JP2005068490A - Solid round billet and its manufacturing method, method for manufacturing martensite stainless seamless steel pipe - Google Patents

Solid round billet and its manufacturing method, method for manufacturing martensite stainless seamless steel pipe Download PDF

Info

Publication number
JP2005068490A
JP2005068490A JP2003299856A JP2003299856A JP2005068490A JP 2005068490 A JP2005068490 A JP 2005068490A JP 2003299856 A JP2003299856 A JP 2003299856A JP 2003299856 A JP2003299856 A JP 2003299856A JP 2005068490 A JP2005068490 A JP 2005068490A
Authority
JP
Japan
Prior art keywords
solid round
round billet
scale
billet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003299856A
Other languages
Japanese (ja)
Other versions
JP4107199B2 (en
Inventor
Hirotsugu Nakaike
紘嗣 中池
Toshiro Anraku
敏朗 安楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003299856A priority Critical patent/JP4107199B2/en
Publication of JP2005068490A publication Critical patent/JP2005068490A/en
Application granted granted Critical
Publication of JP4107199B2 publication Critical patent/JP4107199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid round billet having favorable biting property and anti-slipping property for a tilted roll type piercer, to provide its manufacturing method, and to provide an efficient method for manufacturing a martensite stainless seamless steel pipe by which the above billet as a raw material can be pierced with a low draft rate of the plug top, the pipe has no inner fracture flaw and the plug has a long life. <P>SOLUTION: The solid round billet comprises 0.01 to 0.08% C, 0.05 to 1.00% Si, 0.05 to 1.50% Mn, 9.0 to 15.0% Cr, 0.05 to 5.00% Mo, 0.0005 to 0.05% Al, ≤0.1% N, 0.3 to 4.0% Ni, 0 to 4.0% Cu and the balance Fe and impurities and has a two-layer structure of oxide scales produced by heating and having 1×10<SP>4</SP>to 2×10<SP>5</SP>particles/mm<SP>2</SP>dispersion density of metal particles of Ni or Ni and a Ni-Cu compound in the inner layer scales having ≥0.1 μm particle size. The billet is obtained in an oxidative atmosphere with 5 to 30 vol% steam concentration in a temperature range of 1,100 to 1,300°C for 1.5 to 6.0 hours, and after the outer layer scale is removed, the billet is subjected to pierce rolling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として石油や天然ガスの生産および輸送の用途に使用されるマルテンサイト系ステンレス鋼継目無鋼管を、マンネスマンピアサに代表される穿孔圧延機による穿孔圧延工程を含む熱間圧延製管法により製造する際に好適な中実丸ビレット、特に、傾斜ロール式の穿孔圧延機による穿孔圧延時に高い穿孔効率が得られ、穿孔圧延機のプラグ寿命が長く、しかも内外面疵、特に内面疵の少ない中空素管が容易に得られる中実丸ビレットとその製造方法および高能率なマルテンサイト系ステンレス鋼継目無鋼管の製造方法に関する。   The present invention relates to a martensitic stainless steel seamless steel pipe mainly used for oil and natural gas production and transportation, and includes a hot rolling pipe including a piercing and rolling process by a piercing and rolling machine represented by Mannesmann Piercer. Solid round billets suitable for manufacturing by the method, particularly high piercing efficiency is obtained during piercing and rolling with an inclined roll type piercing and rolling machine, the piercing and rolling machine has a long plug life, and inner and outer surface defects, particularly inner and outer surface defects. The present invention relates to a solid round billet from which a hollow shell having a small amount of particles can be easily obtained, a method for producing the same, and a method for producing a highly efficient martensitic stainless steel seamless steel tube.

近年の油井環境の悪化により、炭酸ガスや硫化水素を含む油井やガス井環境に適した13%Cr鋼に代表されるマルテンサイト系ステンレス鋼継目無鋼管油井管の需要が増加している。   Due to the recent deterioration of the oil well environment, the demand for martensitic stainless steel seamless steel well pipes represented by 13% Cr steel suitable for oil wells and gas well environments containing carbon dioxide and hydrogen sulfide is increasing.

これらの継目無鋼管は、通常、マンネスマンピアサに代表される穿孔圧延機を使用して中実丸ビレットから中空素管を製造し、この中空素管をプラグミルやマンドレルミルなどに代表される延伸圧延機により仕上げ用素管に成形し、次いでサイザやストレッチレデュサに代表される定径圧延機により所定の寸法の管製品に仕上げることによって製造される。   These seamless steel pipes are usually manufactured from a solid round billet using a piercing and rolling machine represented by Mannesmann Piercer, and the hollow elementary pipe is drawn by a plug mill or a mandrel mill. It is manufactured by forming into a blank for finishing with a rolling mill and then finishing into a pipe product of a predetermined size with a constant diameter rolling mill represented by a sizer or stretch reducer.

しかし、13%Cr鋼に代表されるマルテンサイト系ステンレス鋼では、加熱によりその表面に生成する酸化スケールの硬度が高く、穿孔圧延機による穿孔圧延時に中実丸ビレット(以下、被圧延材ともいう)と穿孔圧延機のロールとの間のすべりが大きい。このため、被圧延材の前進速度が低下し、プラグ先端で穿孔される前に中実丸ビレットの中心部に回転鍛造による穴が明き、これが穿孔圧延後の中空素管に内面疵として残る。また、被圧延材の前進速度の低下により穿孔時間が増加し、プラグ先端が高温になって溶損し、プラグ寿命が短くなるだけでなく、製管能率も悪くなる。   However, in martensitic stainless steel represented by 13% Cr steel, the hardness of the oxide scale formed on the surface by heating is high, and a solid round billet (hereinafter also referred to as a material to be rolled) during piercing rolling by a piercing rolling mill. ) And the roll of the piercing mill. For this reason, the forward speed of the material to be rolled is reduced, and a hole formed by rotary forging is formed in the center of the solid round billet before being drilled at the tip of the plug, and this remains as an inner surface flaw in the hollow shell after piercing and rolling. . In addition, the lowering of the forward speed of the material to be rolled increases the drilling time, the plug tip becomes hot and melts, and not only the plug life is shortened, but also the pipe forming efficiency is deteriorated.

穿孔圧延機のロールと被圧延材とのすべりを防止する方法としては、次のような方法が提案されている。   The following method has been proposed as a method for preventing slippage between the roll of the piercing mill and the material to be rolled.

a)傾斜ロールの改削時にローレット加工やナーリング加工を施し、ロール表面を窪みを有する粗面にする方法(特許文献1)。   a) A method in which a knurling process or a knurling process is performed at the time of refurbishing an inclined roll to make the roll surface a rough surface having a depression (Patent Document 1).

b)特許文献1に記載されているのと同じ加工方法で圧延中の傾斜ロールに加工を施し、その表面を窪みを有する粗面にする方法(特許文献2)。   b) A method in which an inclined roll during rolling is processed by the same processing method described in Patent Document 1 and the surface thereof is made rough with a depression (Patent Document 2).

c)傾斜ロールの開度を中実丸ビレットの径に対して特定の範囲に設定する方法(特許文献3)。   c) A method of setting the opening of the inclined roll to a specific range with respect to the diameter of the solid round billet (Patent Document 3).

d)傾斜ロールの開度に加え、その傾斜角と交叉角、およびプラグリード量などを変化させる方法(特許文献4)。   d) A method of changing the inclination angle, the crossing angle, the plug lead amount, and the like in addition to the opening degree of the inclination roll (Patent Document 4).

e)金属粉粒体、金属炭化物、金属酸化物、金属窒化物、金属炭窒化物および珪素化合物のような高硬度の粉粒体と高分子ポリマとの水分散増摩剤を、圧延中の被圧延材と傾斜ロールとの接触部分に噴射供給しながら穿孔圧延をおこなう方法(特許文献5)。   e) Water-dispersed lubricants of high hardness particles such as metal particles, metal carbides, metal oxides, metal nitrides, metal carbonitrides and silicon compounds and polymer polymers during rolling A method of performing piercing and rolling while spraying and feeding the contact portion between the material to be rolled and the inclined roll (Patent Document 5).

しかし、上記の各方法には次の問題がある。   However, each of the above methods has the following problems.

a)およびb)の方法は、被圧延材の前進速度の向上に寄与する窪みが深すぎて中空素管の外表面にその痕跡が残り、これが外面疵になることがある。また、b)の加工装置は穿孔圧延機内に設置するには大きすぎ、穿孔圧延機の大型化を招いてコスト高につくほか、既存の穿孔圧延機に適用する場合は改造費が嵩むという問題もある。   In the methods a) and b), the recess contributing to the advancement speed of the material to be rolled is too deep, and the trace remains on the outer surface of the hollow shell, which may become an outer surface flaw. In addition, the processing device b) is too large to be installed in the piercing and rolling mill, which increases the size of the piercing and rolling mill and increases costs, and when applied to an existing piercing and rolling mill, the cost of remodeling increases. There is also.

c)およびd)の方法は、圧延条件を変更するので、所定の寸法の中空素管が得難い。   In the methods c) and d), since the rolling conditions are changed, it is difficult to obtain a hollow shell having a predetermined size.

e)の方法は、特別な増摩剤とこれを安定供給するための特殊な装置が必要なためにコスト高につく。   The method e) is expensive because it requires a special lubricant and a special apparatus for stably supplying it.

一方、炭酸ガスや硫化水素を含む油井やガス井環境用の油井管として使用して好適なマルテンサイト系ステンレス鋼継目無鋼管を含めたいわゆるステンレス鋼継目無鋼管の傾斜ロール式の穿孔圧延機による製造方法としては、被圧延材表面の酸化スケール厚を10〜100μmにして傾斜ロール式の穿孔圧延機を含めた各圧延機で圧延する方法が提案されている(特許文献6)。   On the other hand, with so-called stainless steel seamless steel pipe inclined roll type piercing and rolling mills including martensitic stainless steel seamless steel pipes suitable for use as oil well pipes for carbon oil and hydrogen sulfide and gas well environments As a manufacturing method, a method has been proposed in which the oxidized scale thickness on the surface of the material to be rolled is 10 to 100 μm, and rolling is performed by each rolling mill including an inclined roll type piercing rolling mill (Patent Document 6).

また、炭酸ガスや硫化水素を含む油井やガス井環境用の油井管として使用して好適なマルテンサイト系ステンレス鋼も提案されている(特許文献7〜9)。   In addition, martensitic stainless steels suitable for use as oil wells containing carbon dioxide or hydrogen sulfide or as wells for gas well environments have also been proposed (Patent Documents 7 to 9).

しかし、特許文献6に示される方法は、マルテンサイト系ステンレス鋼を含めたいわゆるステンレス鋼に特有の酸化スケール巻き込み起因の外面筋疵をなくすようにした発明でしかなく、傾斜ロール式の穿孔圧延機での被圧延材の前進速度を向上させることは全く意図していない。   However, the method disclosed in Patent Document 6 is only an invention in which outer surface streaks caused by entanglement of oxide scales peculiar to so-called stainless steel including martensitic stainless steel is eliminated, and an inclined roll type piercing rolling machine It is not intended at all to improve the forward speed of the material to be rolled.

また、特許文献7〜9に示されるマルテンサイト系ステンレス鋼は、主として耐硫化物応力腐食割れ性や耐炭酸ガス腐食性などの耐食性を向上させるようにしたものでしかなく、特許文献6の場合と同様に、その鋼からなる中実丸ビレットを傾斜ロール式の穿孔圧延機で穿孔圧延する際の被圧延材の前進速度を向上させることは全く意図しておらず、しかもその手段については一切記載も示唆もしていない。   In addition, the martensitic stainless steels disclosed in Patent Documents 7 to 9 are mainly intended to improve corrosion resistance such as sulfide stress corrosion cracking resistance and carbon dioxide gas corrosion resistance. In the same way, it is not intended to improve the forward speed of the material to be rolled when the solid round billet made of steel is pierced and rolled by an inclined roll type piercing and rolling mill, and there is no means for its means. Neither listed nor suggested.

特開平2−251305号公報JP-A-2-251305 特開平3−77708号公報JP-A-3-77708 特開昭61−180603号公報JP-A 61-180603 特開昭63−49308号公報JP-A-63-49308 特開平5−57307号公報Japanese Patent Laid-Open No. 5-57307 特開平5−269507号公報JP-A-5-269507 特開平2−247360号公報JP-A-2-247360 特開平3−120337号公報Japanese Patent Laid-Open No. 3-120337 特開平9−111345号公報JP-A-9-111345

本発明は、マルテンサイト系ステンレス鋼からなる中実丸ビレットを特に傾斜ロール式の穿孔圧延機により穿孔圧延する際に、特別な増摩剤などを使用することなく、被圧延材とロールとのすべりを軽減させ得て被圧延材の前進速度、言い換えれば穿孔効率を向上させること可能で、プラグ先端で穿孔される前の中実丸ビレットの中心部に穴が明くことがなく、これに起因する内面疵は勿論、外面疵も少ない中空素管を得ることができ、しかもプラグ先端の溶損をも防止し得てプラグ寿命の向上が図れる、いわゆる穿孔効率に優れた中実丸ビレットとその製造方法および高能率なマルテンサイト系ステンレス鋼継目無鋼管の製造方法を提供することを目的とする。   In the present invention, when a solid round billet made of martensitic stainless steel is pierced and rolled by an inclined roll type piercing and rolling machine, a special lubricant and the like can be used without using a special lubricant. It is possible to reduce the slip and improve the forward speed of the material to be rolled, in other words, the drilling efficiency, and there is no hole in the center of the solid round billet before drilling at the plug tip. A solid round billet with a so-called drilling efficiency, which can obtain a hollow shell with less outer surface defects as well as inner surface defects due to it, and can prevent melting of the plug tip and improve plug life. An object of the present invention is to provide a method for producing the same and a method for producing a highly efficient martensitic stainless steel seamless steel pipe.

本発明の要旨は、下記(1)および(2)の中実丸ビレットと下記(3)および(4)のその製造方法、および下記(5)のマルテンサイト系ステンレス鋼継目無鋼管の製造方法にある。   The gist of the present invention is the solid round billet of the following (1) and (2), the manufacturing method of the following (3) and (4), and the manufacturing method of the martensitic stainless steel seamless steel pipe of the following (5) It is in.

(1)質量%で、C:0.01〜0.08%、Si:0.05〜1.00%、Mn:0.05〜1.50%、Cr:9.0〜15.0%、Mo:0.05〜5.00%、Al:0.0005〜0.05%、N:0.1%以下、Ni:0.3〜4.0%、残部:Feおよび不純物からなるマルテンサイト系ステンレス鋼の中実丸ビレットであって、その表面の内層と外層とからなる2層構造の酸化スケールのうち、内層スケール層に含まれる粒径0.1μm以上のNiの金属粒子の密度が1×104〜2×105個/mm2である中実丸ビレット。 (1) By mass%, C: 0.01 to 0.08%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.50%, Cr: 9.0 to 15.0% Mo: 0.05-5.00%, Al: 0.0005-0.05%, N: 0.1% or less, Ni: 0.3-4.0%, balance: Fe and impurities This is a solid round billet of site-based stainless steel, and the density of Ni metal particles with a particle size of 0.1 μm or more contained in the inner scale layer among the two-layered oxide scale consisting of the inner layer and outer layer on the surface Is a solid round billet of 1 × 10 4 to 2 × 10 5 pieces / mm 2 .

(2)質量%で、C:0.01〜0.08%、Si:0.05〜1.00%、Mn:0.05〜1.50%、Cr:9.0〜15.0%、Mo:0.05〜5.00%、Al:0.0005〜0.05%、N:0.1%以下、Ni:0.3〜4.0%、Cu:4.0%以下、残部:Feおよび不純物からなるマルテンサイト系ステンレス鋼の中実丸ビレットであって、その表面の内層と外層とからなる2層構造の酸化スケールのうち、内層スケール層に含まれる粒径0.1μm以上のNiまたはNi−Cu化合物の金属粒子の密度が1×104〜2×105個/mm2である中実丸ビレット。 (2) By mass%, C: 0.01 to 0.08%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.50%, Cr: 9.0 to 15.0% Mo: 0.05-5.00%, Al: 0.0005-0.05%, N: 0.1% or less, Ni: 0.3-4.0%, Cu: 4.0% or less, Remaining part: Martensitic stainless steel solid round billet composed of Fe and impurities, particle size of 0.1 μm included in inner scale layer among two-layered oxide scale composed of inner layer and outer layer on the surface A solid round billet in which the density of the metal particles of Ni or Ni—Cu compound is 1 × 10 4 to 2 × 10 5 particles / mm 2 .

(3)上記(1)または(2)に記載の化学組成を有する中実丸ビレットを、水蒸気濃度が5体積%以上30体積%以下の酸化性雰囲気中にて、1100℃以上1300℃以下で1.5時間以上6.0時間以下加熱する中実丸ビレットの製造方法。 (3) A solid round billet having the chemical composition described in (1) or (2) above is used at 1100 ° C. or higher and 1300 ° C. or lower in an oxidizing atmosphere having a water vapor concentration of 5% by volume to 30% by volume. A method for producing a solid round billet that is heated for 1.5 hours or more and 6.0 hours or less.

(4)加熱後、外層スケールを除去する上記(3)に記載の中実丸ビレットの製造方法。 (4) The manufacturing method of the solid round billet as described in said (3) which removes an outer layer scale after a heating.

(5)上記(1)または(2)に記載の中実丸ビレットを、傾斜ロール式の穿孔圧延機を使用して中空素管に穿孔圧延するマルテンサイト系ステンレス鋼継目無鋼管の製造方法。 (5) A method for producing a martensitic stainless steel seamless steel pipe in which the solid round billet described in (1) or (2) above is pierced and rolled into a hollow shell using an inclined roll type piercing and rolling machine.

本発明者は、前記の課題を達成するために、マルテンサイト系ステンレス鋼を含めた数多くのステンレス鋼からなる中実丸ビレットを対象に、マンネスマンピアサに代表される穿孔圧延機に対する噛み込み特性と耐すべり特性を調査し、以下のことを知見して上記の本発明を完成させた。   In order to achieve the above-mentioned problems, the present inventor has set a biting characteristic for a piercing and rolling machine represented by Mannesmann Piercer for a solid round billet made of many stainless steels including martensitic stainless steel. The present invention was completed by investigating the anti-slip characteristics and finding the following.

基本成分のC、Si、Mn、Cr、Mo、AlおよびNの含有量が特定の範囲内で、しかも必須成分としてNiまたはNiとCuを含むマルテンサイト系ステンレス鋼からなる中実丸ビレット、中でも、加熱時に生成するステンレス鋼に特有の緻密で母材に対する密着性の良好な内層スケールとポーラスで比較的剥離しやすい外層スケールとの2層構造からなる酸化スケールうちの外層スケール層を除去したものの噛み込み特性と耐すべり特性が、外層スケール層を除去しないものや、その他のステンレス鋼からなる中実丸ビレットよりも良好な傾向を示すことが確認された。   Solid round billet made of martensitic stainless steel with basic components C, Si, Mn, Cr, Mo, Al and N content within a specific range and containing Ni or Ni and Cu as essential components, The outer scale layer is removed from the oxide scale consisting of a two-layer structure consisting of a dense inner layer scale that is unique to stainless steel produced during heating and good adhesion to the base material, and a porous outer layer scale that is relatively easy to peel off. It was confirmed that the biting characteristics and the slip resistance characteristics tend to be better than those not removing the outer scale layer and other solid round billets made of stainless steel.

そこで、前記の基本成分の含有量が表1に示す値で、Ni含有量を0%(無添加)、0.7%、1.2%、1.7%、3.0%および6.0%の6通りと、Cu含有量を0%(無添加)、1.0%、2.0%、4.0%および5.0%の5通りとの組み合わせ30種類のうち、Cu含有量が5.0%で、Ni含有量が0%(無添加)、0.7%および6.0%の組み合わせ3種類を除いた27種類のマルテンサイト系ステンレス鋼からなる中実丸ビレットを製作し、加熱後に外層スケール層を除去したこれら中実丸ビレットを表2に示す条件の下で、傾斜ロール式の穿孔圧延機での噛み込み性と穿孔効率(%)を調べる実験をおこなった。   Therefore, the content of the basic component is the value shown in Table 1, and the Ni content is 0% (no addition), 0.7%, 1.2%, 1.7%, 3.0% and 6. Of 30 types of combinations of 6 types of 0% and 5 types of Cu content of 0% (no addition), 1.0%, 2.0%, 4.0% and 5.0%, Cu content A solid round billet made of 27 types of martensitic stainless steel, excluding 3 types of combinations of 5.0%, Ni content 0% (no addition), 0.7% and 6.0% These solid round billets, which were manufactured and removed the outer scale layer after heating, were tested under the conditions shown in Table 2 to check the biting efficiency and the drilling efficiency (%) in an inclined roll type piercing mill. .

Figure 2005068490
Figure 2005068490

Figure 2005068490
Figure 2005068490

なお、上記の穿孔効率(%)とは、被圧延材の前進速度をVMX、傾斜ロールの周速度の被圧延材前進方向成分をVRXをしたとき、下記の(1)式により定義される値のことであり、この値が大きいほど傾斜ロールと被圧延材とのすべりが小さいことを意味する。 The above piercing efficiency (%) is defined by the following equation (1), where V MX is the forward speed of the material to be rolled and V RX is the forward direction component of the material to be rolled of the peripheral speed of the inclined roll. The larger the value, the smaller the slip between the inclined roll and the material to be rolled.

穿孔効率(%)=(VMX/VRX)×100 ・・・・・・・・・・・・(1)
また、表2に記載のプラグ先端ドラフト率(%)とは、中実丸ビレットの横断面積をA、プラグの先端位置における中実丸ビレットの横断面積をBとしたとき、下記の(2)式により定義される値であり、この値が小さいほど中実丸ビレットの軸心部での回転鍛造による内部破壊が抑制され、内面疵(中被れ)の発生が抑えら。
Drilling efficiency (%) = (V MX / V RX ) x 100 (1)
The plug tip draft rate (%) shown in Table 2 is the following (2), where A is the cross-sectional area of the solid round billet and B is the cross-sectional area of the solid round billet at the plug tip position. The value defined by the equation, the smaller the value, the more the internal fracture due to rotary forging at the shaft center of the solid round billet is suppressed, and the occurrence of inner surface flaws (inner covering) is suppressed.

プラグ先端ドラフト率(%)={1−(B/A)}×100 ・・・・(2)
実験の結果は、表3ならびに図1および図2に示すとおりであり、Ni含有量が0.3%以上で、かつCu含有量が0%(無添加)または4%以下の鋼に限って穿孔圧延で必要とされる穿孔効率、すなわち、穿孔効率が60%以上になることが確認された。
Plug tip draft ratio (%) = {1- (B / A)} × 100 (2)
The results of the experiment are as shown in Table 3 and FIGS. 1 and 2, and are limited to steels with a Ni content of 0.3% or more and a Cu content of 0% (no addition) or 4% or less. It was confirmed that the piercing efficiency required for piercing and rolling, that is, the piercing efficiency was 60% or more.

Figure 2005068490
Figure 2005068490

そこで、その原因を知るべく、Ni含有量が0.3%以上で、かつCu含有量が0%(無添加)または4%以下の鋼(以下、「鋼1」という)、NiとCuの含有量がいずれも0%(無添加)の鋼(以下、「鋼2」という)、およびNi含有量が0.7%以上で、かつCu含有量が5%の鋼(以下、「鋼3」という)の加熱後の酸化スケール、中でも特に内層スケールを詳細に調べた。   Therefore, in order to know the cause, a steel having Ni content of 0.3% or more and Cu content of 0% (no addition) or 4% or less (hereinafter referred to as “steel 1”), Ni and Cu Steel having a content of 0% (no addition) (hereinafter referred to as “steel 2”) and steel having a Ni content of 0.7% or more and a Cu content of 5% (hereinafter referred to as “steel 3”) )) After heating, and particularly the inner layer scale was examined in detail.

その結果、「鋼1」の内層スケール中には、粒径(円形の場合は直径、非円形の場合は長径と短径の平均径)が0.1μm以上のNiまたはNiとNi−Cu化合物の金属粒子が多く分散しているのに対し、「鋼2」と「鋼3」の内層スケール層には前記の金属粒子が全くないか、あっても極めて少なかった。これから、この金属粒子が傾斜ロールに対するグリップ力を高めて傾斜ロールと被圧延材とのすべりを防止する結果、噛み込み性と穿孔効率が向上することが判明した。   As a result, in the inner scale of “Steel 1”, Ni or Ni and a Ni—Cu compound having a particle size (the diameter in the case of a circle, the average diameter of a major axis and a minor axis in the case of a non-circular shape) of 0.1 μm or more. In contrast, a large amount of the metal particles were dispersed, whereas the inner scale layers of “Steel 2” and “Steel 3” had no or very little metal particles. As a result, it has been found that the metal particles increase the gripping force against the inclined roll to prevent slippage between the inclined roll and the material to be rolled, and as a result, the biting property and the drilling efficiency are improved.

図3は、NiとCuの含有量がいずれも1.0%の「鋼1」と0%(無添加)の「鋼2」の加熱後の2層構造の酸化スケールのうちの内層スケールの一例を示すミクロ写真(1000倍)で、同図(a)は「鋼1」、同図(b)は「鋼2」である。   FIG. 3 shows the inner scale of the two-layered oxide scale after heating of “Steel 1” with Ni and Cu contents of 1.0% and “Steel 2” with 0% (no addition). In the microphotograph (1000 times) showing an example, FIG. 4A shows “steel 1” and FIG. 2B shows “steel 2”.

また、図4は、上記の「鋼1」と「鋼2」の加熱直後の酸化スケールの状態、外層スケールを除去し圧延開示時の内層スケールの状態、および穿孔圧延中の内層スケールの状態を示す模式図で、同図(a)は「鋼1」、同図(b)は「鋼2」である。   FIG. 4 shows the state of the oxidized scale immediately after the heating of the above “steel 1” and “steel 2”, the state of the inner layer scale when the outer layer scale is removed and rolling is disclosed, and the state of the inner layer scale during piercing and rolling. FIG. 4A is “steel 1” and FIG. 2B is “steel 2”.

しかし、前記の「鋼1」であっても、穿孔効率が60%以上にならない場合があり、この場合の内層スケール層中の金属粒子は少ないことも判明した。   However, even with the “steel 1”, the drilling efficiency may not be 60% or more, and it has also been found that the metal particles in the inner scale layer in this case are few.

そこで、加熱条件を種々変えて前記の実験をさらにおこなった結果、図5に示す結果が得られた。すなわち、内層スケール中に粒径が1μm以上のNiまたはNiとNi−Cu化合物の金属粒子が1mm2当たり1×104個以上存在している場合には60%以上の穿孔効率が得られるが、その個数が2×105個を超えると焼付きが発生するという事実である。 Therefore, as a result of further performing the above-described experiment with various heating conditions, the result shown in FIG. 5 was obtained. That is, the resulting 60% or more perforations efficiency when the metal particles of a particle size of 1μm or more Ni or Ni and Ni-Cu compound in the inner layer scale is present 1 mm 2 per 1 × 10 4 or more This is the fact that seizure occurs when the number exceeds 2 × 10 5 .

また、1mm2当たり1×104〜2×105個の金属粒子が存在する内層スケールを有する酸化スケールの合計厚さは、およそ100〜600μmで、このような酸化スケールは、後述する化学組成を有する中実丸ビレットを、水蒸気濃度が5〜30体積%の酸化性雰囲気中にて、1100〜1300℃の温度域に1.5〜6.0時間加熱保持することにより得られることもわかった。 Moreover, the total thickness of the oxide scale having an inner scale in which 1 × 10 4 to 2 × 10 5 metal particles are present per 1 mm 2 is about 100 to 600 μm, and such an oxide scale has a chemical composition described later. It is also found that a solid round billet having a water content can be obtained by heating and holding in a temperature range of 1100 to 1300 ° C. for 1.5 to 6.0 hours in an oxidizing atmosphere having a water vapor concentration of 5 to 30% by volume. It was.

本発明の中実丸ビレットは、穿孔圧延機、特に傾斜ロール式の穿孔圧延機に対する噛み込み性と耐すべり性に優れている。また、その製造方法は所定の化学組成を有するマルテンサイト系ステンレス鋼からなる中実丸ビレットを所定の条件で加熱後、外層スケールを高圧水デスケーリング処理するだけで得られるので安価に製造できる。さらに、本発明の中実丸ビレットを素材とする本発明の製造方法では、プラグ先端ドラフト率を小さくした穿孔圧延が可能であるため、中被れの少ない中空素管を高能率に製造できるだけでなく、プラグ寿命も向上する。   The solid round billet of the present invention is excellent in biting property and slip resistance with respect to a piercing mill, particularly an inclined roll type piercing mill. Moreover, the manufacturing method can be manufactured at low cost because it can be obtained simply by heating a solid round billet made of martensitic stainless steel having a predetermined chemical composition under predetermined conditions and then subjecting the outer layer scale to high-pressure water descaling. Furthermore, in the manufacturing method of the present invention using the solid round billet of the present invention as a raw material, since it is possible to perform piercing and rolling with a reduced plug tip draft ratio, it is possible to manufacture a hollow shell tube with a small inner cover with high efficiency. In addition, the plug life is improved.

以下、本発明の中実丸ビレットとその製造方法、ならびにマルテンサイト系ステンレス鋼継目無鋼管の製造方法について詳細に説明する。   Hereinafter, the solid round billet of the present invention, the manufacturing method thereof, and the manufacturing method of the martensitic stainless steel seamless steel pipe will be described in detail.

1.化学組成について
C:0.01〜0.08%
Cは高温でのオーステナイト生成元素であり、マルテンサイト系ステンレス鋼の強度を決定する重要な成分で、0.01%未満の含有量では残留オーステナイトの生成量が不十分となり、十分な靭性が得られない。一方、0.08%を超えると強度が高くなりすぎて靭性の低下や耐食性の劣化を招く。
1. About chemical composition C: 0.01 to 0.08%
C is an austenite-forming element at high temperature and is an important component that determines the strength of martensitic stainless steel. If the content is less than 0.01%, the amount of retained austenite produced is insufficient, and sufficient toughness is obtained. I can't. On the other hand, if it exceeds 0.08%, the strength becomes too high, leading to a decrease in toughness and a deterioration in corrosion resistance.

Si:0.05〜1.00%
Siは脱酸剤として必要であり、0.05%未満の含有量では後述するAlの添加量が増えて地疵などが増加し、鋼質の劣化を招く。一方、1.00%を超えると靭性が低下する。
Si: 0.05-1.00%
Si is necessary as a deoxidizing agent, and if the content is less than 0.05%, the amount of Al added later increases, and the ground and the like increase, leading to deterioration of the steel quality. On the other hand, if it exceeds 1.00%, the toughness decreases.

Mn:0.05〜1.50%
Mnは脱酸剤として有効であるとともに、不純物のSを固定して熱間加工性を向上させる。また、Mnは高温でのオーステナイト相を安定にしてマルテンサイト相を形成させやすくする。しかし、その含有量が0.05%未満ではこれらの効果が不十分である。一方、過剰なMnは耐食性の低下を招くので、上限は1.50%とする。
Mn: 0.05 to 1.50%
Mn is effective as a deoxidizer and fixes hot impurities S to improve hot workability. Further, Mn stabilizes the austenite phase at a high temperature and facilitates the formation of a martensite phase. However, if the content is less than 0.05%, these effects are insufficient. On the other hand, excessive Mn causes a decrease in corrosion resistance, so the upper limit is made 1.50%.

Cr:9.0〜15.0%
Crはマルテンサイト系ステンレス鋼の最も主要な基本成分で、その含有量が9%未満ではステンレス鋼としての耐食性が確保できない。一方、15.0%を超えると、ビレット加熱時にδフェライトが多く生成し、所要の強度が得られない。
Cr: 9.0 to 15.0%
Cr is the most important basic component of martensitic stainless steel, and if its content is less than 9%, corrosion resistance as stainless steel cannot be ensured. On the other hand, if it exceeds 15.0%, a large amount of δ ferrite is generated during billet heating, and the required strength cannot be obtained.

Mo:0.05〜5.00%
Moは炭酸ガスを含む環境下での局部腐食を防止する作用を有するが、0.05%未満の含有量ではその効果が十分でない。一方、5.00%を超えるとδフェライトが多く生成して所要の強度が得られない。
Mo: 0.05-5.00%
Mo has an action of preventing local corrosion in an environment containing carbon dioxide gas, but if the content is less than 0.05%, the effect is not sufficient. On the other hand, if it exceeds 5.00%, a large amount of δ ferrite is produced and the required strength cannot be obtained.

Al:0.0005〜0.05%
Alは脱酸剤として添加するが、その含有量が0.0005%未満では脱酸が不十分で鋼の健全性が劣る恐れがある。一方、0.05%を超えると靭性低下を招く。
Al: 0.0005 to 0.05%
Al is added as a deoxidizer, but if its content is less than 0.0005%, deoxidation is insufficient and the soundness of steel may be inferior. On the other hand, if it exceeds 0.05%, the toughness is reduced.

N:0.1%以下
NはCrが高い場合不可避的に混入する不純物で、オーステナイト領域を拡大させてマルテンサイト相の形成を容易にする効果がある。しかし、過剰なNは耐硫化物応力腐食割れ性を悪くするので、その影響が顕著でない0.1%以下とする。なお、Nの含有量は少なければ少ないほどよい。
N: 0.1% or less N is an impurity inevitably mixed when Cr is high, and has an effect of facilitating the formation of the martensite phase by expanding the austenite region. However, excessive N deteriorates the resistance to sulfide stress corrosion cracking, so the effect is not more significant 0.1% or less. The smaller the N content, the better.

Ni:0.3〜4.0%
Niは本発明にとって最も重要な成分の1つであり、内層スケール中に1mm2当たり1×104個以上のNiの金属粒子を分散析出させるためには最低でも0.3%以上の含有量が必要である。一方、4.0%を超えると1mm2当たりのNiの金属粒子の分散析出個数が2×105個を超え、焼付きが発生するので、Ni含有量は0.3〜4.0%とした。
Ni: 0.3-4.0%
Ni is one of the most important components for the present invention, and in order to disperse and deposit 1 × 10 4 or more Ni metal particles per mm 2 in the inner scale, the content is at least 0.3% or more. is required. On the other hand, if it exceeds 4.0%, the number of Ni metal particles dispersed per 1 mm 2 exceeds 2 × 10 5 and seizure occurs, so the Ni content is 0.3 to 4.0%. did.

Cu:4.0%以下
Cuは添加しなくてもよい。添加すれば、上記のNiと化合物(Ni−Cu)を形成して内層スケール中に金属粒子として分散析出し、傾斜ロールに対する被圧延材の噛み込み性と耐すべり性を向上さる。その効果は、前述の図1に示す実験結果からもわかるように、不純物量レベルの含有量でも得られる。しかし、4.0%を超えて含有させると、前述の図2に示す実験結果からもわかるように、上記Niの効果を失わせるだけでなく、熱間加工性も低下する。このため、添加する場合のCu含有量は4.0%以下とするのがよい。なお、多量のCu添加が上記Niの効果を失わせる理由の詳細は不明であるが、Ni粒子中のCu量が増大するとともに、金属粒子の融点が低下することにより焼付きが発生するためと推定される。
Cu: 4.0% or less Cu need not be added. If added, the above Ni and compound (Ni-Cu) are formed and dispersed and precipitated as metal particles in the inner layer scale, and the biting property and slip resistance of the material to be rolled with respect to the inclined roll are improved. The effect can be obtained even with the impurity content level as can be seen from the experimental results shown in FIG. However, if the content exceeds 4.0%, as can be seen from the experimental results shown in FIG. 2, not only the effect of Ni is lost, but also the hot workability is lowered. For this reason, when added, the Cu content is preferably 4.0% or less. The details of why the addition of a large amount of Cu loses the effect of Ni is unclear, but because the amount of Cu in the Ni particles increases and the melting point of the metal particles decreases, seizure occurs. Presumed.

上記の成分以外は実質的にFe、言い換えれば、残部はFeと上記のN以外の不純物であり、不純物としてのPは0.04%まで、Sは0.03%までであれば特に問題はないが、PとSの含有量はいずれも低いほどよい。   Other than the above components, it is substantially Fe, in other words, the balance is impurities other than Fe and the above N, and if P as an impurity is up to 0.04% and S is up to 0.03%, there is a particular problem. None, but the lower the content of P and S, the better.

2.金属粒子の分散密度について
本発明になる中実丸ビレットの加熱後の内層スケールは、粒径0.1μm以上のNiまたはNiとNi−Cu化合物の金属粒子の分散密度が1×104〜2×105個/mm2で分散析出しているものである必要がある。その理由は、前述したように、その分散密度が1×104個/mm2未満では、噛み込み性が不十分であるとともに、金属粒子によるグリップ力が不足ですべりが生じて60%以上の穿孔効率は得られず、逆に2×105個/mm2を超えると、噛み込み性は十分であるが、金属粒子によるグリップ力が過大になって焼付きが発生するからである。なお、カウントすべき金属粒子の大きさを粒径で0.1m以上としたのは、これよりも小さい金属粒子は本発明の効果になする影響は小さく、無視可能であるからである。
2. Regarding Dispersion Density of Metal Particles The inner scale after heating the solid round billet according to the present invention has a dispersion density of Ni or Ni and Ni—Cu compound metal particles having a particle diameter of 0.1 μm or more of 1 × 10 4 to 2. It must be dispersed and precipitated at × 10 5 pieces / mm 2 . The reason for this is that, as described above, if the dispersion density is less than 1 × 10 4 pieces / mm 2 , the biting property is insufficient, and the gripping force due to the metal particles is insufficient, resulting in slipping and 60% or more. This is because the drilling efficiency cannot be obtained, and conversely, if it exceeds 2 × 10 5 pieces / mm 2 , the biting property is sufficient, but the gripping force by the metal particles becomes excessive and seizure occurs. The reason why the size of the metal particles to be counted is 0.1 m or more in terms of particle size is that metal particles smaller than this have little influence on the effect of the present invention and can be ignored.

3.中実丸ビレットの加熱条件について
上記の粒径0.1μm以上のNiまたはNiとNi−Cu化合物の金属粒子が1×104〜2×105個/mm2の密度で分散析出している内層スケールを有する本発明になる中実丸ビレットを得るためには、前述した化学組成を有する鋼からなる中実丸ビレットを、水蒸気濃度が5〜15体積%の酸化性雰囲気中で、1100〜1300℃の温度域に1.5〜6.0時間加熱保持する必要がある。これは、水蒸気濃度が5体積%未満、加熱温度が1100℃未満、および保持時間が1.5時間未満のいずれかであると、内層スケール中に1×104個/mm2以上のNiまたはNiとNi−Cu化合物の金属粒子が分散析出しないからであり、逆に、水蒸気濃度が30体積%を上回ったり、加熱温度が1300℃を上回ったり、さらには保持時間が6.0時間を上回ったりすると、いずれの場合も、内層スケール中に2×105個/mm2を上回るNiまたはNiとNi−Cu化合物の金属粒子が分散析出するからである。以上のことは、後述する実施例からも明らかである。
3. Regarding heating conditions for solid round billets Ni or Ni-Ni-Cu compound metal particles having a particle size of 0.1 μm or more are dispersed and precipitated at a density of 1 × 10 4 to 2 × 10 5 particles / mm 2 . In order to obtain a solid round billet according to the present invention having an inner layer scale, a solid round billet made of steel having the above-described chemical composition is used in an oxidizing atmosphere having a water vapor concentration of 5 to 15% by volume in a 1100- It is necessary to heat and hold in a temperature range of 1300 ° C. for 1.5 to 6.0 hours. When the water vapor concentration is less than 5% by volume, the heating temperature is less than 1100 ° C., and the holding time is less than 1.5 hours, 1 × 10 4 Ni / mm 2 or more in the inner layer scale or This is because the metal particles of Ni and Ni—Cu compound are not dispersed and deposited. Conversely, the water vapor concentration exceeds 30% by volume, the heating temperature exceeds 1300 ° C., and the retention time exceeds 6.0 hours. In any case, this is because Ni or Ni and Ni—Cu compound metal particles exceeding 2 × 10 5 particles / mm 2 are dispersed and precipitated in the inner layer scale. The above is also clear from examples described later.

4.マルテンサイト系ステンレス鋼継目無鋼管の製造方法について
前述した本発明になる加熱後の中実丸ビレットを素材とする本発明のマルテンサイト系ステンレス鋼継目無鋼管の製造方法においては、加熱により生成した2層構造の酸化スケールのうち、少なくとも外層スケールを除去した後に穿孔圧延機によって穿孔圧延する必要がある。これは、次の理由による。
4). About the manufacturing method of the martensitic stainless steel seamless steel pipe In the manufacturing method of the martensitic stainless steel seamless steel pipe of the present invention using the solid round billet after the heating according to the present invention described above as a raw material, it is generated by heating. It is necessary to perform piercing and rolling by a piercing and rolling machine after removing at least the outer layer scale of the oxide scale having a two-layer structure. This is due to the following reason.

噛み込み性と耐すべり性を向上させる金属粒子は、外層スケール中には存在せず、内層スケール中にのみ存在している。一方、Niを必須成分として含有する本発明の中実丸ビレットの表面に生成する2層構造の酸化スケールは、前述の図1および図2に示したように、NiまたはNiとCuを必須成分として含有しないものに比べ、スケール中にポロシティがほとんど存在しない。このため、その酸化スケールは母材に対する密着性が高いだけでなく、内層スケールと外層スケールとの密着性も高く、Niを必須成分として含有しないものの外層スケールが穿孔圧延前のハンドリング中にほとんど剥離脱落するのに対し、本発明の中実丸ビレットの外層スケールは穿孔圧延前のハンドリング中にはほとんど剥離脱落しないからである。   The metal particles that improve the biting property and slip resistance are not present in the outer layer scale, but are present only in the inner layer scale. On the other hand, the oxide scale of the two-layer structure formed on the surface of the solid round billet of the present invention containing Ni as an essential component, as shown in FIGS. 1 and 2 described above, contains Ni or Ni and Cu as essential components. There is almost no porosity in the scale as compared to those not contained. For this reason, the oxide scale not only has high adhesion to the base material, but also has high adhesion between the inner layer scale and the outer layer scale, and the outer layer scale does not contain Ni as an essential component, but the outer layer scale is almost peeled off during handling before piercing and rolling. This is because the outer layer scale of the solid round billet of the present invention hardly peels off during handling before piercing and rolling.

外層スケールの除去は、加熱後の中実丸ビレットに、例えば、次の条件による高圧水デスケーリング処理を施すことで除去可能である。圧力:490〜1960MPa、流量:30〜60リットル/分、中実丸ビレットの搬送速度:10〜30m/秒。すなわち、圧力が490MPa未満や流量が30リットル/分未満であったり、搬送速度が30m/秒を超えたりすると、外層スケールの除去が不十分になることがある。逆に、圧力が1960MPaを上回ると内層スケールも除去されることがあり、流量が60リットル/分を上回ったり、搬送速度が10m/秒未満であったりすると、中実丸ビレットの温度低下が大きくなって穿孔圧延自体が困難になることがある。しかし、上記の範囲内であれば、外層スケールのみをほぼ確実に安定して除去でき、しかも著しい温度低下も避けられ、穿孔圧延自体が困難になることはない。   The outer scale can be removed by, for example, subjecting the solid round billet after heating to a high-pressure water descaling process under the following conditions. Pressure: 490-1960 MPa, flow rate: 30-60 liters / minute, transport speed of solid round billet: 10-30 m / second. That is, when the pressure is less than 490 MPa, the flow rate is less than 30 liters / minute, or the conveyance speed exceeds 30 m / second, the removal of the outer scale may be insufficient. Conversely, if the pressure exceeds 1960 MPa, the inner scale may be removed, and if the flow rate exceeds 60 liters / minute or the conveyance speed is less than 10 m / second, the temperature drop of the solid round billet is large. Thus, piercing and rolling itself may be difficult. However, within the above range, only the outer layer scale can be removed almost reliably and stably, and a significant temperature drop can be avoided, and piercing and rolling itself does not become difficult.

上記のような高圧水デスケーリング処理は、この種の穿孔圧延機が通常具備している高圧水デスケーラ装置を構成する機器のうちの加圧ポンプのみの改造で対応可能であるので、設備費が大幅に高くなることもない。   The high-pressure water descaling process as described above can be handled by remodeling only the pressurizing pump of the equipment that constitutes the high-pressure water descaler apparatus that is normally provided in this kind of piercing and rolling mill. It will not be significantly higher.

上記のように外層スケールを除去してから穿孔圧延すると、穿孔圧延機に対する中実丸ビレットの噛み込み性が向上するので、前述したプラグ先端ドラフト率をより小さくした穿孔圧延が可能となる。言い換えれば、中実丸ビレットの軸心部に回転鍛造による割れが発生するのに先だってプラグにより穴を穿つ穿孔圧延をおこなうことが可能となるので、中被れ疵の少ない中空素管が得られる。   When the piercing and rolling is performed after removing the outer layer scale as described above, the biting property of the solid round billet with respect to the piercing and rolling mill is improved, so that the piercing and rolling can be performed with the above-described plug tip draft rate being further reduced. In other words, it is possible to perform piercing and rolling with a plug before a crack due to rotary forging occurs in the shaft center portion of a solid round billet, so that a hollow shell tube with less inner covering flaws can be obtained. .

また、噛み込み後においても内層スケール中の金属粒子のグリップ効果によりすべりが軽減されるので穿孔効率が向上、言い換えれば、穿孔時間が短くなる分だけプラグが高温に曝される時間が短縮され、プラグ寿命も向上する。   In addition, even after biting, the slip effect is reduced by the grip effect of the metal particles in the inner layer scale, so the drilling efficiency is improved, in other words, the time that the plug is exposed to high temperature is shortened as the drilling time is shortened, Plug life is also improved.

表4に示す化学組成を有する4種類のマルテンサイト系ステンレス鋼を溶製した。そして、これらの鋼からなる外径191mm、長さ2130mmの中実丸ビレットを対象に、LNGを燃料とする加熱炉を使用し、表5に示す種々の条件で加熱し、その表面に形成された内層スケール中の粒径0.1μm以上のNiとNi−Cu化合物の金属粒子の密度を調べるとともに、内外層のスケール厚さを測定した。なお、金属粒子の同定はスケールの断面を500倍の電子顕微鏡およびEDXを用いておこなった。   Four types of martensitic stainless steel having the chemical composition shown in Table 4 were melted. Then, for a solid round billet made of these steels having an outer diameter of 191 mm and a length of 2130 mm, a heating furnace using LNG as a fuel is used and heated under various conditions shown in Table 5 and formed on the surface. In addition, the density of Ni and Ni—Cu compound metal particles having a particle size of 0.1 μm or more in the inner scale was examined, and the scale thickness of the inner and outer layers was measured. In addition, the identification of the metal particle was performed using the electron microscope and EDX of the cross section of a scale 500 times.

Figure 2005068490
Figure 2005068490

Figure 2005068490
Figure 2005068490

結果は、表5に併記して示すとおりで、本発明で規定する条件で加熱することにより、内層スケール中に粒径0.1μm以上のNiとNi−Cu化合物の金属粒子が1×104個/mm2の分散密度で析出する。これに対して、雰囲気中の水蒸気濃度、加熱温度および保持時間のいずれかが本発明で規定する範囲を外れる場合には、内層スケール中に存在する粒径0.1μm以上のNiとNi−Cu化合物の金属粒子が1×104〜2×105個/mm2の範囲内にならないことがわかる。 The results are as shown together in Table 5. By heating under the conditions specified in the present invention, 1 × 10 4 metal particles of Ni and Ni—Cu compound having a particle size of 0.1 μm or more are contained in the inner scale. Precipitate at a dispersion density of 1 piece / mm 2 . On the other hand, when any one of the water vapor concentration in the atmosphere, the heating temperature, and the holding time is out of the range defined in the present invention, Ni and Ni—Cu present in the inner layer scale and having a particle diameter of 0.1 μm or more. It can be seen that the metal particles of the compound do not fall within the range of 1 × 10 4 to 2 × 10 5 particles / mm 2 .

前記の表4に示す4種類の鋼からなる外径191mm、長さ2130mmの中実丸ビレットを、表6に示す条件で加熱した。加熱後のビレットは、その表面に生成している酸化スケールのうち、圧力980MPa、流量45リットル/分、搬送速度22m/秒の条件による高圧水デスケーリング処理を施して外層スケールのみを除去した。   A solid round billet made of the four types of steel shown in Table 4 and having an outer diameter of 191 mm and a length of 2130 mm was heated under the conditions shown in Table 6. The billet after the heating was subjected to high-pressure water descaling treatment under the conditions of a pressure of 980 MPa, a flow rate of 45 liters / minute, and a conveying speed of 22 m / second, and only the outer scale was removed.

次いで、これらの中実丸ビレットを、0.5%Cr−0.5%Mn−1.0%Ni−Feのプラグを具備する傾斜ロール式の穿孔圧延機に供し、表6に示す穿孔段取りで穿孔圧延をおこない、穿孔効率、中被れ不良率(本数比率)およびプラグ寿命(パス本数/個)を調査した。   Then, these solid round billets were subjected to an inclined roll type piercing rolling mill equipped with a plug of 0.5% Cr-0.5% Mn-1.0% Ni-Fe, and the piercing setup shown in Table 6 was performed. Then, piercing and rolling were carried out, and the piercing efficiency, the middle coverage defect rate (number ratio) and the plug life (number of passes / piece) were investigated.

なお、加熱後のビレット表面に生成している内層スケール中の粒径0.1μm以上のNiとNi−Cu化合物の金属粒子の分散密度(個/mm2)は、符号Aのものは3000〜4000個、符号Bのものは50000〜60000個、符号Cのものは100000〜150000個、符号Dのものは250000〜300000個であった。 The dispersion density (number / mm 2 ) of metal particles of Ni and Ni—Cu compound with a particle size of 0.1 μm or more in the inner scale formed on the billet surface after heating is 3000 to 3000. 4000, code B had 50000-60000, code C had 100,000-150,000, and code D had 250,000-300000.

Figure 2005068490
Figure 2005068490

以上の調査結果を、表7にまとめて示すとともに、図6に各鋼毎のプラグ先端ドラフト率と穿孔効率との関係、図7に各鋼毎のプラグ先端ドラフト率と中被れ不良率との関係、図8に各鋼毎のプラグ先端ドラフト率とプラグ寿命との関係を示した。   The results of the above investigation are summarized in Table 7, and FIG. 6 shows the relationship between the plug tip draft rate and the drilling efficiency for each steel, and FIG. 7 shows the plug tip draft rate and medium coverage defect rate for each steel. FIG. 8 shows the relationship between the plug tip draft ratio and the plug life for each steel.

Figure 2005068490
Figure 2005068490

表7および図6〜図8に示す結果からわかるように、NiまたはNiとCuの含有量が本発明で規定する範囲内で、かつ内層スケール中の粒径0.1μm以上のNiとNi−Cu化合物の金属粒子の分散密度が本発明で規定する範囲内である符号BとCの鋼からなる中実丸ビレットでは、いずれのプラグ先端ドラフト率においても60%以上の穿孔効率が得られており、中被れ不良率も4%以下と低く、プラグ寿命も平均で3.3パス/個以上と長い。   As can be seen from the results shown in Table 7 and FIGS. 6 to 8, Ni and Ni— with a Ni or Ni and Cu content within the range defined by the present invention and a particle size of 0.1 μm or more in the inner layer scale are included. In the case of a solid round billet made of steels of symbols B and C in which the dispersion density of the metal particles of the Cu compound is within the range specified in the present invention, a drilling efficiency of 60% or more is obtained at any plug tip draft rate. In addition, the inside-coverage failure rate is as low as 4% or less, and the plug life is as long as 3.3 passes / piece or more on average.

これに対して、Niの含有量が本発明で規定する下限値よりも少なく、かつ内層スケール中の粒径0.1μm以上のNiの金属粒子の分散密度が本発明で規定する下限値よりも少ない符号Aの鋼からなる中実丸ビレットでは、プラグ先端ドラフト率を高くしないと60%以上の穿孔効率は得られず、この場合には中被れ不良率が約10%と極めて高くなるだけでなく、プラグ寿命も平均で2.5パス/個以上と短い。また、中被れ不良率を少なくし、かつプラグ寿命を長くすべくプラグ先端ドラフト率を小さくすると、60%以上の穿孔効率は得られない。   On the other hand, the Ni content is less than the lower limit specified in the present invention, and the dispersion density of Ni metal particles having a particle size of 0.1 μm or more in the inner scale is lower than the lower limit specified in the present invention. With a solid round billet made of a small number of steel A, a drilling efficiency of 60% or more cannot be obtained unless the plug tip draft rate is increased. In this case, the coverage ratio is only as high as about 10%. In addition, the average plug life is as short as 2.5 passes / piece. Further, if the plug tip draft rate is reduced to reduce the cover loss rate and extend the plug life, a drilling efficiency of 60% or more cannot be obtained.

また、Ni含有量が多すぎる符号Dの鋼からなる中実丸ビレットでは、穿孔効率、中被れ不良率およびプラグ寿命ともに良好であるが、内層スケール中の金属粒子が多すぎるために、焼付きが多発したとともに、傾斜ロールの摩耗が著しかった。   In addition, a solid round billet made of steel with a sign D having an excessively high Ni content has good drilling efficiency, defective coverage, and plug life, but there are too many metal particles in the inner layer scale. Along with frequent sticking, the wear of the inclined roll was remarkable.

本発明の中実丸ビレットは、素材のビレットが、原則、中実角ビレットであるプレスピアシングミルの穿孔圧延機にも適用可能である。   The solid round billet of the present invention can be applied to a piercing and rolling machine of a press piercing mill in which the material billet is, in principle, a solid square billet.

予めおこなった実験結果を示す図で、Ni含有量とCu含有量が穿孔効率に及ぼす影響をNi含有量で整理して示す図である。It is a figure which shows the experimental result performed beforehand, and is a figure which arranges and shows the influence which Ni content and Cu content exert on drilling efficiency by Ni content. 予めおこなった実験結果を示す図で、Ni含有量とCu含有量が穿孔効率に及ぼす影響をCu含有量で整理して示す図である。It is a figure which shows the experimental result performed beforehand, and is a figure which arranges and shows the influence which Ni content and Cu content exert on drilling efficiency by Cu content. 予めおこなった実験結果を示す図で、NiとCuの含有量がいずれも1.0%の「鋼1」と0%(無添加)の「鋼2」の加熱後の酸化スケールの一例を示すミクロ写真であり、同図(a)は「鋼1」、同図(b)は「鋼2」の場合である。It is a figure which shows the experimental result performed beforehand, and shows an example of the oxide scale after the heating of "steel 1" whose content of both Ni and Cu is 1.0% and 0% (no addition). It is a microphotograph, the same figure (a) is the case of "steel 1", and the same figure (b) is the case of "steel 2". 上記の「鋼1」と「鋼2」の加熱直後の酸化スケールの状態、外層スケールを除去し穿孔開始時の内層スケールの状態、および穿孔圧延中の内層スケールの状態を示す模式図で、同図(a)は「鋼1」、同図(b)は「鋼2」の場合の図である。FIG. 5 is a schematic diagram showing the state of the oxide scale immediately after heating of the above “steel 1” and “steel 2”, the state of the inner layer scale when the outer layer scale is removed and piercing is started, and the state of the inner layer scale during piercing and rolling. The figure (a) is a figure in the case of "steel 1", and the figure (b) is a figure in the case of "steel 2". 予めおこなった実験結果を示す図で、内層スケール中に存在する粒径が0.1μm以上のNiまたはNiとNi−Cu化合物の金属粒子の分散密度と穿孔効率との関係を示す図である。It is a figure which shows the experimental result performed beforehand, and is a figure which shows the relationship between the dispersion density of the metal particle of Ni or Ni and Ni-Cu compound with a particle size of 0.1 micrometer or more which exists in an inner layer scale, and perforation efficiency. 実施例の結果を示す図で、使用した各鋼毎のプラグ先端ドラフト率と穿孔効率との関係を示す図である。It is a figure which shows the result of an Example, and is a figure which shows the relationship between the plug tip draft rate and drilling efficiency for every used steel. 実施例の結果を示す図で、使用した各鋼毎のプラグ先端ドラフト率と中被れ不良率との関係を示す図である。It is a figure which shows the result of an Example, and is a figure which shows the relationship between the plug front-end | tip draft rate for each used steel, and a middle covering defect rate. 実施例の結果を示す図で、使用した各鋼毎のプラグ先端ドラフト率とプラグ寿命との関係を示す図である。It is a figure which shows the result of an Example, and is a figure which shows the relationship between the plug tip draft rate for every used steel, and a plug lifetime.

Claims (5)

質量%で、C:0.01〜0.08%、Si:0.05〜1.00%、Mn:0.05〜1.50%、Cr:9.0〜15.0%、Mo:0.05〜5.00%、Al:0.0005〜0.05%、N:0.1%以下、Ni:0.3〜4.0%、残部:Feおよび不純物からなるマルテンサイト系ステンレス鋼の中実丸ビレットであって、その表面の内層と外層とからなる2層構造の酸化スケールのうち、内層スケール層に含まれる粒径0.1μm以上のNiの金属粒子の密度が1×104〜2×105個/mm2であることを特徴とする中実丸ビレット。 In mass%, C: 0.01 to 0.08%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.50%, Cr: 9.0 to 15.0%, Mo: Martensitic stainless steel comprising 0.05 to 5.00%, Al: 0.0005 to 0.05%, N: 0.1% or less, Ni: 0.3 to 4.0%, balance: Fe and impurities It is a solid round billet of steel, and the density of Ni metal particles with a particle size of 0.1 μm or more contained in the inner scale layer of the oxide scale of the two-layer structure consisting of the inner layer and the outer layer on the surface is 1 × Solid round billet characterized by 10 4 to 2 × 10 5 pieces / mm 2 . 質量%で、C:0.01〜0.08%、Si:0.05〜1.00%、Mn:0.05〜1.50%、Cr:9.0〜15.0%、Mo:0.05〜5.00%、Al:0.0005〜0.05%、N:0.1%以下、Ni:0.3〜4.0%、Cu:4.0%以下、残部:Feおよび不純物からなるマルテンサイト系ステンレス鋼の中実丸ビレットであって、その表面の内層と外層とからなる2層構造の酸化スケールのうち、内層スケール層に含まれる粒径0.1μm以上のNiまたはNi−Cu化合物の金属粒子の密度が1×104〜2×105個/mm2であることを特徴とする中実丸ビレット。 In mass%, C: 0.01 to 0.08%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.50%, Cr: 9.0 to 15.0%, Mo: 0.05 to 5.00%, Al: 0.0005 to 0.05%, N: 0.1% or less, Ni: 0.3 to 4.0%, Cu: 4.0% or less, balance: Fe And a solid round billet of martensitic stainless steel made of impurities, and a nickel oxide having a particle size of 0.1 μm or more contained in the inner scale layer among the two-layered oxide scale consisting of an inner layer and an outer layer on the surface. Or the density of the metal particle of a Ni-Cu compound is 1 * 10 < 4 > -2 * 10 < 5 > piece / mm < 2 >, The solid round billet characterized by the above-mentioned. 請求項1または2に記載の化学組成を有する中実丸ビレットを、水蒸気濃度が5体積%以上30体積%以下の酸化性雰囲気中にて、1100℃以上1300℃以下で1.5時間以上6.0時間以下加熱することを特徴とする中実丸ビレットの製造方法。   3. A solid round billet having the chemical composition according to claim 1 or 2 in an oxidizing atmosphere having a water vapor concentration of 5% by volume to 30% by volume at 1100 ° C. to 1300 ° C. for 1.5 hours to 6 A method for producing a solid round billet, characterized by heating for 0 hour or less. 加熱後、外層スケールを除去することを特徴とする請求項3に記載の中実丸ビレットの製造方法。   The method for producing a solid round billet according to claim 3, wherein the outer layer scale is removed after the heating. 請求項1または2に記載の中実丸ビレットを、傾斜ロール式の穿孔圧延機を使用して中空素管に穿孔圧延することを特徴とするマルテンサイト系ステンレス鋼継目無鋼管の製造方法。
A method for producing a martensitic stainless steel seamless steel pipe, wherein the solid round billet according to claim 1 or 2 is pierced and rolled into a hollow shell using an inclined roll type piercing and rolling mill.
JP2003299856A 2003-08-25 2003-08-25 Solid round billet and manufacturing method thereof, and manufacturing method of martensitic stainless steel seamless steel pipe Expired - Fee Related JP4107199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299856A JP4107199B2 (en) 2003-08-25 2003-08-25 Solid round billet and manufacturing method thereof, and manufacturing method of martensitic stainless steel seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299856A JP4107199B2 (en) 2003-08-25 2003-08-25 Solid round billet and manufacturing method thereof, and manufacturing method of martensitic stainless steel seamless steel pipe

Publications (2)

Publication Number Publication Date
JP2005068490A true JP2005068490A (en) 2005-03-17
JP4107199B2 JP4107199B2 (en) 2008-06-25

Family

ID=34404965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299856A Expired - Fee Related JP4107199B2 (en) 2003-08-25 2003-08-25 Solid round billet and manufacturing method thereof, and manufacturing method of martensitic stainless steel seamless steel pipe

Country Status (1)

Country Link
JP (1) JP4107199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006979A (en) * 2015-06-26 2017-01-12 Jfeスチール株式会社 MANUFACTURING METHOD OF MARTENSITIC HIGH Cr STEEL SEAMLESS STEEL PIPE
EP3121306A4 (en) * 2014-05-21 2017-04-26 JFE Steel Corporation High-strength stainless steel seamless pipe for oil well, and method for producing same
WO2020196595A1 (en) * 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121306A4 (en) * 2014-05-21 2017-04-26 JFE Steel Corporation High-strength stainless steel seamless pipe for oil well, and method for producing same
US10329633B2 (en) 2014-05-21 2019-06-25 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method for manufacturing the same
JP2017006979A (en) * 2015-06-26 2017-01-12 Jfeスチール株式会社 MANUFACTURING METHOD OF MARTENSITIC HIGH Cr STEEL SEAMLESS STEEL PIPE
WO2020196595A1 (en) * 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod
JPWO2020196595A1 (en) * 2019-03-27 2020-10-01
JP7077477B2 (en) 2019-03-27 2022-05-30 日鉄ステンレス株式会社 Ferritic stainless steel rod-shaped steel

Also Published As

Publication number Publication date
JP4107199B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
RU2710808C1 (en) Steel long products for well element and well element
RU2552805C2 (en) Austenite alloy pipe and method of its manufacturing
EP2127767A1 (en) Process for producing seamless steel pipe made of high-chromium high-nickel alloy steel
EP3418410B1 (en) Seamless steel pipe and manufacturing method of same
EP1099772B1 (en) Martensite stainless steel for seamless steel tube
EP1632583B1 (en) Tool steel for hot working, tool for hot working and plug for producing seamless pipe
JP4359783B2 (en) Seamless steel pipe manufacturing method
JP4710904B2 (en) Seamless pipe rolling roll
JP4107199B2 (en) Solid round billet and manufacturing method thereof, and manufacturing method of martensitic stainless steel seamless steel pipe
WO2013151059A1 (en) Hollow seamless pipe for high-strength spring
JP4900385B2 (en) High alloy rolling mandrel bar, surface treatment method and manufacturing method thereof, and method of operating seamless steel pipe manufacturing apparatus
JP2010248630A (en) Case-hardened steel and method for manufacturing the same
JPH03204106A (en) Plug for manufacturing hot seamless tube
JP2007100217A (en) Roller for conveying hot material
JP2581154B2 (en) Plug for steel pipe drilling machine
JP3305604B2 (en) Manufacturing method of seamless steel pipe
JP2002192205A (en) Plug for making seamless pipe
JP2003171733A (en) Plug for producing seamless steel pipe
JPH11129008A (en) Plug for seamless steel pipe manufacturing and production method
JP2007092180A (en) Method for restraining buildup on roller for carrying high temperature material
JP4200716B2 (en) Method for suppressing carburization in heat treatment step of tube made of Ni-base alloy or Fe-base alloy
CN116179946A (en) High-strength CO-resistant material 2 Corrosion stainless steel, oil casing, preparation method and application thereof
JPH105821A (en) Heat treating method of plug for manufacturing seamless steel tube and manufacture of seamless steel tube
JPH02255204A (en) Plug for piercing and rolling for production of steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees