JP2005066740A - Movable element for electrostatic actuator, and its manufacturing method - Google Patents

Movable element for electrostatic actuator, and its manufacturing method Download PDF

Info

Publication number
JP2005066740A
JP2005066740A JP2003298722A JP2003298722A JP2005066740A JP 2005066740 A JP2005066740 A JP 2005066740A JP 2003298722 A JP2003298722 A JP 2003298722A JP 2003298722 A JP2003298722 A JP 2003298722A JP 2005066740 A JP2005066740 A JP 2005066740A
Authority
JP
Japan
Prior art keywords
mover
wafer
manufacturing
plate
square bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003298722A
Other languages
Japanese (ja)
Other versions
JP3673266B2 (en
Inventor
Takaya Matsuda
享也 松田
Yoshiharu Fujioka
義治 藤岡
Shintaro Nagatsuka
伸太郎 永塚
Akio Konuki
明男 小貫
Mitsuo Kato
三雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003298722A priority Critical patent/JP3673266B2/en
Publication of JP2005066740A publication Critical patent/JP2005066740A/en
Application granted granted Critical
Publication of JP3673266B2 publication Critical patent/JP3673266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for the low-cost mass production of movable elements for electrostatic actuators requiring high dimensional accuracy. <P>SOLUTION: A plurality of rectangular bar-like members 15 are joined at predetermined spaces to a first plate 12 and a second plate 13 to form a wafer 21, and the wafer 21 is finished into predetermined thickness. A comb-type electrode 6 of the movable element is formed by providing a plurality of grooves on one face of the first plate 12, and the wafer 21 is cut into a plurality of parts at a plane which bisects the rectangular bar-like members 15 in the thickness direction, to form a plurality of hollow square bars 27. The hollow square bars 27 are further cut at a plane orthogonal to the longitudinal direction of the square bars to form a plurality of movable elements 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、マイクロマシンとして開発が進んでいる静電方式アクチュエーターの主要部品であり、高い寸法精度が要求される可動子の製造方法に関する。   The present invention relates to a manufacturing method of a mover that is a main part of an electrostatic actuator that is being developed as a micromachine and requires high dimensional accuracy.

近年、通信容量の拡大に伴い、携帯電話を始めとするモバイル機器へ小型カメラを搭載する技術が発展している。具体的には、従来の固定レンズ方式からレンズ駆動機能を備えた自動焦点、オートズームなどの高機能化と小型コンパクト化が進行している。   In recent years, with the expansion of communication capacity, a technology for mounting a small camera on a mobile device such as a mobile phone has been developed. Specifically, higher functions such as autofocus and autozoom with a lens driving function and miniaturization are progressing from the conventional fixed lens system.

レンズ駆動には小型の電磁モーター、圧電式アクチュエータ、静電アクチュエータ等、種々の方式が用いられている。これらの方式の中で、特に携帯電話に搭載されるカメラの場合、小型化、高性能化、低消費電力化を実現すると期待される静電アクチュエータが注目されている。   Various systems such as a small electromagnetic motor, a piezoelectric actuator, and an electrostatic actuator are used for driving the lens. Among these systems, particularly in the case of a camera mounted on a mobile phone, an electrostatic actuator that is expected to realize downsizing, high performance, and low power consumption has attracted attention.

静電アクチュエータは上下の固定電極を含む箱型の固定子と、その上下の固定電極間を静電気力で浮動し導電性を有する可動子で構成される。上側の固定電極下面には複数の電極が櫛刃状に配置され、可動子の上部には複数の溝が設けられ櫛刃状に形成される。上側固定電極の特定電極に電圧を付加することにより、可動子に例えば斜め右上方向に静電気力が働き、可動子はその静電力により右上方向に引き寄せられる。このとき、上側固定電極の印加電圧を切り、下側電極に電圧を印加すると可動子は垂直下方向に吸引される。次に下側電極の電圧を切り、再び上側固定電極の特定電極に電圧を印加して、可動子に対して斜め右上方向に静電気力を発生させ、可動子を右上方向に移動させる。このように、上下の固定電極の中で電圧を印加する電極を制御することにより、可動子が上下に振動しながら水平方向に移動する。   The electrostatic actuator is composed of a box-shaped stator including upper and lower fixed electrodes, and a mover having conductivity by floating between the upper and lower fixed electrodes by electrostatic force. A plurality of electrodes are arranged in a comb blade shape on the lower surface of the upper fixed electrode, and a plurality of grooves are provided in the upper part of the mover to form a comb blade shape. By applying a voltage to the specific electrode of the upper fixed electrode, for example, an electrostatic force acts diagonally in the upper right direction on the mover, and the mover is attracted in the upper right direction by its electrostatic force. At this time, when the voltage applied to the upper fixed electrode is turned off and a voltage is applied to the lower electrode, the mover is attracted vertically downward. Next, the voltage of the lower electrode is turned off, the voltage is applied again to the specific electrode of the upper fixed electrode, an electrostatic force is generated obliquely in the upper right direction with respect to the mover, and the mover is moved in the upper right direction. In this way, by controlling the electrode to which the voltage is applied among the upper and lower fixed electrodes, the mover moves in the horizontal direction while vibrating up and down.

静電アクチュエータのキー要素である可動子と、対向配置された固定電極の間の隙間はミクロンオーダーの精度が要求される。従って可動子は、静電気力で可動するために導電性材料である必要があり、かつ高い寸法精度が要求される。下記特許文献1には、静電アクチュエータの構造、製造方法及び動作原理が記載されている。
特開2001−268946号公報(第7頁、図6)
The gap between the movable element, which is a key element of the electrostatic actuator, and the fixed electrodes arranged opposite to each other is required to have micron order accuracy. Therefore, the mover needs to be a conductive material in order to move with electrostatic force, and high dimensional accuracy is required. Patent Document 1 below describes the structure, manufacturing method, and operating principle of an electrostatic actuator.
JP 2001-268946 A (page 7, FIG. 6)

静電アクチュエータのキー部品である可動子は従来、チタン(Ti)、アルミニュウム(Al)等の軽金属材料を放電加工などを用いて1個1個加工する方法や、カーボンや導電性金属を添加した導電性プラスチックを精密射出整形技術で形成する方法が取られていた。更に上記特許文献1では、金属金型を用いた加熱プレス加工であるガラスモールド製法を用いて、可動子とレンズを一体に形成している。   The mover, which is a key part of the electrostatic actuator, has conventionally been made by processing light metal materials such as titanium (Ti) and aluminum (Al) one by one using electric discharge machining, and adding carbon and conductive metals. A method of forming a conductive plastic by a precision injection molding technique has been taken. Furthermore, in the said patent document 1, the needle | mover and a lens are integrally formed using the glass mold manufacturing method which is a heat press process using a metal metal mold | die.

しかしながら最近では、携帯電話に搭載されるカメラの駆動機構のように超小型化の要求が高まり、可動子の外形が数ミリメートルでしかもレンズを駆動するに足りる静電力を得るために、固定電極と可動子の隙間は数ミクロン以内に納まることが要求される。従って、現在の射出整形技術あるいはガラスモールド製法では、金型精度とともに成形品の硬化時の歪み、所謂ヒケの問題で限界となってきている。   Recently, however, there has been an increasing demand for ultra-miniaturization like the driving mechanism of a camera mounted on a mobile phone, and in order to obtain an electrostatic force with a movable element having an outer shape of several millimeters and sufficient to drive a lens, The gap between the movers is required to be within a few microns. Therefore, the current injection molding technique or glass mold manufacturing method is limited by the problem of distortion at the time of curing of a molded product, so-called sink, as well as mold accuracy.

この発明は、高い寸法精度が要求される静電方式アクチュエータの可動子を、安価に量産できる製造方法を提供することを目的としている。  An object of the present invention is to provide a manufacturing method capable of inexpensively mass-producing a movable element of an electrostatic actuator that requires high dimensional accuracy.

本発明による静電方式アクチュエータ用可動子の製造方法は、第1及び第2の板材に複数の角棒状部材を所定の間隔で接合してウェハーを形成する工程と、前記ウェハーを所定の厚さに仕上げる工程と、前記第1の板材の一方の面に複数の溝を設けることにより、前記可動子の櫛型電極を形成する工程と、前記角棒状部材を厚み方向に2分する平面で前記ウェハーを複数に切断し、複数の中空の角材を形成する工程と、前記中空の角材を、該角材の長手方向に直交する平面で切断し、複数の可動子を形成する工程とを具備する。   The method for manufacturing a movable element for an electrostatic actuator according to the present invention includes a step of bonding a plurality of square bar-shaped members to a first plate and a second plate at predetermined intervals, and forming a wafer with a predetermined thickness. A step of forming a comb-shaped electrode of the mover by providing a plurality of grooves on one surface of the first plate member, and a plane that bisects the square bar-shaped member in the thickness direction. A step of cutting the wafer into a plurality of pieces to form a plurality of hollow square pieces, and a step of cutting the hollow square pieces along a plane perpendicular to the longitudinal direction of the square pieces to form a plurality of movers.

静電方式アクチュエータの可動子を、高い寸法精度で安価に量産することが可能となる。   The mover of the electrostatic actuator can be mass-produced with high dimensional accuracy at low cost.

以下、図面を参照しながら本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明による可動子1の一実施形態を示す。この可動子1は、上側板材2、下側板材3、側板4、5が互いに接合され、中空の角柱状に形成されている。この中空部の中にはレンズ7が配置されている。上側板材2の上面は、複数の溝を設けることにより櫛型電極6が形成されている。可動子1を構成する板材の材料としては、導電性を有し密度が小さく、熱膨張係数が比較的小さく、ラッピング、切削等の加工性の良好な材料ととして、Ti、Ti合金,Mg合金、不純物がドープされたシリコン等の半導体、グラファイト等を使用できる。又、可動子1の材料としては、後述するように非導電性材料を使用することもできる。   FIG. 1 shows an embodiment of a mover 1 according to the present invention. The mover 1 is formed in a hollow prismatic shape by joining an upper plate member 2, a lower plate member 3, and side plates 4, 5 to each other. A lens 7 is disposed in the hollow portion. A comb-shaped electrode 6 is formed on the upper surface of the upper plate 2 by providing a plurality of grooves. The material of the plate material constituting the movable element 1 is Ti, Ti alloy, Mg alloy as a material having conductivity, small density, relatively small thermal expansion coefficient, and good workability such as lapping and cutting. Further, a semiconductor such as silicon doped with impurities, graphite or the like can be used. Moreover, as a material of the needle | mover 1, a nonelectroconductive material can also be used so that it may mention later.

図2は静電アクチュエータの断面構造を概略示す図である。固定子8は上側固定電極8aと下側固定電極8bからなり、これら固定電極8a、8bの間に可動子1が配置されている。本実施形態では可動子の上面のみが櫛型電極に加工され下面は平面であるが、他の実施形態では上下面ともに櫛型電極に加工する場合もある。上側固定電極8aの下面には可動子の櫛型電極の溝に対応したピッチで電極パターンが形成されるが、下側固定電極8bの表面は平面になっている。   FIG. 2 is a diagram schematically showing a cross-sectional structure of the electrostatic actuator. The stator 8 includes an upper fixed electrode 8a and a lower fixed electrode 8b, and the mover 1 is disposed between the fixed electrodes 8a and 8b. In this embodiment, only the upper surface of the mover is processed into a comb-shaped electrode and the lower surface is a flat surface. However, in other embodiments, both the upper and lower surfaces may be processed into a comb-shaped electrode. An electrode pattern is formed on the lower surface of the upper fixed electrode 8a at a pitch corresponding to the groove of the comb-shaped electrode of the mover, but the surface of the lower fixed electrode 8b is flat.

可動子1と固定電極8a、8bの隙間は数ミクロンに制御される必要がある。静電気力は距離の二乗に反比例するため、この隙間は可動子7と固定電極8a、8bの対向する面全体に渡って均一になるよう制御される必要がある。   The gap between the mover 1 and the fixed electrodes 8a and 8b needs to be controlled to several microns. Since the electrostatic force is inversely proportional to the square of the distance, this gap needs to be controlled to be uniform over the entire opposing surface of the movable element 7 and the fixed electrodes 8a and 8b.

図3は静電アクチュエータの詳細構造及び可動原理を説明するための図、図4は上側固定電極8aの印加電圧シーケンスを示す図である。櫛型電極6の各電極をここでは櫛刃電極6aとする。図3のように、上側固定電極8aには櫛刃電極6aのピッチP1の整数分の1(例えば1/4)のピッチP2で電極パターン10が形成される。複数の櫛刃電極6aの間隔P1は例えば50〜60μmである。   FIG. 3 is a diagram for explaining the detailed structure and the principle of movement of the electrostatic actuator, and FIG. 4 is a diagram showing a voltage application sequence of the upper fixed electrode 8a. Here, each electrode of the comb electrode 6 is referred to as a comb blade electrode 6a. As shown in FIG. 3, the electrode pattern 10 is formed on the upper fixed electrode 8a at a pitch P2 that is an integer (for example, 1/4) of the pitch P1 of the comb blade electrode 6a. The interval P1 between the plurality of comb blade electrodes 6a is, for example, 50 to 60 μm.

ここでは4相の電極が形成されている場合を説明する。図4において、A、B、C、Dは固定子8aの各電極パターンを示し、t1、t2、…は連続する期間を示し、丸印は電極パターンに電圧が印加されていることを示す。例えば期間t1に、4相電極のうち電極パターンA、Bの2相にプラスの電圧を印加すると、図3(a)のように可動子の櫛型電極6は右斜め上方向の静電力を受けて浮動し、距離X(≒P1/4)だけ右方向に移動する。次の期間t2に固定電極8aの電極パターンに対する印加電圧を切り、下側の固定電極8bにプラスの電圧を印加すると、可動子は図3(b)のように垂直下方向の静電力を受け落下する。次の期間t3に下側の固定電極8bの印加電圧を切り、上側の電極パターンのうち以前に印加した電極パターンから一つ右隣の2相、つまり電極パターンB、Cにプラスの電圧を印加する。というように、上下の固定電極に交互に電圧を印加することにより、可動子1は固定電極8a、8bの間で毎回距離Xだけ図の横方向に移動する。   Here, a case where four-phase electrodes are formed will be described. In FIG. 4, A, B, C, and D indicate electrode patterns of the stator 8a, t1, t2,... Indicate continuous periods, and circles indicate that a voltage is applied to the electrode patterns. For example, when a positive voltage is applied to the two phases of the electrode patterns A and B among the four-phase electrodes during the period t1, the comb-shaped electrode 6 of the mover generates an electrostatic force in the upper right direction as shown in FIG. In response, it floats and moves to the right by a distance X (≈P1 / 4). When the voltage applied to the electrode pattern of the fixed electrode 8a is turned off in the next period t2 and a positive voltage is applied to the lower fixed electrode 8b, the mover receives an electrostatic force in the vertical downward direction as shown in FIG. Fall. In the next period t3, the voltage applied to the lower fixed electrode 8b is cut off, and a positive voltage is applied to the two right-hand phases from the previously applied electrode pattern of the upper electrode pattern, that is, the electrode patterns B and C. To do. Thus, by alternately applying a voltage to the upper and lower fixed electrodes, the mover 1 moves in the horizontal direction in the figure by a distance X each time between the fixed electrodes 8a and 8b.

次に本発明による可動子の製造方法の一実施形態を図5〜図11を参照して説明する。   Next, an embodiment of a method for manufacturing a mover according to the present invention will be described with reference to FIGS.

図5は櫛型電極6を形成する幅W1、長さL1の上部板材12及び下部板材13を示し、研削、両面ラップ、ポリシング等の手段で所定の厚さT1に仕上げられる。両板材のサイズは同一でよい。   FIG. 5 shows an upper plate member 12 and a lower plate member 13 having a width W1 and a length L1 that form the comb-shaped electrode 6, and are finished to a predetermined thickness T1 by means such as grinding, double-sided lapping, and polishing. The size of both plate materials may be the same.

図6は可動子1の側板4の材料となる板材14及び板材14から切り出されたブロック材15を示す。ブロック材15の厚さはT2、高さはHで、長さは上下の板材12,13の長さL1と同等かもしくは若干長いL2(L2≧L1)である。ブロック材15は後の工程で側板4に加工される。このようにブロック15は、大きな板材14から複数個作製される。   FIG. 6 shows a plate material 14 which is a material of the side plate 4 of the mover 1 and a block material 15 cut out from the plate material 14. The thickness of the block material 15 is T2, the height is H, and the length is equal to or slightly longer than the length L1 of the upper and lower plate materials 12, 13 (L2 ≧ L1). The block material 15 is processed into the side plate 4 in a later step. In this way, a plurality of blocks 15 are produced from the large plate material 14.

図7は前記部材12、13、15を組み合わせた状態を示す。側板となる複数のブロック材15は、工作ジグによる高精度な配置を可能とするために、櫛型電極が形成される板材12よりも長く形成し、この突き出し部をジグのガイド部で位置規制して高精度なブロック材の配置を実現する。   FIG. 7 shows a state in which the members 12, 13, and 15 are combined. The plurality of block members 15 serving as side plates are formed longer than the plate member 12 on which the comb-shaped electrodes are formed in order to enable highly accurate placement by a work jig, and the position of the protruding portion is regulated by a jig guide portion. As a result, highly accurate block material placement is realized.

図7及び図8のように、上下の板材12、13の間に所定の間隔Aでブロック材15が複数個接着され、接着ウェハー21が形成される。上下の板材12、13とブロック材15は、導電性のペーストを含んだ所謂導電性接着剤17により接着するか、もしくは上下の板材とブロック材15の接続面に金属箔を形成した後、半田、銀蝋などの金属で接合するのが好ましい。しかし、例えばエポキシなどの一般の有機接着剤で接着した後、導電ペースト19を塗布し上下の板材と側板の導通をとっても何ら差し支えはない。   As shown in FIGS. 7 and 8, a plurality of block members 15 are bonded at a predetermined interval A between the upper and lower plate members 12 and 13 to form an adhesive wafer 21. The upper and lower plate members 12 and 13 and the block member 15 are bonded with a so-called conductive adhesive 17 containing a conductive paste, or a metal foil is formed on the connection surface between the upper and lower plate members and the block member 15 and then soldered. Bonding with a metal such as silver wax is preferred. However, for example, after bonding with a general organic adhesive such as epoxy, the conductive paste 19 may be applied to establish conduction between the upper and lower plate members and the side plates.

次に、接着ウェハー21を両面ラップ、ポリシングなどの手段で所定の厚さT3に仕上げる。この厚さT3はミクロンオーダーの精度を満足する必要がある。その後、図9のように上部板材12に複数の溝23を設けることにより、櫛型電極6を形成する。   Next, the bonded wafer 21 is finished to a predetermined thickness T3 by means such as double-sided lapping and polishing. This thickness T3 needs to satisfy the accuracy of micron order. Then, the comb-shaped electrode 6 is formed by providing a plurality of grooves 23 in the upper plate 12 as shown in FIG.

図10は櫛型電極が設けられた接着ウェハー21をY方向から見た部分断面図である。所定のピッチP1で設けられた複数の溝23により、複数の櫛刃電極6aが形成される。複数の溝入れは通常、ダイヤモンド粒子を有する回転刃により行われるが、所謂フォトレジストでパターンを形成してケミカルエッチング、イオンミーリング等種々の方法を採用しても何ら問題ない。   FIG. 10 is a partial cross-sectional view of the adhesive wafer 21 provided with comb-shaped electrodes as viewed from the Y direction. A plurality of comb blade electrodes 6a are formed by the plurality of grooves 23 provided at a predetermined pitch P1. A plurality of grooving is usually performed with a rotary blade having diamond particles, but there is no problem even if various methods such as chemical etching and ion milling are employed by forming a pattern with a so-called photoresist.

櫛刃電極6aの幅Bは10ミクロン程度まで加工可能であるが、後の研削加工等の機械加工、又は実際にアクチュエータの可動子として何万回も繰り返し可動する途中で折れたり欠けたりすることがある。従って、複数の溝23には低融点ガラスや樹脂モールド材等の非導電性材料32を充填することで、そのような破損を防止することが可能となる。尚、接着ウェハー21の厚さをT3に仕上げる工程は、前述したように櫛型電極6を形成する前でも、非導電性材料32を充填した後でも良い。   The width B of the comb blade electrode 6a can be processed up to about 10 microns, but it may be broken or chipped during subsequent machining such as grinding, or actually moving tens of thousands of times as an actuator mover. There is. Therefore, it is possible to prevent such breakage by filling the plurality of grooves 23 with a non-conductive material 32 such as low melting point glass or resin molding material. The process of finishing the thickness of the adhesive wafer 21 to T3 may be performed before the comb electrode 6 is formed as described above or after the nonconductive material 32 is filled.

図11(a)は接着ウェハー21をブロック材15の厚さT2方向中心位置(図中点線位置)で複数に分割して、中空の角棒状可動子ブロック27を切出す様子を示す。この切り出しは前述したようなダイヤモンド粒子を有する回転刃により行われる。このとき図11(b)のように、切断端部のひび、欠け等の破損29、あるいは前記複数の溝により形成された櫛型電極の折れを防止する目的で、櫛型電極6の端部に略V字状の切り欠き31を形成しておくのが好ましい。   FIG. 11A shows a state in which the bonded wafer 21 is divided into a plurality at the center position (the dotted line position in the figure) in the thickness T2 direction of the block material 15 and the hollow rectangular bar-shaped movable element block 27 is cut out. This cutting is performed by a rotary blade having diamond particles as described above. At this time, as shown in FIG. 11B, the end of the comb electrode 6 is prevented for the purpose of preventing breakage 29 such as cracks and cracks at the cut end, or breakage of the comb electrode formed by the plurality of grooves. It is preferable to form a substantially V-shaped notch 31 in the front.

可動子ブロック27は、幅が所定幅W2になるよう側面を研削、両面ラップ、ポリシング等の手段で仕上げた後、図12のように複数個の可動子1に切り出される。この切り出しも前述したようなダイヤモンド粒子を有する回転刃により行われる。厚さT3及び幅W2は、例えば共に5mm程度である。   The mover block 27 is cut into a plurality of movers 1 as shown in FIG. 12 after the side surfaces are finished by means such as grinding, double-sided lapping and polishing so that the width becomes a predetermined width W2. This cutting is also performed by a rotary blade having diamond particles as described above. The thickness T3 and the width W2 are both about 5 mm, for example.

以上示したように本発明による可動子の製造方法に拠れば、ミクロン精度の寸法を要求される厚さT3と幅W2の可動子1を、接着ウェハー21から可動子ブロック27を経て、研削、両面ラップ、ポリシング等の手段を用いて仕上げることが可能となる。すなわち、同時に多数個、高精度で同一寸法の可動子1を量産性良く製造可能となる。
本発明は、可動子の上側に櫛型電極を形成した例であるが、駆動力の増加等のために下面にも電極を形成してもよい。それは接着ウェハー21の段階で裏面に溝加工を施すことで可能である。また可動子の側面に櫛型電極を追加加工することも可能で、その場合は可動子ブロック27の段階でブロックを90度回転させて側面に溝加工を施せばよい。
As described above, according to the method of manufacturing the mover according to the present invention, the mover 1 having a thickness T3 and a width W2 that require micron-precision dimensions is ground from the adhesive wafer 21 through the mover block 27. It is possible to finish using means such as double-sided lapping and polishing. That is, it is possible to manufacture a large number of movers 1 with high accuracy and the same dimensions at the same time with high productivity.
Although the present invention is an example in which a comb-shaped electrode is formed on the upper side of the mover, an electrode may be formed on the lower surface in order to increase the driving force. This can be done by applying a groove to the back surface of the bonded wafer 21. Further, it is possible to additionally process the comb-shaped electrode on the side surface of the mover. In this case, the block may be rotated 90 degrees at the stage of the mover block 27 to groove the side surface.

また加工時に発生する加工変質層(結晶歪み)はケミカルエッチング、プラズマエッチング等の手段により取り除くことが可能である。可動子に溝加工を施した後に加工歪等により接着ウェハー21や可動子ブロック27が反ってしまった場合には、再度両面ポリシングで平面度、平行度をだすことが可能である。尚、可動子の壁面を構成する板材としては、上記したような導電性材料に限らず、樹脂等の非導電性材料を使用することができる。その場合は、上記したようなウェハー21の段階あるいは可動子ブロック27の段階で、金属メッキ等により表面に金属層を形成すればよい。   Further, a work-affected layer (crystal distortion) generated during processing can be removed by means such as chemical etching or plasma etching. If the bonded wafer 21 and the mover block 27 are warped due to processing strain after the mover is grooved, the flatness and parallelism can be obtained again by double-side polishing. In addition, as a board | plate material which comprises the wall surface of a needle | mover, non-conductive materials, such as resin, can be used not only the above conductive materials. In that case, a metal layer may be formed on the surface by metal plating or the like at the stage of the wafer 21 or the stage of the mover block 27 as described above.

図13は本発明の他の実施形態に係る可動子製造方法の概要を示す図である。本実施形態では、複数の溝33を有する下部板材35に、上部板材36を接合してウェハー37が形成される。そしてウェハー37の上部板材36には櫛型電極が前述したように設けられる。その後の工程は、図10〜図12と同様である。尚、この例でウェハー37は、隔壁部34の点線で示す中心位置で切断され、図11(b)に示すような中空角棒状の可動子ブロック27が作製される。   FIG. 13 is a diagram showing an overview of a method for manufacturing a mover according to another embodiment of the present invention. In this embodiment, a wafer 37 is formed by bonding an upper plate 36 to a lower plate 35 having a plurality of grooves 33. The upper plate 36 of the wafer 37 is provided with comb-shaped electrodes as described above. The subsequent steps are the same as those shown in FIGS. In this example, the wafer 37 is cut at the center position indicated by the dotted line of the partition wall portion 34 to produce a hollow square bar-like movable element block 27 as shown in FIG.

本発明による可動子1の一実施形態を示す図である。It is a figure which shows one Embodiment of the needle | mover 1 by this invention. 静電アクチュエータの断面構造を概略示す図である。It is a figure which shows schematically the cross-section of an electrostatic actuator. 静電アクチュエータの詳細構造及び可動原理を説明するための図である。It is a figure for demonstrating the detailed structure and movable principle of an electrostatic actuator. 上側固定電極8aの印加電圧シーケンスを示す図である。It is a figure which shows the applied voltage sequence of the upper side fixed electrode 8a. 櫛型電極6を形成する上部板材12及び下部板材13を示す図である。It is a figure which shows the upper board | plate material 12 and the lower board | plate material 13 which form the comb-shaped electrode 6. FIG. 可動子1の側板4の材料となる板材14及び板材14から切り出されたブロック材15を示す図である。It is a figure which shows the block material 15 cut out from the board | plate material 14 used as the material of the side plate 4 of the needle | mover 1, and the board | plate material 14. FIG. 部材12、13、15を組み合わせた状態を示す図である。It is a figure which shows the state which combined the members 12, 13, and 15. FIG. 部材12、13、15の接合方法を示す図である。It is a figure which shows the joining method of the members 12, 13, and 15. FIG. 櫛型電極6が設けられたウェハー21を示す図である。It is a figure which shows the wafer 21 in which the comb-shaped electrode 6 was provided. 櫛型電極6が設けられた接着ウェハー21をY方向から見た部分断面図である。It is the fragmentary sectional view which looked at the adhesion wafer 21 provided with the comb-shaped electrode 6 from the Y direction. 接着ウェハー21を複数の中空角棒状可動子ブロック27に切り出す様子を示す図である。It is a figure which shows a mode that the adhesive wafer 21 is cut out to the some hollow square rod-shaped needle | mover block 27. FIG. 可動子ブロック27を複数個の可動子1に切り出す様子を示す図である。It is a figure which shows a mode that the needle | mover block 27 is cut out to the some needle | mover 1. FIG. 本発明の他の実施形態に係る可動子製造方法の概要を示す図である。It is a figure which shows the outline | summary of the needle | mover manufacturing method which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1…可動子、2…上側板材、3…下側板材、4、5…側板、6…櫛型電極、7…レンズ、8…固定子、10…電極パターン、12、36…上部板材、13、35…下部板材、14…板材、15…ブロック材、17…導電性接着剤、21、37…ウェハー、27…可動子ブロック、32…非導電性材料、34…隔壁。   DESCRIPTION OF SYMBOLS 1 ... Movable element, 2 ... Upper side plate material, 3 ... Lower side plate material, 4, 5 ... Side plate, 6 ... Comb-shaped electrode, 7 ... Lens, 8 ... Stator, 10 ... Electrode pattern, 12, 36 ... Upper plate material, 13 , 35 ... lower plate material, 14 ... plate material, 15 ... block material, 17 ... conductive adhesive, 21, 37 ... wafer, 27 ... mover block, 32 ... non-conductive material, 34 ... partition.

Claims (9)

静電方式のマイクロアクチュエータに用いられる可動子の製造方法であって、
第1及び第2の板材に複数の角棒状部材を所定の間隔で接合してウェハーを形成する工程と、
前記ウェハーを所定の厚さに仕上げる工程と、
前記第1の板材の一方の面に複数の溝を設けることにより、前記可動子の櫛型電極を形成する工程と、
前記角棒状部材を厚み方向に2分する平面で前記ウェハーを複数に切断し、複数の中空の角材を形成する工程と、
前記中空の角材を、該角材の長手方向に直交する平面で切断し、複数の可動子を形成する工程と、
を具備することを特徴とする静電方式アクチュエータ用可動子の製造方法。
A method of manufacturing a mover used in an electrostatic microactuator,
Forming a wafer by bonding a plurality of square bar members to the first and second plate members at a predetermined interval;
Finishing the wafer to a predetermined thickness;
Forming a comb-shaped electrode of the mover by providing a plurality of grooves on one surface of the first plate member;
Cutting the wafer into a plurality of planes that bisect the square bar-like member in the thickness direction to form a plurality of hollow square members;
Cutting the hollow square bar with a plane orthogonal to the longitudinal direction of the square bar to form a plurality of movers;
The manufacturing method of the needle | mover for electrostatic actuators characterized by comprising.
前記第1及び第2の板材、前記角棒状部材はいずれも導電性材料であって、
前記ウェハーを形成する工程は、前記第1及び第2の板材に複数の角棒状部材を導電性接着剤を用いて接着する工程を含むことを特徴とする請求項1記載の製造方法。
The first and second plate members and the square bar-shaped member are both conductive materials,
2. The manufacturing method according to claim 1, wherein the step of forming the wafer includes a step of bonding a plurality of square bar members to the first and second plate members using a conductive adhesive.
前記第1及び第2の板材、前記角棒状部材はいずれも導電性材料であって、
前記ウェハーを形成する工程は、前記第1及び第2の板材と前記角棒状部材の接続面に金属膜を形成した後、半田又は銀蝋付けにより互いの部材を接合する工程を含むことを特徴とする請求項1記載の製造方法。
The first and second plate members and the square bar-shaped member are both conductive materials,
The step of forming the wafer includes a step of joining the members by soldering or silver brazing after forming a metal film on the connection surface of the first and second plate members and the square bar member. The manufacturing method according to claim 1.
前記第1及び第2の板材、前記角棒状部材はいずれもシリコン半導体であることを特徴とする請求項2又は3記載の製造方法。 4. The manufacturing method according to claim 2, wherein both the first and second plate members and the square bar-shaped member are silicon semiconductors. 前記櫛型電極の形成後、前記複数の溝に非導電性材料を充填する工程を含むことを特徴とする請求項1記載の製造方法。 The manufacturing method according to claim 1, further comprising a step of filling the plurality of grooves with a nonconductive material after forming the comb-shaped electrode. 静電方式のマイクロアクチュエータに用いられる可動子の製造方法において、
所定の幅及び深さの複数の第1の溝を有する第1の板材に第2の板材を接合し、複数の隔壁を有するウェハーを形成する工程と、
前記ウェハーを所定の厚さに仕上げる工程と、
前記第1の板材の一方の面に、可動子の櫛型電極としての複数の第2の溝を形成する工程と、
前記隔壁を厚み方向に2分する平面で、前記ウェハーを複数に切断し、複数の中空の角材を形成する工程と、
前記中空の角材を、該角材の長手方向に直交する平面で切断し、複数の可動子を形成する工程と、
を具備することを特徴とするマイクロアクチュエータ用可動子の製造方法。
In the manufacturing method of the mover used for the electrostatic microactuator,
Bonding a second plate to a first plate having a plurality of first grooves of a predetermined width and depth to form a wafer having a plurality of partition walls;
Finishing the wafer to a predetermined thickness;
Forming a plurality of second grooves as comb-shaped electrodes of a mover on one surface of the first plate member;
Cutting the wafer into a plurality of planes that bisect the partition wall in the thickness direction to form a plurality of hollow square members;
Cutting the hollow square bar with a plane orthogonal to the longitudinal direction of the square bar to form a plurality of movers;
The manufacturing method of the needle | mover for microactuators characterized by comprising.
静電方式のマイクロアクチュエータに用いられる可動子であって、互いに接合された複数の板材より形成されており貫通孔を有し、少なくとも1つの外壁面に該可動子の櫛型電極としての複数の溝を有することを特徴とする可動子。   A mover used in an electrostatic microactuator, which is formed of a plurality of plate members joined to each other, has a through-hole, and has a plurality of comb-shaped electrodes of the mover on at least one outer wall surface. A mover having a groove. 前記複数の溝が非導電性材料で充填されていることを特徴とする請求項7記載の可動子。 The mover according to claim 7, wherein the plurality of grooves are filled with a non-conductive material. 前記互いに接合された複数の板材は、不純物がドープされたシリコン半導体からなることを特徴とする請求項7記載の可動子。 The mover according to claim 7, wherein the plurality of plate members joined to each other are made of a silicon semiconductor doped with impurities.
JP2003298722A 2003-08-22 2003-08-22 Method for manufacturing mover for electrostatic actuator Expired - Fee Related JP3673266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298722A JP3673266B2 (en) 2003-08-22 2003-08-22 Method for manufacturing mover for electrostatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298722A JP3673266B2 (en) 2003-08-22 2003-08-22 Method for manufacturing mover for electrostatic actuator

Publications (2)

Publication Number Publication Date
JP2005066740A true JP2005066740A (en) 2005-03-17
JP3673266B2 JP3673266B2 (en) 2005-07-20

Family

ID=34404144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298722A Expired - Fee Related JP3673266B2 (en) 2003-08-22 2003-08-22 Method for manufacturing mover for electrostatic actuator

Country Status (1)

Country Link
JP (1) JP3673266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515952A (en) * 2013-02-28 2016-06-02 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Molded fluid flow structure with sawed passages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515952A (en) * 2013-02-28 2016-06-02 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Molded fluid flow structure with sawed passages

Also Published As

Publication number Publication date
JP3673266B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP5594489B2 (en) Holding device, assembly system, and processing device
WO2003105244A1 (en) Thermoelectric element module and method for fabricating the same
EP1522140B1 (en) Fine control of electromechanical motors
US7119994B2 (en) Actuator having a pair of arms with piezoelectric devices attached thereto and methods of making the same
US7816839B2 (en) Ultrasonic linear motor
WO2010088937A1 (en) Piezoelectric actuator
US9431041B1 (en) Comb structure for a disk drive suspension piezoelectric microactuator operating in the D33 mode, and method of manufacturing the same
JP3673266B2 (en) Method for manufacturing mover for electrostatic actuator
JP2006001008A (en) Cutting method and cutting device
JPH10144974A (en) Piezoelectric actuator and its manufacturing method
JP2000042840A (en) Manufacture of conductive wafer and ceramics board for thin plate sintered body and thin film magnetic head and working of conductive wafer
JP2014170926A (en) Vibration body, manufacturing method thereof, and vibration type drive device
JP2001346385A (en) Electrostatic actuator, method of driving the same actuator and camera module
CN219536760U (en) Laminated piezoelectric vibrator
US20240079972A1 (en) Shear deformation-type bimorphic piezoelectric actuator
JP2000196160A (en) Manufacture of shearing-type piezoelectric device
JP3793874B2 (en) Permanent magnet type linear motor
JP2009060682A (en) Manufacturing method for oscillating body devices
JPH09308217A (en) Platen of flat linear pulse motor
KR100712736B1 (en) Method for making micro mirror
CN116782742A (en) Laminated piezoelectric vibrator and manufacturing method thereof
JP2013207037A (en) Method for manufacturing thermoelectric conversion module and thermoelectric conversion method
KR20140146739A (en) Straight type piezoelectric linear actuator
JPS63171173A (en) Electrostatic type two-dimensional shift actuator
CN101651433B (en) Ultrasonic linear motor

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050105

A131 Notification of reasons for refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080428

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090428

LAPS Cancellation because of no payment of annual fees