副熱交換器19が設けられる。
第2排気室24には、副熱交換器19において発生したドレンを加熱して蒸発させるドレン蒸発器100が備えられる。
このように、主熱交換器18を通過した排気の排気通路には、副熱交換器19とドレン蒸発器100とが、互いに上流・下流関係にならないように並列に配置される。
また、排気分岐部200は、副熱交換器19で発生したドレンをドレン蒸発器100に案内するための複数のバーリング孔202aを備えるが、排気分岐部200についての詳細は後述する。
In the combustion chamber 20, in order from the bottom, a burner 22 that combusts a mixed gas of fuel gas and primary air from the air supply fan 36, and main heat exchange that recovers most of the sensible heat of the combustion exhaust from the burner 22. A vessel 18 is provided. Above the main heat exchanger 18 is formed a high temperature exhaust chamber 21 through which still high-temperature exhaust gas that has passed through the main heat exchanger 18 flows. A first exhaust chamber 23 and a second exhaust gas are disposed on the side of the high temperature exhaust chamber 21. A chamber 24 is provided to branch up and down. The first exhaust chamber 23 and the second exhaust chamber 24 form independent exhaust passages by an exhaust branching portion 200 provided on the middle side of the high-temperature exhaust chamber, and further, upstream and downstream of each other in the exhaust passage. Arranged in parallel so as not to be related.
The first exhaust chamber 23 is provided with a sub heat exchanger 19 that recovers sensible heat and latent heat that could not be recovered by the main heat exchanger 18.
The second exhaust chamber 24 is provided with a drain evaporator 100 that heats and evaporates the drain generated in the auxiliary heat exchanger 19.
In this way, in the exhaust passage of the exhaust gas that has passed through the main heat exchanger 18, the sub heat exchanger 19 and the drain evaporator 100 are arranged in parallel so as not to have an upstream / downstream relationship with each other.
Further, the exhaust branching unit 200 includes a plurality of burring holes 202a for guiding the drain generated in the auxiliary heat exchanger 19 to the drain evaporator 100. Details of the exhaust branching unit 200 will be described later.

第1排気室23、第2排気室24の側方には、それぞれ熱交換後の燃焼排気を燃焼室20外へ排出する排気口44a、44bが形成される。
これらの排気口44a、44bはそれぞれ器具ケーシング12に開口した器具排気口に臨んでいる。
Exhaust ports 44 a and 44 b are formed on the sides of the first exhaust chamber 23 and the second exhaust chamber 24 to discharge the combustion exhaust after heat exchange to the outside of the combustion chamber 20, respectively.
These exhaust ports 44a and 44b respectively face the device exhaust ports opened in the device casing 12.

器具ケーシング12内に設けられる通水管は、上流から順に、燃焼室20を外側で巻回する給水管14、副熱交換器19に設けられる副伝熱管19a、主熱交換器18に設けられる主伝熱管18a、および出湯管16である。   The water pipes provided in the appliance casing 12 are, in order from the upstream, the water supply pipe 14 wound around the combustion chamber 20 on the outside, the auxiliary heat transfer pipe 19a provided in the auxiliary heat exchanger 19, and the main heat exchanger 18 provided. These are the heat transfer pipe 18 a and the hot water discharge pipe 16.

給水管14には水流センサや水ガバナを備える水側制御ユニット50が設けられる。
副伝熱管19aは、ステンレスで形成され、主熱交換器18を通過した燃焼排気の排気熱を回収するとともに発生したドレンを後述する排気分岐部200へと案内する多数のフィン19bを奥方向に備える。
主伝熱管18aは、燃焼熱を吸収をする多数の熱回収フィン18bを奥行方向に備える。
The water supply pipe 14 is provided with a water side control unit 50 including a water flow sensor and a water governor.
The auxiliary heat transfer pipe 19a is made of stainless steel and collects the exhaust heat of the combustion exhaust gas that has passed through the main heat exchanger 18 and has a number of fins 19b that guide the generated drain to the exhaust branching section 200 to be described later. Prepare.
The main heat transfer tube 18a includes a number of heat recovery fins 18b that absorb combustion heat in the depth direction.

次に、排気分岐部200、ドレン蒸発器100について説明する。
排気分岐部200は副熱交換器19の真下に備えられ、主熱交換器18を通過した燃焼排気を分岐して副熱交換器19とドレン蒸発器100とに案内するとともに、副熱交換器19で発生したドレンを回収する。
排気分岐部200は図3に示すように1枚のステンレス板を折り曲げることにより形成され、器具ケーシング12に固定されるケーシング固定部201と、副熱交換器19で発生したドレンを回収するドレン回収部202とを備える。
ケーシング固定部201にはネジ孔201aが形成され、ステンレス製のネジにより器具ケーシング12に固定される。
ドレン回収部202には、複数のバーリング孔202aが備えられる。
そしてドレン回収部202の両端には、図3に示すようにドレンの落下を防止する落下防止部204が形成される。
Next, the exhaust branch part 200 and the drain evaporator 100 will be described.
The exhaust branching unit 200 is provided directly below the auxiliary heat exchanger 19, branches the combustion exhaust gas that has passed through the main heat exchanger 18, guides it to the auxiliary heat exchanger 19 and the drain evaporator 100, and also uses the auxiliary heat exchanger. The drain generated at 19 is recovered.
As shown in FIG. 3, the exhaust branching unit 200 is formed by bending a single stainless steel plate, and a drainage recovery unit that recovers the drain generated in the casing fixing unit 201 fixed to the instrument casing 12 and the auxiliary heat exchanger 19. Unit 202.
A screw hole 201a is formed in the casing fixing portion 201 and is fixed to the instrument casing 12 with a stainless steel screw.
The drain collecting unit 202 is provided with a plurality of burring holes 202a.
At both ends of the drain collecting unit 202, as shown in FIG. 3, a drop preventing unit 204 for preventing the drain from falling is formed.

ドレン蒸発器100は、回収したドレンを蒸発させるドレン蒸発部101と燃焼室20に固定されるドレン蒸発器固定部110とから構成される。
ドレン蒸発部101は、耐ドレン性、耐熱性、親水性をもつセラミック板より構成される。
ドレン蒸発器固定部110は、図2に示すように1枚のステンレス板から構成され、燃焼室に固定される燃焼室固定部111と、ドレン蒸発部101を挟み込み固定する固定部112と、ドレン蒸発部101を載置して支える支え部113と、ドレンの落下を防止するドレン落下防止部114からなる。
燃焼室固定部111にはネジ孔111aが形成され、ステンレス製のネジにより燃焼室20に固定される。
固定部112は、支え部113の両端にコの字型に形成される。
支え部113は、図1に示すように燃焼室20に対し約10°の傾斜を形成するように備えられる。
ドレン落下防止部114は、ドレンの器具外への落下を防止するため、図1に示すように排気口44bに向かって高くなるように10°程の傾斜が形成される。
The drain evaporator 100 includes a drain evaporator 101 that evaporates the collected drain and a drain evaporator fixing unit 110 that is fixed to the combustion chamber 20.
The drain evaporation part 101 is comprised from the ceramic board which has drain resistance, heat resistance, and hydrophilicity.
As shown in FIG. 2, the drain evaporator fixing part 110 is made of a single stainless steel plate, and includes a combustion chamber fixing part 111 that is fixed to the combustion chamber, a fixing part 112 that sandwiches and fixes the drain evaporation part 101, and a drain It comprises a support portion 113 on which the evaporation portion 101 is placed and supported, and a drain fall prevention portion 114 that prevents the drain from falling.
A screw hole 111a is formed in the combustion chamber fixing portion 111 and is fixed to the combustion chamber 20 with a stainless steel screw.
The fixing portion 112 is formed in a U shape at both ends of the support portion 113.
As shown in FIG. 1, the support portion 113 is provided so as to form an inclination of about 10 ° with respect to the combustion chamber 20.
As shown in FIG. 1, the drain fall prevention unit 114 is formed with an inclination of about 10 ° so as to become higher toward the exhaust port 44b in order to prevent the drain from dropping out of the appliance.

副熱交換器19において発生したドレンはフィン19bを伝わってドレン回収部202に落下すると、バーリング孔202aを伝わってドレン蒸発部101に落下する。
ドレン蒸発部101は親水性の多孔質セラミックであるから、落下したドレンはドレン蒸発部101全体に拡散する。
When the drain generated in the auxiliary heat exchanger 19 is transferred to the drain recovery unit 202 through the fins 19b, the drain is transferred to the drain evaporation unit 101 through the burring hole 202a.
Since the drain evaporation part 101 is a hydrophilic porous ceramic, the dropped drain diffuses throughout the drain evaporation part 101.

次に、このように構成された給湯器10の作動について簡単に説明する。
図示しない給湯栓を開くと、給水管14に水(図中破線矢印)が流れ、水側制御ユニット50内の水流センサからの検知信号によりバーナコントローラ58が、給気ファン36を駆動した後、主電磁弁54及びガス比例弁56が開いてバーナ22に点火する。
点火動作が終了すると、出湯温度と設定温度との差に応じてガス比例弁56を制御して熱交換器18の出口温度を一定に保つとともに、ガス量に応じて給気ファン36の風量を調整する。
Next, the operation of the water heater 10 configured as described above will be briefly described.
When a hot water tap (not shown) is opened, water (broken arrow in the figure) flows through the water supply pipe 14, and the burner controller 58 drives the air supply fan 36 by a detection signal from the water flow sensor in the water side control unit 50. The main solenoid valve 54 and the gas proportional valve 56 are opened to ignite the burner 22.
When the ignition operation is completed, the gas proportional valve 56 is controlled according to the difference between the tapping temperature and the set temperature to keep the outlet temperature of the heat exchanger 18 constant, and the air volume of the air supply fan 36 is adjusted according to the gas amount. adjust.

バーナ22からの高温の燃焼排気は、給気ファン36により、燃焼排気流路の上流に設けた主熱交換器18の各フィン18b間を貫流し熱交換を行う。
この主熱交換器18においては、ドレンを発生させないように燃焼排気に含まれた顕熱だけを回収する。
そして主熱交換器18を通過した燃焼排気は、図2に示すように排気分岐部200によって、副熱交換器19に向けて案内されるものとドレン蒸発器100に向けて案内されるものとに分岐される。
副熱交換器19に案内された燃焼排気は、副熱交換器19において再度の熱交換を行った後、排気口44aから器具の外部に排出される。
一方、ドレン蒸発器100に案内された燃焼排気は、ドレン蒸発器100において、回収されたドレンの蒸発を行った後、排気口44bから器具の外部に排出される。
The high-temperature combustion exhaust from the burner 22 flows through the fins 18b of the main heat exchanger 18 provided upstream of the combustion exhaust passage by the air supply fan 36 to exchange heat.
In the main heat exchanger 18, only the sensible heat contained in the combustion exhaust is recovered so as not to generate drainage.
The combustion exhaust gas that has passed through the main heat exchanger 18 is guided toward the sub heat exchanger 19 and guided toward the drain evaporator 100 by the exhaust branching section 200 as shown in FIG. Fork.
The combustion exhaust gas guided to the auxiliary heat exchanger 19 is subjected to heat exchange again in the auxiliary heat exchanger 19 and then discharged from the exhaust port 44a to the outside of the appliance.
On the other hand, the combustion exhaust gas guided to the drain evaporator 100 is exhausted from the exhaust port 44b to the outside of the instrument after the collected drain is evaporated in the drain evaporator 100.

副熱交換器19においては、主熱交換器18を通過した燃焼排気をさらに冷却しドレンを発生させて潜熱を回収するとともに、主熱交換器で回収しきれなかった燃焼排気中の顕熱の回収を行う。
ここで、主熱交換器18では、ドレンを発生させないように、燃焼排気に含まれた顕熱だけを回収するが、主熱交換器18内に存在する局所的な低温部においてもドレンの発生を抑制するために、燃焼排気の温度はある程度高温に保たなくてはならず十分な顕熱の回収が行われない。
一方、副熱交換器19においては、ドレンの発生を防止する必要がないため、ドレンを発生させて潜熱を回収するとともに、主熱交換器18で回収しきれなかった燃焼排気中の顕熱を完全に回収することが可能である。
このとき、副熱交換器19を通過する燃焼排気はドレン蒸発器100を通過しておらず温度が高いことから、副伝熱管19aと燃焼排気との温度差が大きく、燃焼排気から副伝熱管19aへの熱移動速度は早くなり、顕熱の回収を効率よく行うことができる。
In the auxiliary heat exchanger 19, the combustion exhaust gas that has passed through the main heat exchanger 18 is further cooled to generate drainage to recover latent heat, and the sensible heat in the combustion exhaust gas that could not be recovered by the main heat exchanger. Collect.
Here, in the main heat exchanger 18, only sensible heat contained in the combustion exhaust is recovered so as not to generate drain, but drain is also generated in a local low-temperature portion existing in the main heat exchanger 18. In order to suppress this, the temperature of the combustion exhaust must be kept high to some extent, and sufficient sensible heat cannot be recovered.
On the other hand, in the auxiliary heat exchanger 19, it is not necessary to prevent the generation of drain, so that drain is generated and latent heat is recovered, and sensible heat in the combustion exhaust that cannot be recovered by the main heat exchanger 18 is recovered. Full recovery is possible.
At this time, the combustion exhaust gas that passes through the auxiliary heat exchanger 19 does not pass through the drain evaporator 100 and has a high temperature. Therefore, the temperature difference between the auxiliary heat transfer tube 19a and the combustion exhaust gas is large, and the combustion exhaust to the auxiliary heat transfer tube. The heat transfer speed to 19a becomes faster, and sensible heat can be efficiently recovered.

また、副熱交換器19において発生したドレンはフィン19bを伝わってドレン回収部202に落下すると、バーリング孔202aを伝わってドレン蒸発部101に落下する。
ドレン蒸発部101は親水性の多孔質セラミックであるから、落下したドレンはドレン蒸発部101全体に拡散する。
In addition, when the drain generated in the auxiliary heat exchanger 19 is transferred to the drain recovery unit 202 through the fins 19b, the drain is transferred to the drain evaporation unit 101 through the burring hole 202a.
Since the drain evaporation part 101 is a hydrophilic porous ceramic, the dropped drain diffuses throughout the drain evaporation part 101.

ドレン蒸発部101においてドレンは、主熱交換器18を通過した後の燃焼排気と接触し、加熱され蒸発する。
この際、ドレンはセラミック性のドレン蒸発部101全体に拡散しているため、ドレンと燃焼排気との接触面積は大きいことに加え、ドレンと接触する燃焼排気は副熱交換器19を通過しておらず温度が高い。そのため、ドレンは効率良く蒸発する。
また、ドレン蒸発器100を通過する燃焼排気は副熱交換器19を通過していないため、従来の副熱交換器19通過後の燃焼排気をドレン蒸発器100に案内する場合とは異なり、ドレンの蒸発のために副熱交換器19での燃焼排気熱の回収率をわざわざ制限しなくてもよい。
In the drain evaporation unit 101, the drain comes into contact with the combustion exhaust after passing through the main heat exchanger 18, and is heated and evaporated.
At this time, since the drain is diffused throughout the ceramic drain evaporation portion 101, the contact area between the drain and the combustion exhaust gas is large, and the combustion exhaust gas that is in contact with the drain passes through the auxiliary heat exchanger 19. The temperature is high. Therefore, the drain evaporates efficiently.
Further, since the combustion exhaust gas passing through the drain evaporator 100 does not pass through the auxiliary heat exchanger 19, unlike the conventional case where the combustion exhaust gas after passing through the auxiliary heat exchanger 19 is guided to the drain evaporator 100. Therefore, the recovery rate of the combustion exhaust heat in the auxiliary heat exchanger 19 need not be restricted.

なお、ドレンの蒸発はドレン蒸発部101上においてのみ行われるのではなく、ドレン回収部202からドレン蒸発部101にドレンが落下する間にも蒸発は行われる。つまり、ドレン回収部202とドレン蒸発部101の間隔を広げ、ドレンの落下時間を増加させることにより、ドレンはより短時間で蒸発する。   It should be noted that the evaporation of the drain is not performed only on the drain evaporation unit 101, but is also performed while the drain falls from the drain recovery unit 202 to the drain evaporation unit 101. That is, by increasing the interval between the drain collecting unit 202 and the drain evaporating unit 101 and increasing the drain dropping time, the drain evaporates in a shorter time.

以上、本発明の実施例について説明したが、本発明は、こうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施しうることはもちろんである。
例えば、ドレン受けの設置位置は、実施例に限定しないし、バーナ、主熱交換器、副熱交換器の位置関係も実施例に限定しない。例えば、燃焼室内に、炎口を下方に向けたバーナ、主熱交換器、副熱交換器、ドレン蒸発器を上から順に設けて、ドレン蒸発器に主熱交換器を通過した燃焼排気の一部を整流板を用いて案内する構成とすれば、ドレンが主熱交換器に落下することが決してなく、ドレンによる主熱交換器の目詰まりは起こさない。
さらに、主熱交換器、副熱交換器は、気−液熱交換を行うものであれば、フィンチューブ式のものに限定しないし、副伝熱管は耐食性を持てばステンレス性のものに限定しない。
また、ドレン蒸発器は、ステンレス板とセラミック板を積層する構成に限定せず、ステンレス板の表面に耐食性のセラミックコーティングやチタンコーティングを行ってもよい。また、ドレン蒸発器は、排気分岐部の下に複数のステンレス性のフィルターを積層して、フィルターの間を燃焼排気熱が通過するように構成してもよい。この場合にはドレンはステンレスフィルターの層を一層ずつ順に落下するが、ステンレスの熱伝導度が高いことに加えてドレンの燃焼排気との接触面積が増加することから、より短時間でドレンは蒸発する。
As mentioned above, although the Example of this invention was described, this invention is not limited to such embodiment at all, Of course, it can implement with a various form in the range which does not deviate from the summary of this invention.
For example, the installation position of the drain receiver is not limited to the embodiment, and the positional relationship of the burner, the main heat exchanger, and the auxiliary heat exchanger is not limited to the embodiment. For example, a burner with a flame port facing downward, a main heat exchanger, a sub heat exchanger, and a drain evaporator are provided in this order from the top, and one of the combustion exhaust gas that has passed through the main heat exchanger to the drain evaporator. If the portion is configured to be guided using a current plate, the drain never falls into the main heat exchanger, and the main heat exchanger is not clogged by the drain.
Furthermore, the main heat exchanger and the sub heat exchanger are not limited to fin tube types as long as they perform gas-liquid heat exchange, and the sub heat transfer tubes are not limited to stainless steel as long as they have corrosion resistance. .
Further, the drain evaporator is not limited to a structure in which a stainless plate and a ceramic plate are laminated, and a corrosion-resistant ceramic coating or titanium coating may be applied to the surface of the stainless plate. In addition, the drain evaporator may be configured such that a plurality of stainless steel filters are stacked under the exhaust branch portion so that the combustion exhaust heat passes between the filters. In this case, the drain falls one by one on the stainless steel filter layer one by one, but in addition to the high thermal conductivity of stainless steel, the area of contact with the combustion exhaust of the drain increases, so the drain evaporates in a shorter time. To do.

本発明は、ファンを備えた強制給排気式の給湯器への適用のみならず、自然燃焼式の給湯器に適用してもよい。また、給湯単機能の機器に限定せず、風呂追焚機能付給湯器や、暖房機能付給湯器に適用してもよい。   The present invention may be applied not only to a forced air supply / exhaust water heater provided with a fan, but also to a natural combustion type water heater. Further, the present invention is not limited to a single hot water supply device, and may be applied to a hot water heater with a bath chasing function or a hot water heater with a heating function.

本発明実施例の給湯器を示した説明図である。It is explanatory drawing which showed the water heater of this invention Example. 本発明実施例の給湯器におけるドレン蒸発器を示した説明図である。It is explanatory drawing which showed the drain evaporator in the water heater of this invention Example. 本発明実施例の給湯器におけるドレン回収器を示した説明図である。It is explanatory drawing which showed the drain collection device in the water heater of this invention Example.

符号の説明Explanation of symbols

12 器具ケーシング
18 主熱交換器
19 副熱交換器
20 燃焼室
21 高温排気室
22 バーナ
23 第1排気室
24 第2排気室
36 給気ファン
18a 主伝熱管
18b フィン
19a 副伝熱管
44a 排気口
44b 排気口
100 ドレン蒸発器
101 ドレン蒸発部
202 ドレン回収部
200 排気分岐部
DESCRIPTION OF SYMBOLS 12 Instrument casing 18 Main heat exchanger 19 Sub heat exchanger 20 Combustion chamber 21 High temperature exhaust chamber 22 Burner 23 1st exhaust chamber 24 2nd exhaust chamber 36 Supply fan 18a Main heat exchanger tube 18b Fin 19a Sub heat exchanger tube 44a Exhaust port 44b Exhaust port 100 Drain evaporator 101 Drain evaporation part 202 Drain recovery part 200 Exhaust branch part

Claims (1)

燃焼室内で燃料を燃焼するバーナと、
上記バーナの燃焼排気から顕熱を回収して伝熱管内の通水を加熱する主熱交換器と、
上記主熱交換器を通過した燃焼排気から、該主熱交換器で回収しきれなかった顕熱に加えて潜熱を回収して伝熱管内の通水を加熱する副熱交換器と
上記副熱交換器での潜熱回収によって発生したドレンを加熱して蒸発させるドレン蒸発器と、
を備えた給湯器において、
上記主熱交換器を通過した燃焼排気の排気通路に、上記副熱交換器と上記ドレン蒸発器とを互いに排気通路における上流・下流の関係にならないように並列に配置したことを特徴とする給湯器。
A burner that burns fuel in the combustion chamber;
A main heat exchanger that recovers sensible heat from the combustion exhaust of the burner to heat the water flow in the heat transfer tube;
A sub heat exchanger that recovers latent heat in addition to sensible heat that could not be recovered by the main heat exchanger from the combustion exhaust that has passed through the main heat exchanger, and heats the water in the heat transfer tubes, and the sub heat A drain evaporator that heats and evaporates the drain generated by the recovery of latent heat in the exchanger;
In the water heater with
The hot water supply, wherein the auxiliary heat exchanger and the drain evaporator are arranged in parallel in the exhaust passage of the combustion exhaust that has passed through the main heat exchanger so as not to have an upstream / downstream relationship in the exhaust passage. vessel.
JP2003411181A 2003-08-20 2003-12-10 Water heater Expired - Fee Related JP4099139B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003411181A JP4099139B2 (en) 2003-12-10 2003-12-10 Water heater
US10/917,999 US6971335B2 (en) 2003-08-20 2004-08-13 Water heater
ES04019729T ES2330741T3 (en) 2003-08-20 2004-08-19 WATER HEATER.
EP04019729A EP1508756B1 (en) 2003-08-20 2004-08-19 Water heater
DE602004022114T DE602004022114D1 (en) 2003-08-20 2004-08-19 water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411181A JP4099139B2 (en) 2003-12-10 2003-12-10 Water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003296107A Division JP3991016B2 (en) 2003-08-20 2003-08-20 Water heater

Publications (2)

Publication Number Publication Date
JP2005069665A true JP2005069665A (en) 2005-03-17
JP4099139B2 JP4099139B2 (en) 2008-06-11

Family

ID=34420263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411181A Expired - Fee Related JP4099139B2 (en) 2003-08-20 2003-12-10 Water heater

Country Status (1)

Country Link
JP (1) JP4099139B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017112A (en) * 2005-07-08 2007-01-25 Noritz Corp Heat source device and heat exchanger
JP2015010753A (en) * 2013-06-28 2015-01-19 株式会社アタゴ製作所 Water heater
JP2016044956A (en) * 2014-08-26 2016-04-04 大阪瓦斯株式会社 Hot water supply device
KR101647590B1 (en) * 2015-03-19 2016-08-10 인하대학교 산학협력단 Porous condensate circulation heat recovery device and an apparatus equipped with a boiler
JP2017003222A (en) * 2015-06-12 2017-01-05 パーパス株式会社 Heat exchanger and heat source machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017112A (en) * 2005-07-08 2007-01-25 Noritz Corp Heat source device and heat exchanger
JP2015010753A (en) * 2013-06-28 2015-01-19 株式会社アタゴ製作所 Water heater
JP2016044956A (en) * 2014-08-26 2016-04-04 大阪瓦斯株式会社 Hot water supply device
KR101647590B1 (en) * 2015-03-19 2016-08-10 인하대학교 산학협력단 Porous condensate circulation heat recovery device and an apparatus equipped with a boiler
JP2017003222A (en) * 2015-06-12 2017-01-05 パーパス株式会社 Heat exchanger and heat source machine

Also Published As

Publication number Publication date
JP4099139B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4099141B2 (en) Hot water equipment
US6971335B2 (en) Water heater
JP2007085579A (en) Water heater
JP4099139B2 (en) Water heater
JP5010201B2 (en) Drain neutralizer
JP4176588B2 (en) Water heater
JP2005180778A (en) Water heating appliance
JP3991016B2 (en) Water heater
JP2002267273A (en) Hot water supply apparatus
JP4728056B2 (en) Hot water equipment
JP6247031B2 (en) Water heater
KR101243026B1 (en) Boiler having condensed water evaporator
JP4099140B2 (en) Hot water equipment
JP2002039623A (en) Water heater
JP4301718B2 (en) Water heater
JP4470139B2 (en) Natural combustion water heater
JP4710164B2 (en) Water heater
JPH0754649A (en) Waste gas heat recovery device
JP2006153375A (en) Heat exchanging device and combustion device
JPS599834B2 (en) Waste heat recovery equipment that prevents corrosion caused by sulfur oxides
JP2009011948A (en) Drain foreign matter removing structure and drain neutralizer using the drain foreign matter removing structure
JP5010348B2 (en) Drain neutralizer
JPH11153318A (en) Flue gas processing apparatus
KR20100025204A (en) High efficiency hot-water supplyer
JP2010276282A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Ref document number: 4099139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees