JP2005065561A - Method for transferring gene to blood vessel cell - Google Patents

Method for transferring gene to blood vessel cell Download PDF

Info

Publication number
JP2005065561A
JP2005065561A JP2003298707A JP2003298707A JP2005065561A JP 2005065561 A JP2005065561 A JP 2005065561A JP 2003298707 A JP2003298707 A JP 2003298707A JP 2003298707 A JP2003298707 A JP 2003298707A JP 2005065561 A JP2005065561 A JP 2005065561A
Authority
JP
Japan
Prior art keywords
blood vessel
gene
pulse
gene introduction
plasmid dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003298707A
Other languages
Japanese (ja)
Inventor
Ichiro Sakuma
一郎 佐久間
Tetsuo Miyata
哲郎 宮田
Hiroto Koyama
博人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakuma Ichiro
Original Assignee
Sakuma Ichiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakuma Ichiro filed Critical Sakuma Ichiro
Priority to JP2003298707A priority Critical patent/JP2005065561A/en
Publication of JP2005065561A publication Critical patent/JP2005065561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and quantitatively transferring a safe and inexpensive plasmid DNA to a blood vessel wall cell. <P>SOLUTION: In a gene transfer apparatus 1 constituted of electrode parts 2 composed of one or a plurality of cathodes and anodes for impressing a pulse voltage to a blood vessel, a pulse generator 3 for generating the pulse voltage, a power source 4 for supplying driving electric power and a computer 5 for controlling the impression conditions of pulse, a plasmid DNA to be transferred is injected to the blood vessel, the electrodes parts are arranged at both the sides of the blood vessel so as to nip the blood vessel, fixed voltage pulses are impressed to the arranged electrodes parts for given times and a hydrophilic hole for gene transfer is bored through the blood vessel cell. Consequently the plasmid DNA is preferentially transferred to the blood vessel cell at a position corresponding to the edge part of the cathode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は血管壁細胞への遺伝子の導入、特にエレクトロポレーションによる導入方法に関するものである。   The present invention relates to a method for introducing a gene into a vascular wall cell, particularly an electroporation method.

遺伝子治療の研究が進むにつれ、血管壁細胞への遺伝子導入法が種々開発されてきた。現在はアデノウィルス・ベクター法が効率が良いので広く用いられているが、ウィルスを高濃度で作用させなければならないのでその抗原性など副作用が問題となっている。一方プラスミドDNAは安価で、品質が高く安全に用いることができるという利点があるが、導入効率が低い点が問題である。最近新しいプラスミドDNA導入法の一つとしてエレクトロポレーション法が検討されるようになった(例えば非特許参考文献1など)。T.Matsumoto等はウサギの頚動脈をT型電極で挟みパルス電圧(10〜40V)を繰り返し10回印加し、血管壁への遺伝子の導入を試みている。その結果、パルス印加周期20msOn/80msOff、印加電圧が20Vで最大の導入量となり、DNA濃度は200μg/mlで最大の導入量となることが確認された。LacZ遺伝子を用いての確認では、電極のほぼ全面に渉って導入されていることが確認された。
T.Matsumoto et al.,“Successful and optimized in vivo gene transfer to rabbit carotid artery mediated by electronic pulse” Gene Therapy [2001] 8. 1174−1179
As gene therapy research advances, various methods for gene transfer into vascular wall cells have been developed. Currently, the adenovirus vector method is widely used because of its high efficiency, but side effects such as its antigenicity are problematic because the virus must act at a high concentration. On the other hand, plasmid DNA is advantageous in that it is inexpensive, has high quality and can be used safely, but its introduction efficiency is low. Recently, electroporation has been studied as one of the new plasmid DNA introduction methods (for example, Non-patent Reference 1). T.A. Matsumoto et al. Attempted to introduce a gene into a blood vessel wall by sandwiching a rabbit carotid artery with a T-shaped electrode and repeatedly applying a pulse voltage (10 to 40 V) 10 times. As a result, it was confirmed that the maximum introduction amount was obtained when the pulse application cycle was 20 ms On / 80 ms Off, the applied voltage was 20 V, and the maximum introduction amount was obtained when the DNA concentration was 200 μg / ml. In the confirmation using the LacZ gene, it was confirmed that it was introduced almost over the entire surface of the electrode.
T.A. Matsumoto et al. “Successful and optimized in vivo gene transfer to rabbit carrotid articulated by electronic pulse” Gene Therapy [2001] 8. 1174-1179

前述のT.Matsumoto等の方法では、エレクトロポレーション法による遺伝子の導入は確認しているが、効率的な遺伝子の導入及び定量的な遺伝子の導入までは追求しておらず、実用化までに到っているとは言えない。本発明は上記の問題点に鑑み、効率的且つ定量的な遺伝子導入方法を提供し、更に一層の普及を図ることを目的とするものである。   T. mentioned above. In the method of Matsumoto et al., Introduction of genes by electroporation method has been confirmed, but efficient introduction of genes and quantitative introduction of genes have not been pursued, and they have been put to practical use. It can not be said. In view of the above problems, the present invention aims to provide an efficient and quantitative gene transfer method and to further promote its use.

下記の構成を備えた本発明により、効率的且つ定量的な遺伝子の導入を実現できる。   According to the present invention having the following configuration, efficient and quantitative gene introduction can be realized.

(1)パルス状の電圧を血管に印加するする一つあるいは複数の陰極及び陽極で構成する電極部、該パルス状の電圧を発生するパルス発生器、駆動用電力を供給する電源及びパルスの印加条件を制御するコンピュータを含んで構成する遺伝子導入装置において、導入すべきプラスミドDNAを該血管内に注入し、前記電極部を該血管両側面に該血管を挟むように設置し、前記設置電極部に所定電圧パルスを所定回数印加し該血管壁細胞に遺伝子導入用親水性穴を開けることによりプラスミドDNAを前記陰極のエッジ部に対応する位置の血管壁細胞に優先的に導入するようにしたことを特徴とする遺伝子導入方法。   (1) One or a plurality of cathodes and anodes for applying a pulsed voltage to the blood vessel, a pulse generator for generating the pulsed voltage, a power supply for supplying driving power, and pulse application In a gene introduction apparatus comprising a computer for controlling conditions, plasmid DNA to be introduced is injected into the blood vessel, and the electrode part is placed on both sides of the blood vessel so as to sandwich the blood vessel, and the placement electrode part The plasmid DNA was preferentially introduced into the vascular wall cell at the position corresponding to the edge of the cathode by applying a predetermined voltage pulse to the vascular wall cell a predetermined number of times to open a hydrophilic hole for gene introduction in the vascular wall cell. A gene introduction method characterized by the above.

(2)前記電圧パルスは10〜50V、組織に印加される最大電界強度に換算して17〜82kV/mで20ミリ秒印加することを特徴とする(1)記載の遺伝子導入方法。   (2) The gene transfer method according to (1), wherein the voltage pulse is applied at 10 to 50 V, converted into the maximum electric field strength applied to the tissue, and applied at 17 to 82 kV / m for 20 milliseconds.

(3)前記遺伝子導入装置にはさらに電源の極性を切換える装置を備え、該血管の両側から遺伝子導入を行えるようにしたことを特徴とする(1)記載の遺伝子導入方法。   (3) The gene introduction method according to (1), wherein the gene introduction device is further provided with a device for switching the polarity of a power supply so that gene introduction can be performed from both sides of the blood vessel.

(4)前記陰極を2枚の平行電極で構成し該陰極のエッジ部に対応する位置の血管壁細胞に遺伝子を線状に導入できるようにしたことを特徴とする(1)記載の遺伝子導入方法。   (4) The gene introduction according to (1), wherein the cathode is composed of two parallel electrodes, and the gene can be introduced linearly into blood vessel wall cells at a position corresponding to the edge portion of the cathode. Method.

(5)前記陰極を複数の小電極で構成し該血管壁にほぼ一様に遺伝子が導入できるようにしたことを特徴とする(1)記載の遺伝子導入方法。   (5) The gene introduction method according to (1), wherein the cathode is composed of a plurality of small electrodes so that the gene can be introduced almost uniformly into the blood vessel wall.

本発明により安価で安全なプラスミドDNAを効率的に且つ定量的に導入できるため遺伝子治療が更に促進されるという効果が得られる。   According to the present invention, an inexpensive and safe plasmid DNA can be efficiently and quantitatively introduced, so that an effect of further promoting gene therapy can be obtained.

図1は本発明のエレクトロポレーションよる遺伝子導入装置の概略構成を示す。遺伝子導入装置1は血管壁へ電圧を印加するための電極部2、その電極部2への印加電圧を発生するパルス発生器3、装置への電力を供給する電源4及び後述するパルス発生周期、印加電圧及びその極性などを制御するコンピュータ5から構成されている。   FIG. 1 shows a schematic configuration of a gene introduction apparatus using electroporation according to the present invention. The gene transfer device 1 includes an electrode unit 2 for applying a voltage to the blood vessel wall, a pulse generator 3 for generating an applied voltage to the electrode unit 2, a power source 4 for supplying power to the device, and a pulse generation cycle to be described later. The computer 5 is configured to control the applied voltage and its polarity.

図2に示すように血管を挟むように電極部2を設置し所定の電圧を印加する。本発明で用いているエレクトロポレーション法では電極部2からの電気パルスに起因する電場の作用によって細胞膜に親水性の穴を開け、その穴より遺伝子を細胞内に導入するようにしたものである。   As shown in FIG. 2, the electrode part 2 is installed so as to sandwich the blood vessel, and a predetermined voltage is applied. In the electroporation method used in the present invention, a hydrophilic hole is formed in a cell membrane by the action of an electric field caused by an electric pulse from the electrode part 2, and a gene is introduced into the cell through the hole. .

遺伝子の導入は以下の手順で行った。まず細径のカテーテルを用いて血管内にプラスミドDNAを注入し20分間インキュベーションする。遺伝子導入装置の電極部2を図2に示すように血管を挟むように配置し、所定の電圧で20m秒間ずつ10回パルスを印加することによって血管の細胞膜に上記親水性の穴を開けて遺伝子の導入を行う。十分な導入効果を得るため2日間放置した後、遺伝子導入の効果を測定した。   The gene was introduced by the following procedure. First, plasmid DNA is injected into a blood vessel using a small-diameter catheter and incubated for 20 minutes. As shown in FIG. 2, the electrode part 2 of the gene introduction apparatus is arranged so as to sandwich the blood vessel, and a pulse is applied 10 times every 20 msec at a predetermined voltage to open the hydrophilic hole in the cell membrane of the blood vessel and To introduce. In order to obtain a sufficient introduction effect, the effect of gene introduction was measured after standing for 2 days.

遺伝子の導入部位を特定するためプラスミドDNAとしてpGAGGS−LacZ plasmid DNAを用い上記の導入操作を行った後、6−galactosidaseで染色し、プラスミドDNAの発現部位を同定した。染色された発現部位を示す写真を図3に示す。この写真は電極のエッジ部(周辺部)に対応した部分が染色されており、そこに遺伝子が優先的に導入されたことを示している。   In order to specify the gene introduction site, pGAGGS-LacZ plasmid DNA was used as the plasmid DNA and the above introduction operation was performed, followed by staining with 6-galactosidase to identify the expression site of the plasmid DNA. A photograph showing the stained expression site is shown in FIG. This photograph shows that the part corresponding to the edge part (peripheral part) of the electrode is stained and the gene is preferentially introduced therein.

図2に示すような血管の回りに電極を配置した状態における電場のシミュレーション結果は図4に示すように、電極の周辺に相当する部分の電位が高くなっており上記の染色写真の結果と対応している。この観察事実から、図5(a)に示す平行な2つの電極を用いれば線状に遺伝子を導入することが可能で、図5(b)のような多数の電極を用いれば、血管壁全体にほぼ均一な濃度で遺伝子を導入することが可能となる。   As shown in FIG. 4, the electric field simulation result in the state where the electrode is arranged around the blood vessel as shown in FIG. 2 has a high potential in the portion corresponding to the periphery of the electrode, and corresponds to the result of the above-mentioned stained photograph. doing. From this observation fact, it is possible to introduce a gene linearly by using two parallel electrodes shown in FIG. 5 (a), and using a large number of electrodes as shown in FIG. It becomes possible to introduce a gene at a substantially uniform concentration.

また図3の写真2に示される染色部位は陰極電極側にのみ認められた。従って、遺伝子導入装置の電源の極性を切換えることによりの電極を設置し直さなくても血管の両側から遺伝子が導入でき、簡単に2倍量の遺伝子を導入することが可能となる。   Further, the stained part shown in Photo 2 of FIG. 3 was observed only on the cathode electrode side. Therefore, the gene can be introduced from both sides of the blood vessel without re-installing the electrode by switching the polarity of the power supply of the gene introduction device, and it is possible to easily introduce twice as much gene.

また遺伝子導入量を調べるためプラスミドDNAとしてpGAGGS−Luc plasmid DNAを用い上記の導入操作を行った後、プラスミドDNAの導入量を測定した。測定された導入量と電圧の関係を図6に示した。この図から電極への印加電圧30Vで導入量が最大となることが判る。電極への印加電圧50Vでは血管に閉塞が観察され、細胞の一部が破損していると考える。従って導入対象の安全を考慮して印加電圧は40V以下が好ましく、導入効率の点からは30Vが最適である。   Further, in order to examine the gene introduction amount, pGAGGS-Luc plasmid DNA was used as the plasmid DNA, and the introduction operation was performed, and then the plasmid DNA introduction amount was measured. The relationship between the measured introduction amount and voltage is shown in FIG. From this figure, it can be seen that the amount of introduction is maximized at an applied voltage of 30 V to the electrodes. When the voltage applied to the electrode is 50V, the blood vessels are observed to be occluded, and some of the cells are considered damaged. Therefore, the applied voltage is preferably 40 V or less in consideration of the safety of the introduction target, and 30 V is optimal from the viewpoint of introduction efficiency.

以上述べたように、本発明によるエレクトロポレーション法では電極印加電圧30V(最大電界強度50kV/m程度に相当)で最大の導入効果が得られ、電極の形状を変えることにより導入量及び導入部位を制御できる。   As described above, in the electroporation method according to the present invention, the maximum introduction effect can be obtained at an electrode applied voltage of 30 V (corresponding to a maximum electric field strength of about 50 kV / m), and the introduction amount and the introduction site can be changed by changing the shape of the electrode. Can be controlled.

本発明によれば安全で安価なプラスミド遺伝子を効率良く、所定の部位に導入することが可能となるので、医療分野における遺伝子治療の促進に大いに貢献できる。   According to the present invention, a safe and inexpensive plasmid gene can be efficiently introduced into a predetermined site, which can greatly contribute to the promotion of gene therapy in the medical field.

本発明による遺伝子導入装置の概略の構成を示す図The figure which shows the schematic structure of the gene transfer apparatus by this invention. 遺伝子導入装置の電極の配置を示す図Diagram showing the placement of the electrodes of the gene transfer device 遺伝子の血管における導入部位を示す染色図Staining diagram showing the site of introduction of the gene into the blood vessel 図2の電極周辺の電位分布のシミュレーション結果を示す図The figure which shows the simulation result of the electric potential distribution around the electrode of FIG. 本発明による電極の形態を示す図で、(a)は2枚の平行電極を示し、(b)は複数の小電極で構成する電極を示す図1A and 1B are diagrams showing the form of an electrode according to the present invention, in which FIG. 1A shows two parallel electrodes, and FIG. 電極への印加電圧と遺伝子導入量の関係を示す図Diagram showing the relationship between the voltage applied to the electrode and the amount of gene transfer

符号の説明Explanation of symbols

1 遺伝子導入装置
2 電極部
3 パルス発生器
4 電源
5 コンピュータ
DESCRIPTION OF SYMBOLS 1 Gene transfer apparatus 2 Electrode part 3 Pulse generator 4 Power supply 5 Computer

Claims (5)

パルス状の電圧を血管に印加するする一つあるいは複数の陰極及び陽極で構成する電極部、該パルス状の電圧を発生するパルス発生器、駆動用電力を供給する電源及びパルスの印加条件を制御するコンピュータを含んで構成する遺伝子導入装置において、導入すべきプラスミドDNAを該血管内に注入し、前記電極部を該血管両側面に該血管を挟むように設置し、前記設置電極部に所定電圧パルスを所定回数印加し該血管壁細胞に遺伝子導入用親水性穴を開けることによりプラスミドDNAを前記陰極のエッジ部に対応する位置の血管壁細胞に優先的に導入するようにしたことを特徴とする遺伝子導入方法。   Controls one or more cathodes and anodes that apply a pulsed voltage to the blood vessel, a pulse generator that generates the pulsed voltage, a power source that supplies driving power, and pulse application conditions In a gene introduction apparatus comprising a computer, a plasmid DNA to be introduced is injected into the blood vessel, and the electrode portion is placed so as to sandwich the blood vessel on both sides of the blood vessel, and a predetermined voltage is applied to the placement electrode portion. A plasmid DNA is preferentially introduced into vascular wall cells at a position corresponding to the edge of the cathode by applying a pulse a predetermined number of times to open a hydrophilic hole for gene introduction into the vascular wall cell. Gene transfer method. 前記電圧パルスは10〜50V、組織に印加される最大電界強度に換算して17〜82kV/mで20ミリ秒印加することを特徴とする請求項1記載の遺伝子導入方法。   2. The gene introduction method according to claim 1, wherein the voltage pulse is applied at 10 to 50 V and converted into the maximum electric field strength applied to the tissue at 17 to 82 kV / m for 20 milliseconds. 前記遺伝子導入装置にはさらに電源の極性を切換える装置を備え、該血管の両側から遺伝子導入を行えるようにしたことを特徴とする請求項1記載の遺伝子導入方法。   2. The gene introduction method according to claim 1, wherein the gene introduction device further comprises a device for switching the polarity of a power source so that gene introduction can be performed from both sides of the blood vessel. 前記陰極を2枚の平行電極で構成し該陰極のエッジ部に対応する位置の血管壁細胞に遺伝子を線状に導入できるようにしたことを特徴とする請求項1記載の遺伝子導入方法。   2. The gene introduction method according to claim 1, wherein the cathode is composed of two parallel electrodes, and the gene can be introduced linearly into blood vessel wall cells at a position corresponding to the edge portion of the cathode. 前記陰極を複数の小電極で構成し該血管壁にほぼ一様に遺伝子が導入できるようにしたことを特徴とする遺伝子導入方法。   A gene introduction method characterized in that the cathode is composed of a plurality of small electrodes, and the gene can be introduced almost uniformly into the blood vessel wall.
JP2003298707A 2003-08-22 2003-08-22 Method for transferring gene to blood vessel cell Pending JP2005065561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298707A JP2005065561A (en) 2003-08-22 2003-08-22 Method for transferring gene to blood vessel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298707A JP2005065561A (en) 2003-08-22 2003-08-22 Method for transferring gene to blood vessel cell

Publications (1)

Publication Number Publication Date
JP2005065561A true JP2005065561A (en) 2005-03-17

Family

ID=34404133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298707A Pending JP2005065561A (en) 2003-08-22 2003-08-22 Method for transferring gene to blood vessel cell

Country Status (1)

Country Link
JP (1) JP2005065561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107850A (en) * 2008-10-31 2010-05-13 Toppan Forms Co Ltd Failure section-detecting device of electronic paper, and failure section-detecting method of electronic paper using the same
WO2014027475A1 (en) * 2012-08-14 2014-02-20 三菱電機株式会社 Recording playback device, recording playback method, recording device, and playback device
CN117586882A (en) * 2024-01-18 2024-02-23 柔脉医疗(深圳)有限公司 Culture container and artificial blood vessel culture method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107850A (en) * 2008-10-31 2010-05-13 Toppan Forms Co Ltd Failure section-detecting device of electronic paper, and failure section-detecting method of electronic paper using the same
WO2014027475A1 (en) * 2012-08-14 2014-02-20 三菱電機株式会社 Recording playback device, recording playback method, recording device, and playback device
CN117586882A (en) * 2024-01-18 2024-02-23 柔脉医疗(深圳)有限公司 Culture container and artificial blood vessel culture method
CN117586882B (en) * 2024-01-18 2024-05-14 柔脉医疗(深圳)有限公司 Culture container and artificial blood vessel culture method

Similar Documents

Publication Publication Date Title
US10994133B2 (en) Methods for enhancing and modulating reversible and irreversible electroporation lesions by manipulating pulse waveforms
Somiari et al. Theory and in vivo application of electroporative gene delivery
Weaver Electroporation of biological membranes from multicellular to nano scales
Gehl et al. Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery
EP1059960B1 (en) Apparatus for electroporation through microporated tissue
US8235966B1 (en) Electromanipulation method
US20050052630A1 (en) Constant current electroporation device and methods of use
JP2011512164A (en) Methods for delivering therapeutic substances into the skin
US20190192223A1 (en) Apparatus and method for cardiac ablation
ATE358449T1 (en) SURGICAL DEVICE FOR DELIVERING EXCITED INERT GAS TOMS AND HANDLE AND CONTROL SYSTEM THEREFOR
US20080033340A1 (en) Electroporation and Electrophoresis System and Method for Achieving Molecular Penetration into Cells In Vivo
JP2008543493A5 (en)
EP2351535A3 (en) Method for treating tissue with a wet electrode and apparatus for using same
DE50015772D1 (en) Sequence-specific DNA recombination in eukaryotic cells
US20210330371A1 (en) Methods, systems, and apparatuses for tissue ablation using a modulated exponential decay pulse
US20220266006A1 (en) Method for electroporation controlled by electrical impedence measurements
CN109481010B (en) Electric ablation device
JP2005065561A (en) Method for transferring gene to blood vessel cell
AU8191101A (en) Method for introducing nucleic acids and other biologically active molecules into the nucleus of higher eukaryotic cells by means of an electrical current
ATE537876T1 (en) METHOD FOR CONTROLLING A MICROELECTROMAGNETIC RADIATOR FOR BREAKING UP CANCER CELL TISSUE
Lupu et al. Cold atmospheric plasma jet effects on V79-4 cells
KR20110002648U (en) Radio frequency therapeutic apparatus
WO2000022095A3 (en) Method and apparatus for direct in vivo gene transfer by electrotransfection
Rodamporn Optimal parameters of electroporation for gene and tissue
JP2005261915A (en) Method and device for making microcurrent act on eyeball

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060815

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309