JP2005065363A - Inverter surge resistant motor - Google Patents

Inverter surge resistant motor Download PDF

Info

Publication number
JP2005065363A
JP2005065363A JP2003207557A JP2003207557A JP2005065363A JP 2005065363 A JP2005065363 A JP 2005065363A JP 2003207557 A JP2003207557 A JP 2003207557A JP 2003207557 A JP2003207557 A JP 2003207557A JP 2005065363 A JP2005065363 A JP 2005065363A
Authority
JP
Japan
Prior art keywords
winding
motor
windings
voltage
distributed capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003207557A
Other languages
Japanese (ja)
Other versions
JP4316948B2 (en
JP2005065363A5 (en
Inventor
Koji Ohata
功治 尾畑
Yoshishige Fukushi
慶滋 福士
Ryozo Takeuchi
良三 武内
Takeshi Komata
剛 小俣
Takahiro Takeda
高広 竹田
Tadahiro Shimozono
忠弘 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2003207557A priority Critical patent/JP4316948B2/en
Publication of JP2005065363A publication Critical patent/JP2005065363A/en
Publication of JP2005065363A5 publication Critical patent/JP2005065363A5/ja
Application granted granted Critical
Publication of JP4316948B2 publication Critical patent/JP4316948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low voltage motor in which insulation is prevented from deteriorating between windings by lightening the part of steep surge voltage being burdened between the windings. <P>SOLUTION: After conductors 11-14 consisting of two wires A and B are wound by one half of the number of turns of the motor winding in a low voltage motor, the conductors 11-14 are divided into start-of-winding conductors A1, B2, A5 nd B6 and end-of-winding conductors A3, B4, A7 and B8 and then A3-B2 (joint 20), B4-A5 (joint 21) and B6-A7 (joint 22) are connected externally. Capacitors 26-29 for adjusting inter-winding distributed capacitance are connected, respectively, between A1-20, 20-21, 21-22 and 22-B8 in order to improve the voltage being burdened between the windings. Insulation can be prevented from deteriorating between windings by lightening the part of steep surge voltage being burdened between the windings. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インバータで駆動されるモータであり、とりわけ集中巻乱巻コイルを用いた低圧モータの構造および製造方法に関するものである。
【0002】
【従来の技術】
近年、省エネルギー化を目的にモータの駆動にインバータ電源が広く用いられている。しかしながら、インバータ電源でモータを駆動した場合、インバータの発する急峻なサージ電圧が原因となり、モータ巻線間に従来の商用周波電源駆動時に比し高い電圧が発生することが報告されている(例えば、非特許文献1参照)。
【0003】
ところで、高圧モータ、高圧発電機などの高圧回転機、高圧変圧器、リアクトルなどの高圧静止誘導機器では、インバータの急峻サージ電圧が問題化する以前から、雷インパルス、真空遮断機の開閉サージなどの高圧サージ電圧に対し電圧分布が広く検討されている(例えば、非特許文献2参照)。具体的には、電磁巻線を巻線間の分布静電容量と巻線各部の対地分布静電容量で形成された回路で近似しユニットステップ電圧を印加したときの電圧分布を計算することで、巻線間の分担電圧を解析できると記されている。
【0004】
また、巻線間の分布静電容量に比し巻線各部の対地分布静電容量を大きく設計すれば、初期電位分布は直線に近づき巻線間の分担電圧は低下する。このため、高圧誘導機器では、巻線間の分布静電容量に比し巻線各部の対地分布静電容量が大きくなるように設計されている。さらに、高圧モータでは、巻線の外部から巻線間の分布静電容量調整用のコンデンサを接続し、巻線間の分担電圧を緩和する方法も提案されている(例えば、特許文献1参照)。なお、三相巻線機器では、図6に示すように、各相の巻線30、40、50の巻き始め31、41、51と巻き終わり32、42、52のコイルの分担電圧が大きくなるため、上記特許文献1では、これらのコイルに巻線間分布静電容量調整用コンデンサを接続することが提案されている。
【0005】
一方、従来、1kVrms未満の低圧モータでは、前述のような急峻サージ電圧に対する巻線間の分担電圧緩和対策は施されていなかった。これは、従来の雷サージや開閉サージなどの高圧サージは低圧モータでは問題にならなかったことの他に、一般に低圧モータではモータ巻線は乱巻、集中巻で製作されるため、巻線間の分布静電容量と巻線各部の対地分布静電容量を制御し、分担電圧を緩和することが困難であったためである。また、集中巻モータでマグネットワイヤを切断しないでコイルを一度に巻く場合には、コイルのシリーズ接続部の導体をモータ製作後に取り出すことができず、この結果、モータ巻線外部に巻線間の分布静電容量調整用のコンデンサを接続できなかったためである。
【0006】
【非特許文献1】
電気学会技術報告第739号、p.14〜20
【非特許文献2】
家田正之著、現代高電圧工学、オーム社、p.91〜93
【特許文献1】
特開昭50−000301号公報
【0007】
【発明が解決しようとする課題】
本発明では、近年、インバータ駆動が盛んに行われている低圧モータにおいて、急峻サージ電圧に対し巻線間の分担電圧を緩和し、巻線間で絶縁劣化が発生すること防止したことを特徴とする低圧モータを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の効果は以下の方法により得ることができる。すなわち、2n個(nは整数)の導体をモータ巻線の巻回数の1/2回だけ巻いた後、巻き始めと巻き終わりの導体を2分割し、巻き始めのn個と巻き終わりのn個の導体を外部で接続したモータを製作する。また、巻線間分布静電容量調整用コンデンサを接続し、巻線間の分担電圧を改善する場合には、概モータ巻線の巻き始めと巻き終わりの接続部と、巻線の巻き始め部、極間亘り線、巻き終わり部の間にコンデンサを接続することで実現できる。
【0009】
【発明の実施の形態】
以下、図面を用いて本発明の実施例を説明する。
【0010】
[実施例1]
本発明の実施例1にかかる外部に外部に巻線間分布静電容量調整用コンデンサを接続したモータ巻線の製造方法および構造を説明する。図1〜3にモータ巻線の1相分の製造方法および構造を示す。図1は、モータ巻線の巻回し工程を、図2は、モータ巻線の分離、接続工程を、図3は、外部コンデンサ接続工程および巻線の完成図を示す。なお、いずれも、モータの固定子を内周側から見たときの巻線展開図で示してある。斜線部がモータの固定子コアのティースを示す。
【0011】
図1の巻回し工程では、2本のエナメル電線を同時に巻回し、2本のエナメル線A,Bからなる1極分の巻線11、12および1極分の巻線13、14を製作する。
【0012】
続いて、図2の工程では、巻線11の巻き始め部の2本のエナメル電線A,Bを電線A1と電線B2に、巻線12の巻き終わりの2本のエナメル電線を電線A3と電線B4に二分割し、電線B2と電線A3を溶接、接続して溶接部20を形成する。同様に、巻線13の巻き始め部のエナメル電線A,Bを電線A5と電線B6に、巻線14の巻き終わりのエナメル電線A,Bを電線A7と電線B8に二分割し、電線B6と電線A7を溶接、接続して溶接部22を形成する。さらに、極間接続として、巻線12の巻き終わりの電線B4と巻線13の巻き始めの電線A5を溶接、接続して溶接部21を形成する。
【0013】
図3の工程では、巻線間分布静電容量調整用コンデンサ26〜29を、巻線11の電線A1と溶接部20、溶接部20と溶接部21、溶接部21と溶接部22、溶接部22と巻線14の電線B8と接続し、巻線を製造する。
【0014】
この製造法によって得た巻線の等価回路は、図4となる。すなわち、1相の巻線60は各巻線61〜64から形成される。各巻線61〜64は、インダクタンス65と、巻線間の分布静電容量66と、巻線各部の対地分布静電容量67から形成される。また、図4では巻線間分布静電容量調整用コンデンサは、コンデンサ81〜84として示される。
【0015】
以上の方法で製作したモータに、立上がり時間0.1μsのユニットステップ電圧を印加したときのコイル分担電圧計算結果を、図5に示す。コイル分担電圧には、ユニットステップ電圧印加側第1コイルの値を、ステップ電圧の波高値を100%として示す。コイル分担電圧の計算には図4の等価回路とEMTP(Electro Magnetic Transients Program)を使用した。
【0016】
図5の回路定数は、実機モータの測定結果を基に、巻線間の分布静電容量66を1,000pF、巻線各部の対地分布静電容量を1,000pF、外部に接続する巻線間分布静電容量調整用コンデンサ81〜84の静電容量を1,000pFとし結果した。なお、簡単のため、非特許文献2と同様に、インダクタンス65は開放とし計算した。この結果、後述の従来のモータ巻線構造の比較例1および比較例2に対し、コイル分担電圧を50%低減できた。同時に、モータの耐サージ電圧を従来の比較例1、2に比し2倍に向上させることができ、インバータ駆動時にも巻線間で絶縁劣化が生じにくい、より信頼性の高いモータを提供できる。
【0017】
以上の実施例1では、特に従来のモータ巻線と同じ皮膜厚、材料のマグネットワイヤを使用した場合を基準に、耐サージ電圧を向上させ、信頼性を向上させることができることを示した。しかしながら、特に、マグネットワイヤ間の部分放電電圧に比しコイル分担電圧が小さくなるようにすれば、モータ巻線間で絶縁劣化の発生を防止しつつ、モータの耐サージ電圧を向上させることができる。このため、必要な耐サージ電圧に対し本条件を満足する適切なマグネットワイヤを選択することで、従来のモータに比し占積率を向上させ、モータの寸法を小型化することもできる。
【0018】
以上の実施例1では、特にマグネットワイヤにエナメル電線を使用したが、絹、紙、木綿、ガラスクロスなどを巻き付けた銅線であっても良い。また、エナメル電線にはポリアミドイミド、ポリエステルイミド、ポリイミド、ポリエステル、ホルマール、ポリウレタン、エポキシ、シリコーン、テフロン(登録商標)皮膜などの各種エナメル皮膜電線を使用できる。なお、本発明では、特に電線の表面あるいは絶縁皮膜に着色しておくことが望ましい。これは、本発明の2n個の電線を2分割する際に、分割すべき電線を区別しやすいためである。ただし、特に着色料や塗料を使用しない場合には、テスターで巻線の導通をチェックし、2n個の電線を2分割、接続作業しても良い。
【0019】
[実施例2]
実施例2では、実施例1の巻線間分布静電容量調整用コンデンサを接続しないモータ巻線である。一般に巻線に使用するエナメル電線などのマグネットワイヤの絶縁皮膜厚さは数10μmであり、巻線−コア(対地)間の絶縁物の厚さ数100μmに比し十分薄い。このため、巻線間の分布静電容量を利用できれば、特にモータ外部に巻線間分布静電容量調整用コンデンサを接続しなくとも、モータ巻線間の分担電圧を緩和することができる。
【0020】
実施例2のモータに立上がり時間0.1μSのユニットステップ電圧を印加したときのコイル分担電圧計算結果を図5に示す。巻線間分布静電容量調整用コンデンサを接続しなくとも、従来の比較例1、2に対しコイル分担電圧を37%低減できる。この結果、モータの耐サージ電圧を従来の比較例1、2に比し1.6倍に向上させることができ、インバータ駆動時にも巻線間で絶縁劣化が生じにくい、より信頼性の高いモータを提供できると考えられる。
【0021】
なお、以上の実施例2では、従来に比しモータ巻線の巻き始めと巻き終わり側のコイルの容量結合が強いため、従来に比し巻き始めあるいは巻き終わり側コイルへの高周波電圧の電圧分担集中が低減できたためと考えられる。すなわち、等価回路で考えた場合、本発明のモータ巻線構造では、図4に示すように、巻き始め側から巻き終わり側に巻線間の分布静電容量が直接接続された形となり、巻線の容量性電圧分布が均一となり易い。
【0022】
これに対し、従来のモータ巻線の等価回路を、図7に示す。1相の巻線90は各巻線91〜94から形成され、各巻線91〜94は、インダクタンス95と、各巻線間の分布静電容量96と、巻線各部の対地分布静電容量97から形成される。従来の巻線構造では、モータ巻線間の分布静電容量96が巻初めから巻き終わり側まで直列に接続された形となるため、巻き始め側から巻き終わり側への容量結合が弱くなり、巻き始め側に電圧が多く分担されると考えられる。
【0023】
[比較例1]
従来の集中巻コイルの製造方法でモータ巻線を製作した。モータ巻線には実施例1、2と同じエナメル電線を使用した。また、モータ巻線の外部に巻線間分布静電容量調整用コンデンサは接続していない。
【0024】
比較例1のモータ巻線に立上がり時間0.1μsのユニットステップ電圧を印加したときのコイル分担電圧計算結果を図5に示す。比較例1では、ステップ電圧がほぼ100%、第1コイルに分担されている。このため、比較例1のモータをインバータ駆動する場合には、従来の正弦波駆動時に比し絶縁強化しなければならない。
【0025】
[比較例2]
従来の集中巻コイルの製造方法でモータ巻線を製作した。モータ巻線には実施例1、2と同じエナメル電線を使用した。比較例2では、比較例1のモータ巻線の巻き始めと極間亘り線、極間亘り線と巻き終わりの間に巻線間分布静電容量調整用コンデンサを接続した。
【0026】
比較例2のモータ巻線に立上がり時間0.1μsのユニットステップ電圧を印加したときのコイル分担電圧計算結果を図5に示す。比較例2では、比較例1と同様にステップ電圧がほぼ100%、第1コイルに分担されている。このため、比較例2のモータをインバータ駆動する場合には、従来の正弦波駆動時に比し絶縁強化しなければならない。
【0027】
比較例2において、第1コイルの分担電圧が改善できなかった原因は次のように考えることができる。すなわち、図8の巻線を例に示すと、従来の巻線製造方法のようにマグネットワイヤを切断しないで集中巻コイル111〜114を巻いた場合、モータ外部には極間亘り線120しか現れないため、巻線間の分布静電容量調整用のコンデンサ121、122は巻き始め101と極間亘り線120の間と、極間亘り線120と巻き終わり104の間にしか接続できない。この結果、巻線間の分担電圧が最も大きい巻き始めコイル111と巻き終わりコイル113の巻線間分担電圧を緩和できず、分布静電容量調整用のコンデンサを接続しない比較例1とほぼ同様の分担電圧となったと考えられる。
【0028】
【発明の効果】
以上のように、2n個(nは整数)の導体をモータ巻線の巻回数の1/2回だけ巻いた後、巻き始めと巻き終わりの導体を2分割し、巻き始めのn個と巻き終わりのn個の導体を外部で接続したモータを製作する。また、巻線間分布静電容量調整用コンデンサを接続し、巻線間の分担電圧を改善する場合には、概モータ巻線の巻き始めと巻き終わりの接続部と、巻線の巻き始め部、極間亘り線、巻き終わり部の間にコンデンサを接続することにより、モータ巻線間の分担電圧を緩和することができる。また、同時に、モータの耐サージ電圧を従来に比し向上させることができ、インバータ駆動時にも巻線間で絶縁劣化が生じにくい、より信頼性の高いモータを提供できる。
【図面の簡単な説明】
【図1】本発明のモータ巻線の巻回し工程。
【図2】モータ巻線の分離、接続工程。
【図3】外部コンデンサ接続工程および巻線の完成図。
【図4】本発明のモータ巻線の等価回路。
【図5】ユニットステップ電圧を印加したときのモータ巻線第1コイル分担電圧。
【図6】モータ巻線の巻線図。
【図7】従来のモータ巻線の等価回路。
【図8】従来のモータ巻線および巻線間分布静電容量調整用コンデンサ接続図。
【符号の説明】
A1:モータ巻線11Aの巻き始めの1/2、B2:モータ巻線11Bの巻き始めの1/2、A3:モータ巻線12Aの巻き終わりの1/2、B4:モータ巻線12Bの巻き終わりの1/2、A5:モータ巻線13Aの巻き始めの1/2、B6:モータ巻線13Bの巻き始めの1/2、A7:モータ巻線14Aの巻き終わりの1/2、B8:モータ巻線14Bの巻き終わりの1/2、11:モータ第1巻線、12:モータ第巻線、13:モータ第3巻線、14:モータ第4巻線、20:モータ巻線B2、A3の接続部、21:モータ巻線B4,A5の接続部、22:モータ巻線B6,A7の接続部、26〜29:巻線間分布静電容量調整用コンデンサ、60:モータ巻線1相分、61:モータ第1巻線、62:モータ第巻線、63:モータ第3巻線、64:モータ第4巻線、65:モータ巻線のインダクタンス、66:モータ巻線間の分布静電容量、67:モータ巻線各部の対地間静電容量、71:モータ巻線巻き始め端子、74:モータ巻線巻き終わり端子、80:極間亘り線、81〜84:巻線間分布静電容量調整用コンデンサ、30:U相巻線、31:U相巻き始めコイル、32:U相巻き終わりコイル、40:V相巻線、41:V相巻き始めコイル、42:V相巻き終わりコイル、50:W相巻線、51:W相巻き始めコイル、52:W相巻き終わりコイル、90:モータ巻線1相分、91:モータ第1巻線、92:モータ第2巻線、93:モータ第3巻線、94:モータ第4巻線、95:モータ巻線のインダクタンス、96:モータ巻線間の分布静電容量、97:モータ巻線各部の対地間静電容量、101:モータ巻線巻き始め端子、104:モータ巻線巻き終わり端子、111:モータ第1巻線、112:モータ第2巻線、113:モータ第3巻線、114:モータ第4巻線、120:亘り線、121,122:巻線間分布静電容量調整用コンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor driven by an inverter, and more particularly to a structure and a manufacturing method of a low-voltage motor using concentrated winding random winding coils.
[0002]
[Prior art]
In recent years, inverter power supplies have been widely used to drive motors for the purpose of energy saving. However, when a motor is driven by an inverter power source, it has been reported that a steep surge voltage generated by the inverter causes a higher voltage than the conventional commercial frequency power source driving between the motor windings (for example, Non-patent document 1).
[0003]
By the way, in high-voltage static induction devices such as high-voltage rotating machines such as high-voltage motors and high-voltage generators, high-voltage transformers, and reactors, lightning impulses, open / close surges of vacuum circuit breakers, etc., before the steep surge voltage of the inverter became a problem The voltage distribution has been widely studied with respect to the high-voltage surge voltage (see, for example, Non-Patent Document 2). Specifically, the electromagnetic winding is approximated by a circuit formed by the distributed capacitance between the windings and the ground distributed capacitance of each part of the winding, and the voltage distribution when the unit step voltage is applied is calculated. It is described that the shared voltage between windings can be analyzed.
[0004]
In addition, if the ground distributed capacitance of each part of the winding is designed to be larger than the distributed capacitance between the windings, the initial potential distribution approaches a straight line, and the shared voltage between the windings decreases. For this reason, the high voltage induction device is designed such that the ground distributed capacitance of each part of the winding is larger than the distributed capacitance between the windings. Furthermore, in a high-voltage motor, a method of relaxing a shared voltage between windings by connecting a capacitor for adjusting distributed capacitance between windings from the outside of the windings has been proposed (see, for example, Patent Document 1). . In the three-phase winding device, as shown in FIG. 6, the shared voltage of the windings 31, 41, 51 and winding ends 32, 42, 52 of the windings 30, 40, 50 of each phase increases. For this reason, in Patent Document 1 described above, it is proposed to connect an interwinding distributed capacitance adjusting capacitor to these coils.
[0005]
On the other hand, conventionally, in the low voltage motor of less than 1 kVrms, the above-described countermeasure for relaxing the shared voltage between the windings against the steep surge voltage has not been taken. This is because conventional high-voltage surges such as lightning surges and switching surges were not a problem for low-voltage motors. In general, motor windings are manufactured with random windings and concentrated windings for low-voltage motors. This is because it was difficult to control the distributed electrostatic capacity and the ground distributed electrostatic capacity of each part of the winding to alleviate the shared voltage. In addition, when a coil is wound at once without cutting the magnet wire with a concentrated winding motor, the conductor of the coil series connection part cannot be taken out after the motor is manufactured. This is because the capacitor for adjusting the distributed capacitance could not be connected.
[0006]
[Non-Patent Document 1]
IEEJ Technical Report No. 739, p. 14-20
[Non-Patent Document 2]
Masayuki Ieda, Contemporary High Voltage Engineering, Ohmsha, p. 91-93
[Patent Document 1]
Japanese Patent Laid-Open No. 50-000301
[Problems to be solved by the invention]
The present invention is characterized in that, in a low-voltage motor that has been actively driven by an inverter in recent years, the voltage sharing between the windings is reduced with respect to the steep surge voltage to prevent the insulation deterioration between the windings. An object of the present invention is to provide a low-voltage motor.
[0008]
[Means for Solving the Problems]
The effects of the present invention can be obtained by the following method. That is, after winding 2n conductors (n is an integer) by half the number of windings of the motor winding, the winding start and end winding conductors are divided into two, and the winding start n and winding end n A motor with externally connected conductors is manufactured. In addition, when connecting a distributed capacitance adjusting capacitor between windings to improve the shared voltage between windings, the connection part at the beginning and end of winding of the motor winding, and the winding start part of the winding This can be realized by connecting a capacitor between the inter-electrode wire and the winding end.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0010]
[Example 1]
A method and structure for manufacturing a motor winding in which a capacitor for adjusting distributed capacitance between windings is connected to the outside according to the first embodiment of the present invention will be described. 1-3 show the manufacturing method and structure for one phase of the motor winding. 1 shows the winding process of the motor winding, FIG. 2 shows the separation and connection process of the motor winding, and FIG. 3 shows the external capacitor connecting process and the completed drawing of the winding. In addition, all are shown in the coil | winding expansion | deployment figure when seeing the stator of a motor from the inner peripheral side. The shaded area indicates the teeth of the stator core of the motor.
[0011]
In the winding process of FIG. 1, two enamel wires are wound at the same time to produce one-pole windings 11 and 12 and one-pole windings 13 and 14 composed of two enamel wires A and B. .
[0012]
Subsequently, in the process of FIG. 2, the two enamel wires A and B at the winding start portion of the winding 11 are connected to the wires A1 and B2, and the two enamel wires at the end of winding of the winding 12 are connected to the wire A3 and the wires. It divides into B4 and welds and connects the electric wire B2 and the electric wire A3 to form the welded portion 20. Similarly, the enameled wires A and B at the winding start portion of the winding 13 are divided into the electric wires A5 and B6, and the enameled wires A and B at the winding end of the winding 14 are divided into the electric wires A7 and B8. The welding part 22 is formed by welding and connecting the electric wire A7. Further, as the interelectrode connection, the wire B4 at the end of winding of the winding 12 and the wire A5 at the start of winding of the winding 13 are welded and connected to form the welded portion 21.
[0013]
3, the inter-winding distributed capacitance adjusting capacitors 26 to 29 are connected to the electric wire A1 and the welded portion 20, the welded portion 20 and the welded portion 21, the welded portion 21 and the welded portion 22, and the welded portion of the winding 11. 22 and the wire B8 of the winding 14 are connected to manufacture the winding.
[0014]
An equivalent circuit of the winding obtained by this manufacturing method is shown in FIG. That is, the one-phase winding 60 is formed from the windings 61 to 64. Each of the windings 61 to 64 is formed of an inductance 65, a distributed capacitance 66 between the windings, and a ground distributed capacitance 67 of each part of the winding. In FIG. 4, the inter-winding distributed capacitance adjusting capacitors are shown as capacitors 81 to 84.
[0015]
FIG. 5 shows a calculation result of the coil sharing voltage when a unit step voltage having a rise time of 0.1 μs is applied to the motor manufactured by the above method. In the coil sharing voltage, the value of the unit step voltage application side first coil is shown with the step voltage peak value being 100%. The equivalent circuit of FIG. 4 and EMTP (Electro Magnetic Transients Program) were used for the calculation of the coil sharing voltage.
[0016]
The circuit constants in FIG. 5 are based on the measurement results of the actual motor, the distributed capacitance 66 between the windings is 1,000 pF, the ground distributed capacitance of each part of the winding is 1,000 pF, and the windings connected to the outside As a result, the capacitance of the inter-distribution capacitance adjusting capacitors 81 to 84 was set to 1,000 pF. For simplicity, calculation was performed with the inductance 65 open as in Non-Patent Document 2. As a result, the coil sharing voltage could be reduced by 50% compared to Comparative Examples 1 and 2 of the conventional motor winding structure described later. At the same time, the surge withstand voltage of the motor can be improved by a factor of two compared to the conventional comparative examples 1 and 2, and a more reliable motor can be provided in which insulation deterioration hardly occurs between the windings even when the inverter is driven. .
[0017]
In the above-mentioned Example 1, it was shown that the surge voltage can be improved and the reliability can be improved with reference to the case where a magnet wire having the same film thickness and material as the conventional motor winding is used. However, in particular, if the coil-sharing voltage is made smaller than the partial discharge voltage between the magnet wires, the surge voltage of the motor can be improved while preventing the occurrence of insulation deterioration between the motor windings. . For this reason, by selecting an appropriate magnet wire that satisfies this condition with respect to the necessary surge withstand voltage, the space factor can be improved as compared with the conventional motor, and the size of the motor can be reduced.
[0018]
In the above-described Example 1, an enameled wire is used for the magnet wire, but a copper wire wrapped with silk, paper, cotton, glass cloth or the like may be used. In addition, various enamel-coated wires such as polyamideimide, polyesterimide, polyimide, polyester, formal, polyurethane, epoxy, silicone, and Teflon (registered trademark) film can be used for the enameled wire. In the present invention, it is particularly desirable to color the surface of the electric wire or the insulating film. This is because it is easy to distinguish the electric wires to be divided when dividing the 2n electric wires of the present invention into two. However, when no colorant or paint is used, the continuity of the winding may be checked with a tester, and 2n wires may be divided into two and connected.
[0019]
[Example 2]
The second embodiment is a motor winding in which the inter-winding distributed capacitance adjusting capacitor of the first embodiment is not connected. In general, the thickness of an insulating film of a magnet wire such as an enamel wire used for a winding is several tens of μm, which is sufficiently thinner than a thickness of several hundreds of μm of an insulator between the winding and the core (ground). For this reason, if the distributed electrostatic capacitance between the windings can be used, the shared voltage between the motor windings can be relaxed without connecting the inter-winding distributed capacitance adjusting capacitor outside the motor.
[0020]
FIG. 5 shows a calculation result of the coil sharing voltage when a unit step voltage having a rise time of 0.1 μS is applied to the motor of the second embodiment. Even if the inter-winding distributed capacitance adjusting capacitor is not connected, the coil sharing voltage can be reduced by 37% compared to the conventional comparative examples 1 and 2. As a result, the surge withstand voltage of the motor can be improved by 1.6 times compared to the conventional comparative examples 1 and 2, and a more reliable motor that hardly causes insulation deterioration between the windings even when the inverter is driven. Can be provided.
[0021]
In the second embodiment, since the capacitive coupling of the coil at the start and end of winding of the motor winding is stronger than in the conventional case, the voltage sharing of the high-frequency voltage to the coil at the start or end of winding is greater than in the conventional case. It is thought that concentration was reduced. That is, in the case of an equivalent circuit, in the motor winding structure of the present invention, as shown in FIG. 4, the distributed capacitance between the windings is directly connected from the winding start side to the winding end side. The capacitive voltage distribution of the line tends to be uniform.
[0022]
In contrast, FIG. 7 shows an equivalent circuit of a conventional motor winding. The one-phase winding 90 is formed of windings 91 to 94, and the windings 91 to 94 are formed of an inductance 95, a distributed capacitance 96 between the windings, and a ground distributed capacitance 97 of each part of the winding. Is done. In the conventional winding structure, since the distributed electrostatic capacitance 96 between the motor windings is connected in series from the beginning of winding to the end of winding, capacitive coupling from the winding start side to the winding end side becomes weak, It is thought that a lot of voltage is shared on the winding start side.
[0023]
[Comparative Example 1]
The motor winding was manufactured by the conventional concentrated winding coil manufacturing method. The same enameled wire as in Examples 1 and 2 was used for the motor winding. Further, no interwinding distributed capacitance adjusting capacitor is connected outside the motor winding.
[0024]
FIG. 5 shows a calculation result of the coil shared voltage when a unit step voltage having a rise time of 0.1 μs is applied to the motor winding of Comparative Example 1. In Comparative Example 1, the step voltage is almost 100% and is shared by the first coil. For this reason, when the motor of the comparative example 1 is driven by an inverter, the insulation must be reinforced compared to the conventional sine wave drive.
[0025]
[Comparative Example 2]
The motor winding was manufactured by the conventional concentrated winding coil manufacturing method. The same enameled wire as in Examples 1 and 2 was used for the motor winding. In Comparative Example 2, the inter-winding distributed capacitance adjusting capacitor was connected between the winding start of the motor winding of Comparative Example 1 and the inter-electrode crossing wire, and between the inter-electrode crossing wire and the winding end.
[0026]
FIG. 5 shows the calculation result of the coil sharing voltage when a unit step voltage having a rise time of 0.1 μs is applied to the motor winding of Comparative Example 2. In Comparative Example 2, as in Comparative Example 1, the step voltage is almost 100% shared by the first coil. For this reason, when the motor of the comparative example 2 is driven by an inverter, the insulation must be reinforced as compared with the conventional sine wave drive.
[0027]
In Comparative Example 2, the reason why the shared voltage of the first coil could not be improved can be considered as follows. That is, when the winding of FIG. 8 is shown as an example, when the concentrated winding coils 111 to 114 are wound without cutting the magnet wire as in the conventional winding manufacturing method, only the crossing wire 120 appears outside the motor. Therefore, the capacitors 121 and 122 for adjusting the distributed capacitance between the windings can be connected only between the winding start 101 and the inter-electrode crossing wire 120 and between the inter-electrode crossing wire 120 and the winding end 104. As a result, the inter-winding voltage sharing between the winding start coil 111 and the winding end coil 113 having the largest shared voltage between the windings cannot be relaxed, and is almost the same as in Comparative Example 1 in which the distributed capacitance adjusting capacitor is not connected. It is thought that it became a shared voltage.
[0028]
【The invention's effect】
As described above, after winding 2n conductors (n is an integer) by half the number of windings of the motor winding, the winding start and end conductors are divided into two, and the winding start n windings A motor in which the last n conductors are connected externally is manufactured. In addition, when connecting a distributed capacitance adjusting capacitor between windings to improve the shared voltage between windings, the connection part at the beginning and end of winding of the motor winding, and the winding start part of the winding By connecting a capacitor between the inter-electrode crossing line and the winding end part, it is possible to relax the voltage sharing between the motor windings. At the same time, the surge voltage of the motor can be improved as compared with the conventional one, and a more reliable motor can be provided in which insulation deterioration is unlikely to occur between the windings even when the inverter is driven.
[Brief description of the drawings]
FIG. 1 shows a winding process of a motor winding according to the present invention.
FIG. 2 shows motor winding separation and connection process.
FIG. 3 is a completed drawing of an external capacitor connection process and windings.
FIG. 4 is an equivalent circuit of a motor winding according to the present invention.
FIG. 5 shows a motor winding first coil shared voltage when a unit step voltage is applied.
FIG. 6 is a winding diagram of a motor winding.
FIG. 7 is an equivalent circuit of a conventional motor winding.
FIG. 8 is a connection diagram of a conventional motor winding and a capacitor for adjusting distributed capacitance between windings.
[Explanation of symbols]
A1: 1/2 of winding start of motor winding 11A, B2: 1/2 of winding start of motor winding 11B, A3: 1/2 of winding end of motor winding 12A, B4: winding of motor winding 12B 1/2 of the end, A5: 1/2 of the winding start of the motor winding 13A, B6: 1/2 of the winding start of the motor winding 13B, A7: 1/2 of the winding end of the motor winding 14A, B8: 1/2 of the winding end of the motor winding 14B, 11: motor first winding, 12: motor winding, 13: motor third winding, 14: motor fourth winding, 20: motor winding B2, Connection part of A3, 21: Connection part of motor windings B4 and A5, 22: Connection part of motor windings B6 and A7, 26-29: Capacitor for adjusting distributed capacitance between windings, 60: Motor winding 1 Phase: 61: Motor first winding, 62: Motor winding, 63: Motor first Winding, 64: Fourth motor winding, 65: Inductance of motor winding, 66: Distributed capacitance between motor windings, 67: Capacitance between each part of motor windings, 71: Motor winding winding Start terminal, 74: Motor winding end terminal, 80: Spacing wire, 81-84: Inter-winding distributed capacitance adjusting capacitor, 30: U phase winding, 31: U phase winding start coil, 32 : U-phase winding end coil, 40: V-phase winding, 41: V-phase winding start coil, 42: V-phase winding end coil, 50: W-phase winding, 51: W-phase winding start coil, 52: W-phase winding End coil, 90: Motor winding for one phase, 91: Motor first winding, 92: Motor second winding, 93: Motor third winding, 94: Motor fourth winding, 95: Motor winding Inductance, 96: Distributed capacitance between motor windings, 97: Motor 101: Motor winding winding start terminal, 104: Motor winding winding end terminal, 111: Motor first winding winding, 112: Motor second winding, 113: Motor third winding 114: motor fourth winding, 120: crossover wire, 121, 122: inter-winding distributed capacitance adjusting capacitor

Claims (3)

2n個(nは整数)の導体を、モータ巻線の巻回数の1/2回だけ巻いた後、巻き始めと巻き終わりの導体を2分割し、巻き始めのn個と巻き終わりのn個の導体を外部で接続したことを特徴とする低圧モータ。After winding 2n conductors (n is an integer) by half the number of windings of the motor winding, the winding start and end winding conductors are divided into two, n winding start and n winding end A low-pressure motor characterized in that the conductor is connected externally. モータ巻線の巻き始め、巻線の巻き始めのn個と巻き終わりのn個の導体の外部接続部、巻線の巻き終わりに巻線間分布静電容量調整用コンデンサを接続したことを特徴とする低圧モータ。The feature is that the capacitor for adjusting the distributed capacitance between windings is connected to the external connection part of the n windings at the beginning and end of winding of the motor winding and at the end of winding. And low pressure motor. 識別塗料あるいは染料を塗布あるいは混合し、2n個の導体を2分割する際の判別に使用したマグネットワイヤを使用したことを特徴とする請求項1記載の低圧モータ。2. The low-voltage motor according to claim 1, wherein a magnet wire used for discrimination when a 2n conductor is divided into two by applying or mixing an identification paint or dye.
JP2003207557A 2003-08-14 2003-08-14 Low pressure motor Expired - Fee Related JP4316948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207557A JP4316948B2 (en) 2003-08-14 2003-08-14 Low pressure motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207557A JP4316948B2 (en) 2003-08-14 2003-08-14 Low pressure motor

Publications (3)

Publication Number Publication Date
JP2005065363A true JP2005065363A (en) 2005-03-10
JP2005065363A5 JP2005065363A5 (en) 2005-10-20
JP4316948B2 JP4316948B2 (en) 2009-08-19

Family

ID=34363987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207557A Expired - Fee Related JP4316948B2 (en) 2003-08-14 2003-08-14 Low pressure motor

Country Status (1)

Country Link
JP (1) JP4316948B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028880A (en) * 2005-06-17 2007-02-01 Hitachi Ltd Dynamo-electric machine and manufacturing method thereof
JP2007185020A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Dynamo-electric machine, invertor drive dynamo-electric machine system, and inspection method
JP2008054404A (en) * 2006-08-24 2008-03-06 Hitachi Ltd Rotary electric machine, winding machine, rotary electric machine system, hybrid car, fuel cell vehicle, and electric vehicle
JP2010035253A (en) * 2008-07-25 2010-02-12 Toyota Motor Corp Interphase insulating member
JP2013183513A (en) * 2012-03-01 2013-09-12 Sumitomo Electric Ind Ltd Segment coil, manufacturing method of segment coil, manufacturing method of stator, and stator
JP2014036468A (en) * 2012-08-07 2014-02-24 Hitachi Industrial Equipment Systems Co Ltd Rotary electric machine and coil manufacturing method
US9293957B2 (en) 2011-10-27 2016-03-22 Toyota Jidosha Kabushiki Kaisha Segment coil, method of manufacturing segment coil, and stator including segment coil
US9755469B2 (en) 2011-10-27 2017-09-05 Toyota Jidosha Kabushiki Kaisha Segment coil, stator including segment coil, and method of manufacturing segment coil
CN110474451A (en) * 2018-05-09 2019-11-19 大众汽车有限公司 Manufacturing method for the stator of motor, motor and the stator for motor
DE112014006576B4 (en) 2014-04-08 2022-12-01 Mitsubishi Electric Corporation engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655025A (en) * 1979-10-11 1981-05-15 Matsushita Electric Ind Co Ltd Winding method of wire wound electric machine
JPH0210707A (en) * 1988-06-28 1990-01-16 Tokin Corp Method of winding coil for producing magnetic field
JPH0750141A (en) * 1993-08-03 1995-02-21 Mitsubishi Electric Corp Deflection yoke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655025A (en) * 1979-10-11 1981-05-15 Matsushita Electric Ind Co Ltd Winding method of wire wound electric machine
JPH0210707A (en) * 1988-06-28 1990-01-16 Tokin Corp Method of winding coil for producing magnetic field
JPH0750141A (en) * 1993-08-03 1995-02-21 Mitsubishi Electric Corp Deflection yoke

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028880A (en) * 2005-06-17 2007-02-01 Hitachi Ltd Dynamo-electric machine and manufacturing method thereof
JP2007185020A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Dynamo-electric machine, invertor drive dynamo-electric machine system, and inspection method
JP2008054404A (en) * 2006-08-24 2008-03-06 Hitachi Ltd Rotary electric machine, winding machine, rotary electric machine system, hybrid car, fuel cell vehicle, and electric vehicle
JP2010035253A (en) * 2008-07-25 2010-02-12 Toyota Motor Corp Interphase insulating member
US9293957B2 (en) 2011-10-27 2016-03-22 Toyota Jidosha Kabushiki Kaisha Segment coil, method of manufacturing segment coil, and stator including segment coil
US9755469B2 (en) 2011-10-27 2017-09-05 Toyota Jidosha Kabushiki Kaisha Segment coil, stator including segment coil, and method of manufacturing segment coil
JP2013183513A (en) * 2012-03-01 2013-09-12 Sumitomo Electric Ind Ltd Segment coil, manufacturing method of segment coil, manufacturing method of stator, and stator
JP2014036468A (en) * 2012-08-07 2014-02-24 Hitachi Industrial Equipment Systems Co Ltd Rotary electric machine and coil manufacturing method
DE112014006576B4 (en) 2014-04-08 2022-12-01 Mitsubishi Electric Corporation engine
CN110474451A (en) * 2018-05-09 2019-11-19 大众汽车有限公司 Manufacturing method for the stator of motor, motor and the stator for motor

Also Published As

Publication number Publication date
JP4316948B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
Bonnett Analysis of the impact of pulse-width modulated inverter voltage waveforms on AC induction motors
US5949170A (en) Method and apparatus for reducing voltage stresses in electric machine
Grandi et al. High frequency lumped parameter model for AC motor windings
US7990242B2 (en) Transient voltage and harmonic currents quashing (THQ) transformers, transformer winding topology, and method of making the same
KR101247085B1 (en) Two conductor winding for an induction motor circuit
JP4316948B2 (en) Low pressure motor
US11722026B2 (en) Fault tolerant rotating electric machine
JP2001505758A (en) Apparatus and method for protecting objects against overcurrent by overcurrent reduction and current limiting
JP6059066B2 (en) Stator winding, and stator and rotating electric machine including the same
US7952251B2 (en) Systems and methods for shielding an electric machine
JPH10112948A (en) Bipolar armature winding of rotating electric machine and its manufacture
US6927342B1 (en) Insulation for electrical conductors that produces no partial discharges
CN204993001U (en) Energy -efficient novel AC motor
JP2008306833A (en) Pwm electric equipment
CN105207437B (en) A kind of alternating current generator
JP5997558B2 (en) Rotating electric machine
JPS63186540A (en) Rotary electric machine
JP6173842B2 (en) Rotating electric machine
JPH0984289A (en) Insulated coil for inverter driven electric rotating machine
US20210218295A1 (en) Rotating electric machine
CN114268175B (en) Ultrahigh-voltage multiphase permanent magnet wind driven generator and power generation system
WO2023082263A1 (en) Motor stator, variable frequency motor, and manufacturing method for motor stator
JP2017073893A (en) Three phase ac dynamo-electric machine
JPH06311712A (en) Two-phase motor
JPH10322989A (en) Induction motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4316948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees