JP2005068122A - Application of midkine for prevention and treatment of myocardiopathy - Google Patents

Application of midkine for prevention and treatment of myocardiopathy Download PDF

Info

Publication number
JP2005068122A
JP2005068122A JP2003343805A JP2003343805A JP2005068122A JP 2005068122 A JP2005068122 A JP 2005068122A JP 2003343805 A JP2003343805 A JP 2003343805A JP 2003343805 A JP2003343805 A JP 2003343805A JP 2005068122 A JP2005068122 A JP 2005068122A
Authority
JP
Japan
Prior art keywords
myocardial
expression
myocardiopathy
prevention
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343805A
Other languages
Japanese (ja)
Inventor
Mitsuru Horiba
充 堀場
Itsuo Kodama
逸雄 児玉
Takashi Muramatsu
喬 村松
Kenji Kadomatsu
健治 門松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003343805A priority Critical patent/JP2005068122A/en
Publication of JP2005068122A publication Critical patent/JP2005068122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To elucidate a mechanism of midkine (MK) for myocardium and effect on myocardiopathy for aiming at the application of the MK for the prevention and treatment of the myocardiopathy. <P>SOLUTION: A myocardium ischemia reperfusion model is prepared by using a wild type mouse for analyzing the appearance pattern of the MK. Also, a similar model is prepared by using an MK-deleted mouse for elucidating the role of the MK in a living body by investigating the similar model comparatively with the case of the wild type mouse. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は心筋障害の予防、および障害に対する治療に関する。  The present invention relates to the prevention and treatment of myocardial injury.

ミッドカイン(midkine:MK)は胚性腫瘍細胞のレチノイン酸による分化誘導過程で一過性に発現する遺伝子産物として発見されたヘパリン結合性増殖因子である。(Kadomatsu,K.et al.:Biochem.Biophys.Res.Commun.,151:1312−1318,1990)。MKは種間でのタンパク質保存度が高く保たれており、ヒトとマウスのMKではアミノ酸配列において、87%の相同性がある。MKは神経細胞の生存・分化、組織修復、線溶系活性化能など様々な生物活性を有し、病態との関連性も注目されている。特にMKは多くのヒト癌で発現が上昇し、MKcDNAの導入による強制発現により、正常細胞が癌化する(Kadomatsu,K.et al.:Br.J.Cancer,75:354−359,1997)ことからヒト癌の発生と進展に深く関与すると考えられる。またMK遺伝子を欠くノックアウトマウスでは頚動脈障害モデルにおいて新生内膜の形成が著しく低下することからMKは血管病変の生起にも関与すると考えられる(Horiba,M.et al.:J.Clin.Invest.,105:489−495,2000)。さらにMKはBcl−2の発現を増強することでアポトーシス抑制作用も有する(Qi,M.et al.:J.Biochem.,127:269−277,2000)。これらのMK生物活性を応用することにより、いくつかの細胞障害性疾患に対して治療効果があると考えられる。  Midkine (MK) is a heparin-binding growth factor discovered as a gene product that is transiently expressed during the differentiation induction process of embryonic tumor cells by retinoic acid. (Kadomatsu, K. et al .: Biochem. Biophys. Res. Commun., 151: 1312-1318, 1990). MK maintains a high degree of protein conservation between species, and human and mouse MKs have 87% homology in amino acid sequences. MK has various biological activities such as survival and differentiation of nerve cells, tissue repair, and fibrinolytic system activation ability, and its relevance to pathological conditions is also attracting attention. In particular, expression of MK increases in many human cancers, and normal cells become cancerous by forced expression by introduction of MK cDNA (Kadomatsu, K. et al .: Br. J. Cancer, 75: 354-359, 1997). Therefore, it is considered to be deeply involved in the development and development of human cancer. In addition, in knockout mice lacking the MK gene, the formation of neointima is remarkably reduced in the carotid artery injury model, and therefore MK is considered to be involved in the occurrence of vascular lesions (Horiba, M. et al .: J. Clin. Invest. , 105: 489-495, 2000). Furthermore, MK also has an apoptosis inhibitory effect by enhancing the expression of Bcl-2 (Qi, M. et al .: J. Biochem., 127: 269-277, 2000). By applying these MK biological activities, it is considered that there is a therapeutic effect on several cytotoxic diseases.

虚血性心疾患、拡張型心筋症などの心筋障害は致死的な疾患であり、仮に生命を維持できたとしても心不全に陥る可能性は高く、Quality of lifeが著しく制限されるものである。特に重度の心不全に対しては現在根治的な治療は無く、心臓移植が唯一有効な手段であるが全世界的にドナー不足の状態が続いている。近年、心筋障害進行の過程においてアポトーシスの関連が注目されつつあり(Ginard,BN.et al.J.Clin.Invest.,111:1457−1459,2003)、MKが心筋障害予防に繋がることが期待される。  Myocardial disorders such as ischemic heart disease and dilated cardiomyopathy are fatal diseases, and even if they can maintain their lives, there is a high possibility of falling into heart failure, and the quality of life is significantly limited. In particular, there is currently no curative treatment for severe heart failure, and heart transplantation is the only effective means, but the donor shortage continues worldwide. In recent years, attention has been focused on apoptosis in the process of myocardial injury (Ginard, BN. Et al. J. Clin. Invest., 111: 1457-1459, 2003), and MK is expected to lead to prevention of myocardial injury. Is done.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、心筋障害を予防し治療に応用する事を大目的として、MKの心筋に対するメカニズムを明らかとし、心筋障害におよぼす影響を解明する事を課題とする。  It is an object of the present invention to clarify the mechanism of MK to the myocardium and to elucidate the effect on the myocardial disorder with the main purpose of preventing and applying myocardial damage to treatment.

課題を解決するための手段Means for solving the problem

心筋障害のモデルとして、野生型マウス心筋虚血再灌流モデルを作成し、再灌流後の心筋でのMK発現パターンをWestern blottingにて、またMKの局在を免疫組織染色で詳細に検討した。さらに生体でのMKの影響をみるため、MK欠損(MKKO)マウスでも同モデルを作成し、病変の程度について野生型マウスとの比較検討を行った。心筋障害に対するMKの直接作用の解析としてはアポトーシスを誘導した培養心筋細胞に対してMKを添加し、細胞死の抑制を検討した。  As a model of myocardial injury, a wild-type mouse myocardial ischemia / reperfusion model was prepared, and the MK expression pattern in the myocardium after reperfusion was examined by Western blotting, and the localization of MK was examined in detail by immunohistochemical staining. Furthermore, in order to examine the influence of MK in the living body, the same model was created even in MK-deficient (MKKO) mice, and the degree of lesion was compared with that of wild-type mice. As an analysis of the direct action of MK on myocardial injury, MK was added to cultured cardiomyocytes in which apoptosis was induced, and suppression of cell death was examined.

以下添付の図面に従ってこの発明を詳細に説明する。図1は心筋虚血再灌流後のMK発現パターンを調べたWestern blottingである。図2はその心筋でのMK発現を免疫組織染色で証明したものである。図3は野生型とMKKOマウスでの心筋障害の程度を比較検討したものである。  Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is Western blotting in which the MK expression pattern after myocardial ischemia reperfusion was examined. FIG. 2 demonstrates MK expression in the myocardium by immunohistochemical staining. FIG. 3 is a comparative study of the degree of myocardial injury in wild-type and MKKO mice.

マウス心筋虚血再灌流モデルの作成方法について説明する。ペントバルビタールによる腹腔麻酔後、気管内挿管し人工呼吸器管理とする。左傍胸壁切開を加えて心臓を露出させた後、実体顕微鏡下に左冠動脈を結紮、1時間後に再解放する。閉胸後自発呼吸の出現を確認して抜管、回復を待って通常の飼育状態にもどす。    A method for creating a mouse myocardial ischemia / reperfusion model will be described. After abdominal anesthesia with pentobarbital, intubate intubation and ventilator management. After the left parathoracic incision is made to expose the heart, the left coronary artery is ligated under a stereomicroscope and rereleased 1 hour later. After closing the chest, confirm the appearance of spontaneous breathing, extubate, wait for recovery, and return to normal breeding.

Western BlottingによるMKの発現について説明する。野生型マウスについて、心筋虚血再灌流術後6時間、12時間、24時間と経時的に再灌流モデルの心臓を取り出し、蛋白を抽出する。それぞれと等量の蛋白量についてSDSゲル電気泳動(SDS−PAGE)の後、抗MK抗体を用いたWestern Blottingを行い、デンシトメーターによる定量をすることでMK蛋白発現量の経時的変化を評価する。    The expression of MK by Western blotting will be described. For wild-type mice, the heart of the reperfusion model is taken out over time, such as 6 hours, 12 hours, and 24 hours after myocardial ischemia reperfusion, and protein is extracted. After SDS gel electrophoresis (SDS-PAGE) for the same amount of protein as each, Western blotting using anti-MK antibody was performed, and the time-dependent change in MK protein expression was evaluated by quantification with a densitometer To do.

免疫組織染色法によるMK発現の評価について説明する。心筋虚血再灌流術施行24時間後の野生型マウスを4%パラフォルムアルデヒドで固定後心臓を摘出し、パラフィン包埋後5μm厚の切片を作成する。1次抗体として抗MK抗体、2次抗体にHRP標識したIgG抗体を使用して酵素抗体法を施行後、発色基質(AEC)にて発色させることでMK蛋白の局在を評価する。    The evaluation of MK expression by immunohistochemical staining will be described. Wild-type mice 24 hours after myocardial ischemia / reperfusion are fixed with 4% paraformaldehyde, and then the heart is removed. After embedding in paraffin, 5 μm-thick sections are prepared. The enzyme antibody method is performed using an anti-MK antibody as a primary antibody and an HRP-labeled IgG antibody as a secondary antibody, and then the color of the MK protein is evaluated by color development with a chromogenic substrate (AEC).

心筋障害の評価方法について説明する。心筋虚血再灌流モデル作成24時間後再開胸して採血したのち左冠動脈を結紮し、拍動心腔内にEvans Blueを注入する。すると冠動脈血流の保たれた正常部位が青く染色され、それ以外の部位は虚血リスクエリアと同定される。心停止後心臓を摘出して約1mm厚の切片とし、TTCにて再度染色を加える。リスクエリアのうちTTCで赤く染色される部位は心筋の生存が保たれている範囲で完全な梗塞エリアは白く残ることとなる。これらの色の面積を測定し、その比率を比較することで心筋障害の程度を定量化することが可能となる。さらに血清CPKを測定することで心筋障害を多角的に評価する。    A method for evaluating myocardial injury will be described. After 24 hours after the creation of a myocardial ischemia / reperfusion model, the chest was collected again and blood was collected. The left coronary artery was ligated, and Evans Blue was injected into the beating heart chamber. Then, the normal site where the coronary blood flow is maintained is stained blue, and the other sites are identified as ischemic risk areas. After cardiac arrest, the heart is removed and cut into approximately 1 mm thick sections and stained again with TTC. Of the risk area, a portion stained red with TTC is a region where the myocardial survival is maintained, and a complete infarct area remains white. By measuring the areas of these colors and comparing the ratios, the degree of myocardial injury can be quantified. Furthermore, myocardial damage is evaluated from various aspects by measuring serum CPK.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

(実施例1)心筋虚血再灌流後のMK発現のパターンをWestern Blotting法にて解析した。(図1)に示すごとく、正常心筋ではわずかなMK発現を認めるのみであったが、術後12時間から漸増し、24時間で発現のピークを認めた。48時間後にも比較的強い発現が持続していた。(Example 1) The pattern of MK expression after myocardial ischemia reperfusion was analyzed by Western blotting. As shown in FIG. 1, only a slight MK expression was observed in normal myocardium, but gradually increased from 12 hours after the operation, and a peak of expression was observed at 24 hours. Relatively strong expression persisted after 48 hours.

(実施例2)心筋虚血再灌流後24時間の標本につて免疫組織染色法にてMKの発現範囲を評価した。(図2a)に示すようにMKは梗塞周辺の正常部位を中心に強く発現していた(赤く染色された部位)。その発現領域の境界は明瞭であり、強拡大すると主として心筋細胞膜に限局した発現が認められた(図2b)。(実施例1)の所見と合わせると、MKは心筋虚血再灌流後、梗塞巣周辺の正常心筋部位に強く発現し心筋組織の修復に関わりを有していることが示唆された。(Example 2) The expression range of MK was evaluated by immunohistochemical staining for specimens 24 hours after myocardial ischemia reperfusion. As shown in FIG. 2a, MK was strongly expressed around a normal site around the infarction (a site stained red). The boundary of the expression region is clear, and when it is strongly expanded, expression restricted mainly to the myocardial cell membrane was observed (FIG. 2b). When combined with the findings in (Example 1), MK was strongly expressed in the normal myocardial region around the infarct lesion after myocardial ischemia reperfusion, suggesting that it is involved in the repair of myocardial tissue.

(実施例3)心筋虚血再灌流後24時間後の心筋障害の程度を野生型マウスとMKKOマウス間で比較し、生体においてMKが与える影響について検討した。(図3)で示すごとく、Evans Blue、TTCのいずれにも染色されず白色に残存した心筋梗塞面積はMKKOマウスのものが野生型と比較して有意に大きく、また障害の程度を示す血中のCPKもMKKOマウスで有意に高かった。さらに術後24時間以内の死亡率もMKKOマウスで有意に高かった。これらのことより、心筋虚血再灌流においてMKが欠乏すると心筋障害がより悪化することが示された。(Example 3) The degree of myocardial injury 24 hours after myocardial ischemia-reperfusion was compared between wild-type mice and MKKO mice, and the effect of MK in the living body was examined. As shown in FIG. 3, the myocardial infarction area that remained white without staining with Evans Blue or TTC was significantly larger in the MKO mice than in the wild type, and in the blood showing the degree of damage. CPK was also significantly higher in MKKO mice. Furthermore, the mortality rate within 24 hours after surgery was also significantly higher in MKKO mice. From these facts, it was shown that myocardial damage worsens when MK is deficient in myocardial ischemia reperfusion.

発明の効果The invention's effect

以上図示とともに説明したようにMKは障害心筋周囲に発現し、障害の進行を抑制していることが示された。概念図としてまとめると図4のようにMKが作用している事が推測される。これらのことからMKを障害心筋に投与することにより心不全の予防に繋がると考えられる。  As described above with reference to the drawings, MK is expressed around the impaired myocardium, indicating that the progression of the disorder is suppressed. If it summarizes as a conceptual diagram, it will be guessed that MK is acting like FIG. From these facts, it is considered that administration of MK to the impaired myocardium leads to prevention of heart failure.

この発明の一実施例に関わる、心筋虚血再灌流後のMK発現のパターンを示すWestern Blottingの図である。  It is a figure of Western Blotting which shows the pattern of MK expression after myocardial ischemia reperfusion concerning one Example of this invention. この発明の一実施例に関わる、MKの発現範囲を示した免疫組織染色の図である。  It is a figure of the immunohistochemical staining which showed the expression range of MK in connection with one Example of this invention. この発明の一実施例に関わる、虚血再灌流24時間後の心筋障害の程度を野生型−MKKOマウスの間で比較した図である。  It is the figure which compared the grade of the myocardial injury 24 hours after ischemia reperfusion concerning one Example of this invention between a wild-type-MKKO mouse | mouth. この発明の実施例よりまとめた概念図である。  It is the conceptual diagram put together from the Example of this invention.

Claims (1)

ミッドカインによる心筋障害の予防効果。Prevention of myocardial damage by midkine.
JP2003343805A 2003-08-27 2003-08-27 Application of midkine for prevention and treatment of myocardiopathy Pending JP2005068122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343805A JP2005068122A (en) 2003-08-27 2003-08-27 Application of midkine for prevention and treatment of myocardiopathy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343805A JP2005068122A (en) 2003-08-27 2003-08-27 Application of midkine for prevention and treatment of myocardiopathy

Publications (1)

Publication Number Publication Date
JP2005068122A true JP2005068122A (en) 2005-03-17

Family

ID=34419348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343805A Pending JP2005068122A (en) 2003-08-27 2003-08-27 Application of midkine for prevention and treatment of myocardiopathy

Country Status (1)

Country Link
JP (1) JP2005068122A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062087A1 (en) * 2004-12-06 2006-06-15 Cell Signals Inc. Composition for treating or preventing myocardial disorder or heart failure
WO2007055397A1 (en) * 2005-11-08 2007-05-18 Foundation For Biomedical Research And Innovation Method of treatment for ischemic heart disease
WO2008129851A1 (en) * 2007-03-30 2008-10-30 Cell Signals Inc. Nitric oxide synthase activator
WO2010052828A1 (en) * 2008-11-06 2010-05-14 国立大学法人名古屋大学 Pharmaceutical agent for nonischemic myocardial disorders

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062087A1 (en) * 2004-12-06 2006-06-15 Cell Signals Inc. Composition for treating or preventing myocardial disorder or heart failure
US9023799B2 (en) 2004-12-06 2015-05-05 Cellmid Limited Method to reduce loss of cardiac function following ischemia/reperfusion
WO2007055397A1 (en) * 2005-11-08 2007-05-18 Foundation For Biomedical Research And Innovation Method of treatment for ischemic heart disease
JP2009514787A (en) * 2005-11-08 2009-04-09 財団法人先端医療振興財団 Method for treating ischemic heart disease
US7893018B2 (en) 2005-11-08 2011-02-22 Foundation For Biomedical Research And Innovation Method of treatment for ischemic heart disease
WO2008129851A1 (en) * 2007-03-30 2008-10-30 Cell Signals Inc. Nitric oxide synthase activator
JPWO2008129851A1 (en) * 2007-03-30 2010-07-22 国立大学法人名古屋大学 Nitric oxide synthase activator
US8288343B2 (en) 2007-03-30 2012-10-16 National University Corporation Nagoya University Activation of endothelial nitric oxide synthase by midkine and uses therefor in effecting vasodilation
WO2010052828A1 (en) * 2008-11-06 2010-05-14 国立大学法人名古屋大学 Pharmaceutical agent for nonischemic myocardial disorders
JP4831551B2 (en) * 2008-11-06 2011-12-07 国立大学法人名古屋大学 Medicine for non-ischemic myocardial injury

Similar Documents

Publication Publication Date Title
de Vrieze et al. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales
Krusche et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation
DE69735939T2 (en) FHIT PROTEINS AND NUCLEIC ACIDS AND METHODS BASED ON THEM
Fini et al. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse
Bryant et al. Tumor suppressor genes encoding proteins required for cell interactions and signal transduction in Drosophila
CN109640962A (en) Encode the polynucleotides of relaxain
Westbury et al. Dynamic temporal and spatial regulation of the cdk inhibitor p57kip2 during embryo morphogenesis
CN105008394A (en) Methods of treating colorectal cancer
Griffiths The form and function of the fore‐gut in anuran larvae (Amphibia, Salientia) with particular reference to the manicotto glandulare
JP2021138720A (en) Pharmaceutical association for converting neoplastic cell into non-neoplastic cell and uses thereof
JP5749154B2 (en) Peptide composition for cancer treatment by inhibiting TRPV6 calcium channel activity
Padmakumar et al. Detection of differential fetal and adult expression of chloride intracellular channel 4 (CLIC4) protein by analysis of a green fluorescent protein knock-in mouse line
US20110081296A1 (en) Systems and methods for identification of ciliopathy therapeutics
JP2005068122A (en) Application of midkine for prevention and treatment of myocardiopathy
Ding et al. A phenotype-based forward genetic screen identifies Dnajb6 as a sick sinus syndrome gene
Shi et al. Missense mutation in human CHD4 causes ventricular noncompaction by repressing ADAMTS1
Krautz et al. Tissue-autonomous immune response regulates stress signaling during hypertrophy
JP2023133582A (en) Peptide, and cell fusion agent and pharmaceutical composition for cancer therapy containing the same
DE60036469T2 (en) 17867, A HUMAN AMINO PEPTIDASE
Wang et al. Overexpression of phospho mutant forms of transglutaminase 2 downregulates epidermal growth factor receptor
Gajewska et al. Role of autophagy in mammary gland development
EP3801589B1 (en) Methods and compositions for the treatment of osteopetrosis
KR102133179B1 (en) IRX1 Knock-out Transgenic Zebrafish Model and Method for Producing Thereof
CN109744199A (en) A kind of tumour cell heterograft zebra fish model, its construction method and application
Hussain et al. Genetic study in congenital heart defects