JP2005065131A - Capture and tracking apparatus for spatial laser communication - Google Patents

Capture and tracking apparatus for spatial laser communication Download PDF

Info

Publication number
JP2005065131A
JP2005065131A JP2003295766A JP2003295766A JP2005065131A JP 2005065131 A JP2005065131 A JP 2005065131A JP 2003295766 A JP2003295766 A JP 2003295766A JP 2003295766 A JP2003295766 A JP 2003295766A JP 2005065131 A JP2005065131 A JP 2005065131A
Authority
JP
Japan
Prior art keywords
band
signal
state
level
band limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003295766A
Other languages
Japanese (ja)
Inventor
Masahiro Toyoda
雅宏 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2003295766A priority Critical patent/JP2005065131A/en
Publication of JP2005065131A publication Critical patent/JP2005065131A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform proper capture and tracking by preventing a sum signal of outputs of a QD photodetector from becoming zero-cross even when a receiving strength of laser beams from an opposite station is lowered when a communication station which performs spatial laser communication, comprises a capture and tracking apparatus for precisely tracking the opposite station using the QD photodetector. <P>SOLUTION: A precise tracking control means 17 of the capture and tracking apparatus comprises first to fourth band limiting means 21a-21d corresponding to output signals (a)-(d) of first to fourth photo-detecting means 16a-16d of a QD photodetector 16, and a level discriminator 24 performs control to convert the first to fourth band limiting means 21a-21d from a through state into a band-limiting state through an LPF 26 (the state of cutting high-frequency noise components from the output signals (a)-(d)) when a sum signal Σ of the output signals (a)-(d) reaches a band limitation starting level with the reduction of the received light intensity or to convert the first to fourth band limiting means 21a-21d from the band limiting state into the through state when the received signal intensity increases and the sum signal Σ reaches a band limitation canceling level. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、移動体間もしくは移動体と固定体間で行う空間光通信で相手局を捕捉追尾する空間レーザ通信用捕捉追尾装置に関するものである。   The present invention relates to a capture and tracking device for space laser communication that captures and tracks a partner station by space optical communication performed between a moving body or between a moving body and a fixed body.

従来、レーザ通信を行う2局間で、互いに相手を捕捉・追尾するために空間レーザ通信用捕捉追尾装置が用いられている。この空間レーザ通信用捕捉追尾装置には、相手局からのレーザビームにより送受信用望遠鏡の向きを制御するための粗追尾制御手段と、4象限受光器(受光面を4つに分割した形状となる4つの受光素子で構成された受光器)で相手局からのレーザビームを受けて、その受光スポットが中心になるよう受光位置を調整制御するための精追尾制御手段と、を備えるものがある。   2. Description of the Related Art Conventionally, a capture tracking device for spatial laser communication has been used to capture and track each other between two stations that perform laser communication. This spatial laser communication acquisition and tracking device includes a coarse tracking control means for controlling the direction of a transmission / reception telescope by a laser beam from a partner station, and a four-quadrant light receiver (the light receiving surface is divided into four parts). And a fine tracking control means for receiving a laser beam from a partner station and adjusting and controlling the light receiving position so that the light receiving spot is at the center.

上記のような4象限受光器で精追尾を行う捕捉追尾装置においては、受光強度が著しく減衰した場合に、4素子からのプリアンプ出力に含まれるランダムな雑音(熱雑音やショット雑音)によって、4素子の和信号がゼロクロス(正から負や、負から正に変化する)する現象が起きてしまう。和信号は後段の除算器の分母に入力され、差分値は除算器の分子に入力されているため、除算器からの出力が、除算器の正負の制限値まで交互に振りきれる異常な値となる現象が発生していた。なお、現在のところ光通信に用いるレーザ素子の発光強度が限定されているため、受光強度の減衰を回避するために大出力のレーザビームを通信に利用することは出来ない。   In the acquisition and tracking device that performs fine tracking with the four-quadrant light receiver as described above, when the received light intensity is significantly attenuated, the random noise (thermal noise or shot noise) included in the preamplifier output from the four elements causes 4 A phenomenon occurs in which the sum signal of the element is zero-crossed (changes from positive to negative or from negative to positive). Since the sum signal is input to the denominator of the subsequent divider and the difference value is input to the numerator of the divider, the output from the divider is an abnormal value that can be alternately swung up to the positive / negative limit value of the divider. A phenomenon occurred. Since the light emission intensity of the laser element used for optical communication is limited at present, a high-power laser beam cannot be used for communication in order to avoid attenuation of the light reception intensity.

4象限受光器からの出力を演算して受光スポット位置を求める方法として、除算器を用いて位置変化を正規化する方法は従来から一般的に行われており、光スポット位置検出部が備える除算器に、受光強度変動への対応機能を持たせた従来技術がある(例えば、特許文献1参照)。しかしながら、この特許文献1に記載されている方法では、受光強度が低下した場合に、誤差が大きくなる問題が不可避であった。   As a method for calculating the output from the four-quadrant light receiver to obtain the light receiving spot position, a method of normalizing the position change using a divider has been conventionally performed, and the division provided in the light spot position detection unit is conventionally performed. There is a conventional technique in which a function of responding to fluctuations in received light intensity is provided in a detector (see, for example, Patent Document 1). However, the method described in Patent Document 1 inevitably has a problem that the error increases when the received light intensity decreases.

また、受光強度の低下時に生じてしまう上記のような異常現象を回避する方法として、追尾用の光センサへの入射光が減衰して、雑音の影響が顕著となって、予め定めた閾値を越えたときには、精追尾のためのミラー調整動作を停止して可動ミラーを固定し、その後に入射光が強くなって雑音の影響が軽減されて閾値以下となったときには、可動ミラーを停止したその位置から自動追尾動作を再開する従来技術がある(例えば、特許文献2参照)。しかしながら、この特許文献2に記載されている方法では、精追尾のためのミラー調整動作を停止して可動ミラーを固定した後には、制御が行われないために、姿勢変動の外乱が直接に指向誤差となり、通信相手をロストしてしまう可能性もある。   In addition, as a method of avoiding the above-described abnormal phenomenon that occurs when the received light intensity decreases, the incident light to the tracking optical sensor is attenuated and the influence of noise becomes significant, and a predetermined threshold value is set. When it exceeds, the mirror adjustment operation for fine tracking is stopped and the movable mirror is fixed.After that, when the incident light becomes stronger and the influence of noise is reduced and falls below the threshold, the movable mirror is stopped. There is a conventional technique for resuming an automatic tracking operation from a position (see, for example, Patent Document 2). However, in the method described in Patent Document 2, since the control is not performed after the mirror adjustment operation for fine tracking is stopped and the movable mirror is fixed, the disturbance of posture change is directly directed. There is a possibility that the communication partner is lost due to an error.

特開平10−190549号公報JP-A-10-190549 特開2001−333017号公報JP 2001-333017 A

すなわち、これらの方法では、受信信号の減衰時における指向誤差の低減に自ずと限界があり、信頼性の高い捕捉追尾を実現できないのである。   That is, in these methods, there is a limit in reducing the pointing error when the received signal is attenuated, and it is not possible to realize highly reliable acquisition and tracking.

本発明が解決しようとする課題は、レーザビームの受光強度が低下して、雑音の影響が大きくなっても、4素子の和信号がゼロクロスとなる現象が生ずる事を無くし、適正な捕捉追尾が可能な空間レーザ通信用捕捉追尾装置を提供することである。   The problem to be solved by the present invention is that even if the received light intensity of the laser beam is reduced and the influence of noise is increased, the phenomenon that the sum signal of the four elements becomes zero crossing does not occur, and proper acquisition and tracking is achieved. It is to provide a capture and tracking device for possible spatial laser communication.

上記の課題を解決するために、請求項1に係る発明は、空間レーザ通信を行う通信相手局からのレーザビームを受信し、この受信レーザビームに基づいて指向方向を粗く調整する粗追尾制御手段と、受信レーザビームを4象限受光器で受け、4象限受光器の各受光素子からの出力信号を用いて受光スポットの中心からのズレの指標となる差分信号を取得し、この差分信号に基づいて指向方向を精細に調整する精追尾制御手段と、を備える空間レーザ通信用捕捉追尾装置において、上記精追尾制御手段は、4象限受光器の受光素子からの信号をそのまま通過させるスルー状態と、4象限受光器の受光素子からの信号を低周波の帯域通過フィルタへ通す帯域制限状態と、に切り替え可能な帯域制限手段と、上記帯域制限手段を通過した各受光素子からの信号の総和である和信号の信号レベルが低下して、予め定めた帯域制限開始レベルに達することで、上記帯域制限手段をスルー状態から帯域制限状態に変換させ、帯域制限開始レベルよりも低かった和信号の信号レベルが上昇して、予め定めた帯域制限解除レベルに達することで、上記帯域制限手段を帯域制限状態からスルー状態に変換させる帯域制限制御手段と、を備えるものとした。   In order to solve the above problem, the invention according to claim 1 is a coarse tracking control means for receiving a laser beam from a communication partner station that performs spatial laser communication and roughly adjusting the pointing direction based on the received laser beam. Then, the received laser beam is received by the four-quadrant light receiver, and a difference signal serving as an index of deviation from the center of the light receiving spot is obtained using the output signal from each light receiving element of the four-quadrant light receiver, and based on this difference signal Fine tracking control means for finely adjusting the directing direction, and in the capture tracking device for spatial laser communication, the fine tracking control means is a through state in which the signal from the light receiving element of the four-quadrant light receiver is passed as it is, Band limiting means capable of switching to a band limiting state in which a signal from the light receiving element of the four-quadrant light receiver passes through a low-frequency band pass filter, and each light receiving element that has passed through the band limiting means When the signal level of the sum signal, which is the sum of these signals, decreases and reaches a predetermined band limit start level, the band limit means is converted from the through state to the band limit state, and the band limit start level is exceeded. Band limiting control means for converting the band limiting means from the band limiting state to the through state when the signal level of the low sum signal rises and reaches a predetermined band limiting cancellation level is provided.

また、請求項2に係る発明は、上記請求項1に記載の空間レーザ通信用捕捉追尾装置において、上記帯域制限手段は、時定数の異なる2以上の帯域通過フィルタを備えるものとし、上記帯域制限制御手段は、和信号の信号レベルの低下に応じて、時定数の短いものから時定数の長いものへ順次切り替え、和信号の信号レベルの上昇に応じて、時定数の長いものから短いものへ順次切り替えてスルー状態へ戻すようにしたことを特徴とする。   According to a second aspect of the present invention, in the acquisition tracking device for spatial laser communication according to the first aspect, the band limiting means includes two or more band pass filters having different time constants, and the band limiting The control means sequentially switches from the short time constant to the long time constant according to the decrease in the signal level of the sum signal, and from the long time constant to the short time according to the increase of the signal level of the sum signal. It is characterized in that it is switched sequentially to return to the through state.

請求項1に係る空間レーザ通信用捕捉追尾装置によれば、帯域制限手段と帯域制限制御手段を精追尾制御手段に設けたので、スルー状態で帯域制限手段を通過した各受光素子からの信号の総和である和信号の信号レベルが帯域制限開始レベルに達すると、帯域制限制御手段が帯域制限手段をスルー状態から帯域制限状態に変換させ、雑音成分である蓋然性の高い高周波成分をカットするので、和信号がゼロクロスすることを防止し、異常な差分信号が取得されることを抑制可能となる。これにより、受信したレーザビームの受光強度が低下した時にも、著しい指向誤差を生ずることなく、適正な捕捉追尾を継続することが出来る。   According to the acquisition and tracking device for spatial laser communication according to claim 1, since the band limiting unit and the band limiting control unit are provided in the fine tracking control unit, the signal from each light receiving element that has passed through the band limiting unit in the through state. When the signal level of the sum signal, which is the sum, reaches the band limit start level, the band limit control unit converts the band limit unit from the through state to the band limit state, and cuts a high-frequency component that is highly likely to be a noise component. It is possible to prevent the sum signal from crossing zero and suppress the acquisition of an abnormal difference signal. As a result, even when the received light intensity of the received laser beam is reduced, proper acquisition and tracking can be continued without causing a significant pointing error.

そして、帯域制限手段を帯域制限状態で捕捉追尾を継続している間に、帯域制限開始レベルよりも低かった和信号の信号レベルが上昇して帯域制限解除レベルに達すると、帯域制限制御手段が帯域制限手段を帯域制限状態からスルー状態に変換させるので、レーザビームの受光強度が適正な強度に戻ると、通常の捕捉追尾動作へ速やかに自動復帰させることが出来る。   When the signal level of the sum signal that is lower than the band limitation start level rises and reaches the band limitation release level while the band limitation unit continues to capture and track in the band limitation state, the band limitation control unit Since the band limiting means is converted from the band limited state to the through state, when the received light intensity of the laser beam returns to an appropriate intensity, the normal capture and tracking operation can be quickly and automatically returned.

このように、空間レーザ通信を行う双方の通信局で、本発明に係るレーザ通信用捕捉追尾装置を用いれば、受光したレーザビームが減衰した時の指向誤差を小さく抑えて、相手側での受光強度変動をも効果的に抑制できるので、安定したレーザリンクを保持できるという利点もある。   As described above, if the communication tracking device for laser communication according to the present invention is used in both communication stations that perform spatial laser communication, the pointing error when the received laser beam is attenuated can be suppressed to be small, and light reception on the partner side can be suppressed. Since intensity fluctuation can be effectively suppressed, there is also an advantage that a stable laser link can be maintained.

また、請求項2に係る空間レーザ通信用捕捉追尾装置によれば、時定数の異なる2以上の帯域通過フィルタを帯域制限手段に設けて、和信号の信号レベルの低下・上昇に応じて、帯域制限制御手段が時定数の異なる帯域通過フィルタを使い分けるものとしたので、和信号の信号レベルが比較的高いうちは帯域制限周波数を高く設定し、指向制御に用いる差分信号の信頼性を高くし、和信号の信号レベルが低くなるにつれて帯域制限周波数を低下させることで、平滑化による誤差要因を許容しつつも、雑音混入に起因する和信号のゼロクロスに基づいて異常な差分信号が取得されることを防止する。従って、受光強度低下時の帯域制限による誤差要因を更に抑制することが可能となり、より好適な捕捉追尾を実現し得る。   Further, according to the acquisition and tracking device for spatial laser communication according to claim 2, two or more band pass filters having different time constants are provided in the band limiting unit, and the bandwidth is reduced according to the decrease or increase of the signal level of the sum signal. Since the limit control means uses different band-pass filters with different time constants, the band limit frequency is set high while the signal level of the sum signal is relatively high, and the reliability of the differential signal used for directivity control is increased. By reducing the band limit frequency as the signal level of the sum signal decreases, an abnormal difference signal is acquired based on the zero cross of the sum signal caused by noise mixing while allowing an error factor due to smoothing. To prevent. Therefore, it is possible to further suppress the error factor due to the band limitation when the received light intensity is reduced, and it is possible to realize more suitable acquisition and tracking.

次に、添付図面に基づいて、本発明に係る空間レーザ通信用捕捉追尾装置の実施形態を説明する。   Next, an embodiment of a capture and tracking device for spatial laser communication according to the present invention will be described based on the attached drawings.

図1に示すのは、空間レーザ通信を行う双方の通信局が備える空間光通信システムの概略構成である。この空間光通信システムは、第1実施形態に係る空間レーザ通信用の捕捉追尾装置1と、送信および受信兼用の望遠鏡2と、ジンバル機構3によって構成してある。   FIG. 1 shows a schematic configuration of a spatial optical communication system provided in both communication stations that perform spatial laser communication. This spatial optical communication system is configured by a capture and tracking device 1 for spatial laser communication according to the first embodiment, a telescope 2 for both transmission and reception, and a gimbal mechanism 3.

上記捕捉追尾装置1では、望遠鏡2により受信した通信相手局からのレーザビームを第1ビームスプリッタ11にて一部を分離し、これをCCD受光器12で受光し、このCCD受光器12からの受光信号を受けた粗追尾制御手段13がジンバル機構3を駆動させて、レーザビームの受光位置を調整する。すなわち、粗追尾制御手段13が行うジンバル機構3の駆動制御によって、望遠鏡2の受光の向きを通信相手局へ大まかに合わせることが出来る。   In the acquisition and tracking device 1, a part of the laser beam received from the communication partner station received by the telescope 2 is separated by the first beam splitter 11, received by the CCD light receiver 12, and received from the CCD light receiver 12. The coarse tracking control means 13 that has received the light receiving signal drives the gimbal mechanism 3 to adjust the light receiving position of the laser beam. That is, the light receiving direction of the telescope 2 can be roughly adjusted to the communication partner station by the drive control of the gimbal mechanism 3 performed by the coarse tracking control means 13.

上記第1ビームスプリッタ11を透過したレーザビームは、例えば2枚の可動ミラーにより構成される光路微調整手段14へ導かれ、この光路微調整手段14を通った受信光は第2ビームスプリッタ15を透過して4象限受光器であるQD受光器16の受光面に照射され、このQD受光器16からの出力信号を受けた精追尾制御手段17が光路微調整手段14の可動ミラーを作動させて、受光位置を高精度に調整する。   The laser beam that has passed through the first beam splitter 11 is guided to an optical path fine adjustment unit 14 constituted by, for example, two movable mirrors, and the received light that has passed through the optical path fine adjustment unit 14 passes through the second beam splitter 15. The fine tracking control means 17 that has passed through and irradiated the light receiving surface of the QD light receiver 16 that is a four-quadrant light receiver and received the output signal from the QD light receiver 16 operates the movable mirror of the optical path fine adjustment means 14. Adjust the light receiving position with high accuracy.

上記QD受光器16は、受光面を4つに分割した形状となるような4つの受光素子(例えば、フォトダイオード)より構成されるもので、受光スポットが中心にあれば、4つの受光素子から各々等しい電流が得られ、受光スポットが中心から外れていれば、そのズレに応じた電流が各受光素子から得られる。従って、各受光素子から得た電流に基づいて受光スポットの位置のズレ方向を識別出来るのである。なお、標準的なQD受光器16は増幅作用を持たないので、例えば、素子自体がアバランシェ効果による電気的増幅機能を持った4分割アバランシェフォトダイオード(QAPD)を用いても良い。   The QD light receiver 16 is composed of four light receiving elements (for example, photodiodes) having a light receiving surface divided into four parts. If the light receiving spot is at the center, the four light receiving elements are used. If the same current is obtained and the light receiving spot is off the center, a current corresponding to the deviation is obtained from each light receiving element. Therefore, the direction of deviation of the position of the light receiving spot can be identified based on the current obtained from each light receiving element. Since the standard QD light receiver 16 does not have an amplifying function, for example, a four-divided avalanche photodiode (QAPD) in which the element itself has an electric amplifying function by an avalanche effect may be used.

なお、捕捉追尾装置1が備えるレーザ光源18から照射された送信用のレーザビームは、上記第2ビームスプリッタ15でその光路を光路微調整手段14へ向けられ、第1ビームスプリッタ11を透過して望遠鏡2から照射される。   The transmission laser beam emitted from the laser light source 18 included in the acquisition and tracking device 1 is directed to the optical path fine adjustment means 14 by the second beam splitter 15 and transmitted through the first beam splitter 11. Irradiated from the telescope 2.

人工衛星と地上局の間で空間光通信を行う際に生ずる受光強度変動の要因としては、大気揺らぎによる変動もあるが、主として相手側のレーザ通信機の指向誤差に起因する。この指向誤差が相手局に生じた時に受光強度が低下し、相手局で指向誤差が補正されるにつれて受光強度が回復する。このように、双方の通信局で互いに相手局を捕捉追尾する空間光通信においては、受光強度の変動は一般的に生ずるものである。そして、指向誤差は、衛星本体の姿勢変動を捕捉追尾装置によって補正した制御残差に相当し、相手側から送られてきた光の受光強度が減衰したときに、この指向誤差が増大する。捕捉追尾装置は、光通信機の姿勢変動に起因した受光スポットの位置変動を計測し、その値に基づいて姿勢変動を補正するために可動ミラーや駆動装置を制御するものである。粗追尾制御は角度分解能が大きな受光スポット検出を長い時間間隔で行うため、受光強度の短時間の低下には影響され難い。一方、精追尾制御において受光スポットの強度が低下したときの位置計測の精度、可動ミラー制御の精度を高めることが課題である。そこで、第1実施形態に係る捕捉追尾装置1の精追尾制御手段17は、図2に示す構成とした。   The cause of the fluctuation in received light intensity that occurs when performing spatial optical communication between the artificial satellite and the ground station is also due to fluctuations in the atmosphere, but is mainly due to the pointing error of the laser communication device on the other side. When this pointing error occurs in the partner station, the received light intensity decreases, and the received light intensity recovers as the pointing error is corrected in the partner station. As described above, in spatial optical communication in which both communication stations capture and track each other station, fluctuations in received light intensity generally occur. The pointing error corresponds to a control residual obtained by correcting the attitude variation of the satellite body by the acquisition and tracking device, and this pointing error increases when the received light intensity of light transmitted from the other side is attenuated. The acquisition and tracking device measures the position variation of the light receiving spot caused by the posture variation of the optical communication device, and controls the movable mirror and the driving device in order to correct the posture variation based on the measured value. Since the coarse tracking control detects light receiving spots with a large angular resolution at a long time interval, it is hardly affected by a short time drop in the light receiving intensity. On the other hand, it is a problem to improve the accuracy of position measurement and the accuracy of movable mirror control when the intensity of the light receiving spot is reduced in fine tracking control. Therefore, the fine tracking control means 17 of the acquisition tracking device 1 according to the first embodiment is configured as shown in FIG.

図2に示す精追尾制御手段17は、差分信号を取得するまでの概略構成のみを示し、取得した差分信号に基づいて光路微調整手段14を制御する手法としては、公知既存のものを適用できるので、図示を省略した。   The fine tracking control means 17 shown in FIG. 2 shows only a schematic configuration until a difference signal is acquired, and a known and existing technique can be applied as a method for controlling the optical path fine adjustment means 14 based on the acquired difference signal. Therefore, illustration was abbreviate | omitted.

QD受光器16を構成する4つのフォトダイオードである第1受光素子16a,第2受光素子16b,第3受光素子16c,第4受光素子16dから受光量(W)に比例した電流が各々出力され、これらをプリアンプ回路20で電圧(V)に変換し、電位情報としての信号強度を得る。なお、本図に示すQD受光器16においては、第1受光素子16aと第4受光素子16dの並び、第2受光素子16bと第3受光素子16cの並びが、夫々x方向の配置となり、且つ、第1受光素子16aと第2受光素子16bの並び、第3受光素子16cと第4受光素子16dの並びが、夫々y方向の配置となるようにしてある。   Currents proportional to the amount of received light (W) are output from the first light receiving element 16a, the second light receiving element 16b, the third light receiving element 16c, and the fourth light receiving element 16d, which are the four photodiodes constituting the QD light receiver 16, respectively. These are converted into voltage (V) by the preamplifier circuit 20 to obtain signal intensity as potential information. In the QD light receiver 16 shown in this figure, the arrangement of the first light receiving element 16a and the fourth light receiving element 16d, the arrangement of the second light receiving element 16b and the third light receiving element 16c are arranged in the x direction, respectively. The arrangement of the first light receiving element 16a and the second light receiving element 16b and the arrangement of the third light receiving element 16c and the fourth light receiving element 16d are arranged in the y direction.

上記プリアンプ回路20より出力される第1〜第4受光素子16a〜16dの受光信号は、第1帯域制限手段21a,第2帯域制限手段21b,第3帯域制限手段21c,第4帯域制限手段21dを各々介して加減算回路22へ供給される。なお、第1〜第4帯域制限手段21a〜21dの詳細については後に詳述する。   The received light signals of the first to fourth light receiving elements 16a to 16d output from the preamplifier circuit 20 are first band limiting means 21a, second band limiting means 21b, third band limiting means 21c, and fourth band limiting means 21d. Are supplied to the adder / subtracter circuit 22 via each of them. The details of the first to fourth band limiting units 21a to 21d will be described later.

上記加減算回路22では、第1受光素子16aからの出力信号aと、第2受光素子16bからの出力信号bと、第3受光素子16cからの出力信号cと、第4受光素子16dからの出力信号dとを用いて、和信号Σ=a+b+c+d、x方向の差分値Ex=a+b−c−d、y方向の差分値Ey=a+d−c−bを各々計算し、これらΣ,Ex,Eyを除算器23へ供給する。なお、和信号Σはレベル判別器24にも供給するものとした。   In the addition / subtraction circuit 22, the output signal a from the first light receiving element 16a, the output signal b from the second light receiving element 16b, the output signal c from the third light receiving element 16c, and the output from the fourth light receiving element 16d. Using the signal d, the sum signal Σ = a + b + c + d, the x-direction difference value Ex = a + b−c−d, and the y-direction difference value Ey = a + dc−b are calculated, and these Σ, Ex, and Ey are calculated. This is supplied to the divider 23. The sum signal Σ is also supplied to the level discriminator 24.

上記除算器23では、Ex/ΣとEy/Σを計算して、x方向のズレを示す差分信号(ゼロに近いほどズレがないことを示す信号)とy方向のズレを示す差分信号(ゼロに近いほどズレがないことを示す信号)を得る。斯くして、QD受光器16に照射された受信レーザビームの受光スポットが、QD受光器16の受光面の中心からズレている度合いを把握するための指標となる差分信号を取得できるのである。この差分信号の値に基づいて光路微調整手段14の可動ミラーを動かし、QD受光器16の中央に受光スポットが当たるように受信レーザビームの光路を微調整することで、精追尾制御手段17による精追尾動作が実行される。   The divider 23 calculates Ex / Σ and Ey / Σ, and a differential signal indicating a deviation in the x direction (a signal indicating that there is no deviation as it approaches zero) and a differential signal (zero) indicating a deviation in the y direction. A signal indicating that there is no deviation as the value approaches. Thus, it is possible to acquire a differential signal that serves as an index for grasping the degree of deviation of the light receiving spot of the received laser beam irradiated to the QD light receiver 16 from the center of the light receiving surface of the QD light receiver 16. By moving the movable mirror of the optical path fine adjustment means 14 based on the value of the difference signal and finely adjusting the optical path of the received laser beam so that the light receiving spot hits the center of the QD light receiver 16, the fine tracking control means 17 A fine tracking operation is performed.

図3(a)は、加減算回路22から得られる和信号Σが減衰し回復する場合のシミュレーション計算による波形図であり、信号レベルに顕著な微動が生じているのが分かる。これは、QD受光器16を構成する受光素子やプリアンプ回路20に含まれるランダムな雑音(熱雑音やショット雑音)が混入するためである。図3(b)には、受光スポットの位置が正弦波状に変動する例について、ランダム雑音が無いときの理想的な差分信号(Ex/Σ、又は、Ey/Σ)を示した。受光強度が著しく減衰した場合に、ランダムな雑音の影響により、和信号Σ(Σ=a+b+c+dで、本来なら負になることはない信号)がゼロクロス(正から負や、負から正に変化する)する現象が起きる。ゼロクロス時には、除算器23からの出力が、除算器23の正負の制限値まで交互に振りきる異常な差分信号が発生していた(図3(c)参照)。   FIG. 3A is a waveform diagram by simulation calculation when the sum signal Σ obtained from the adder / subtractor circuit 22 attenuates and recovers, and it can be seen that significant fine movement occurs in the signal level. This is because random noise (thermal noise or shot noise) included in the light receiving element and the preamplifier circuit 20 constituting the QD light receiver 16 is mixed. FIG. 3B shows an ideal differential signal (Ex / Σ or Ey / Σ) when there is no random noise for an example in which the position of the light receiving spot varies sinusoidally. When the received light intensity is significantly attenuated, the sum signal Σ (Σ = a + b + c + d, a signal that is not normally negative) is zero-crossed (changes from positive to negative or from negative to positive) due to the influence of random noise. Occurs. At the time of zero crossing, an abnormal difference signal was generated in which the output from the divider 23 was alternately swung up to the positive / negative limit value of the divider 23 (see FIG. 3C).

そこで、本実施形態に係る捕捉追尾装置1の精追尾制御手段17における第1〜第4帯域制限手段21a〜21dには、夫々切替手段25と低周波成分が透過する帯域通過フィルタ(以下、LPF)26を設け、2接点切替式のスイッチを有する切替手段25によって、プリアンプ回路20からの信号をそのまま加減算回路22へ送出するスルー状態と、プリアンプ回路20からLPF26を通して帯域制限した信号を加減算回路22へ送出する帯域制限状態とを切り替えるものとした。   Therefore, the first to fourth band limiting units 21a to 21d in the fine tracking control unit 17 of the acquisition and tracking device 1 according to the present embodiment include a switching unit 25 and a band pass filter (hereinafter referred to as an LPF) that transmits a low frequency component. ) 26 and a switching means 25 having a two-contact switching type switch, a through state in which the signal from the preamplifier circuit 20 is sent to the adder / subtractor circuit 22 as it is, and a band limited signal from the preamplifier circuit 20 through the LPF 26. The bandwidth limit state to be sent to is switched.

すなわち、本実施形態においては、切替手段25とLPF26とを備える第1〜第4帯域制限手段21a〜21dが「4象限受光器の受光素子からの信号をそのまま通過させるスルー状態と、4象限受光器の受光素子からの信号を低周波の帯域通過フィルタへ通す帯域制限状態と、に切り替え可能な帯域制限手段」として機能するのである。   That is, in the present embodiment, the first to fourth band limiting units 21a to 21d including the switching unit 25 and the LPF 26 are “through state in which a signal from the light receiving element of the four quadrant light receiver is passed as it is and four quadrant light reception. It functions as a band limiting means that can be switched between a band limiting state in which a signal from the light receiving element of the detector is passed through a low-frequency band pass filter.

更に、レベル判別器24は、QD受光器16に当たったビームスポットの強度が低下することに伴って、加減算回路22からの和信号Σの信号レベルが規定値(予め定めた帯域制限開始レベル)まで低下したことを検出すると、第1〜第4帯域制限手段21a〜21dの各切替手段25…に切替信号を送って、第1〜第4帯域制限手段21a〜21dを帯域制限状態に変更させ、高周波成分をカットされた出力信号a〜dが加減算回路22へ供給されるようにする。   Further, the level discriminator 24 is configured such that the signal level of the sum signal Σ from the adder / subtractor circuit 22 is a specified value (predetermined band limit start level) as the intensity of the beam spot hitting the QD light receiver 16 decreases. Is detected, the switching signal is sent to each switching means 25 of the first to fourth band limiting means 21a to 21d to change the first to fourth band limiting means 21a to 21d to the band limiting state. The output signals a to d from which the high-frequency components have been cut are supplied to the addition / subtraction circuit 22.

上記のように帯域制限が行われた後、QD受光器16に当たったビームスポットの強度が上昇することに伴って、加減算回路22からの和信号Σの信号レベルが規定値(予め定めた帯域制限解除レベル)に達したことを検出したレベル判別器24は、第1〜第4帯域制限手段21a〜21dの各切替手段25…に切替信号を送って、第1〜第4帯域制限手段21a〜21dをスルー状態に変更させ、プリアンプ回路20からの出力信号a〜dがそのまま加減算回路22へ供給されるようにする。   After the band limitation is performed as described above, the signal level of the sum signal Σ from the adder / subtractor circuit 22 becomes a predetermined value (predetermined band) as the intensity of the beam spot hitting the QD light receiver 16 increases. The level discriminator 24 that has detected that the limit release level has been reached sends a switching signal to each of the switching means 25 of the first to fourth band limiting means 21a to 21d, and the first to fourth band limiting means 21a. ˜21d is changed to the through state, and the output signals a to d from the preamplifier circuit 20 are supplied to the adder / subtractor circuit 22 as they are.

すなわち、本実施形態においては、第1〜第4帯域制限手段21a〜21dの切替手段25の切替制御を行うレベル判別器24が「帯域制限手段を通過した各受光素子からの信号の総和である和信号の信号レベルが低下して、予め定めた帯域制限開始レベルに達することで、上記帯域制限手段をスルー状態から帯域制限状態に変換させ、帯域制限開始レベルよりも低かった和信号の信号レベルが上昇して、予め定めた帯域制限解除レベルに達することで、帯域制限手段を帯域制限状態からスルー状態に変換させる帯域制限制御手段」として機能するのである。   That is, in the present embodiment, the level discriminator 24 that performs switching control of the switching means 25 of the first to fourth band limiting means 21a to 21d is “the sum of signals from each light receiving element that has passed through the band limiting means. When the signal level of the sum signal decreases and reaches a predetermined band limit start level, the band limit means is converted from the through state to the band limit state, and the signal level of the sum signal is lower than the band limit start level. Increases and reaches a predetermined band limit release level, and functions as a band limit control means for converting the band limit means from the band limit state to the through state.

図3(d)に、上述した帯域制限制御方式を用いて、レベル判別器24による切替制御を行った場合の和信号Σの波形を示す。例えば、和信号Σの信号レベルが帯域制限開始レベルである0.3〔V〕になったのをレベル判別器24が判別して第1〜第4帯域制限手段21a〜21dの切替手段25を切り替えることで、帯域制限された出力信号a〜dに基づいて和信号Σが計算されたのが、本図においては、概ね0.04秒付近であり、その後の和信号Σは平滑化されているのが分かる。   FIG. 3D shows the waveform of the sum signal Σ when the switching control by the level discriminator 24 is performed using the band limitation control method described above. For example, the level discriminator 24 determines that the signal level of the sum signal Σ has reached 0.3 [V], which is the band limitation start level, and switches the switching unit 25 of the first to fourth band limiting units 21a to 21d. By switching, the sum signal Σ is calculated on the basis of the band-limited output signals a to d in this figure in about 0.04 seconds, and the subsequent sum signal Σ is smoothed. I can see that

その後、和信号Σの信号レベルが帯域制限解除レベルである0.4〔V〕になったのをレベル判別器24が判別して第1〜第4帯域制限手段21a〜21dの切替手段25を切り替えることで、帯域制限されない出力信号a〜dに基づいて和信号Σが計算されたのが、本図においては、概ね0.076秒付近であり、その後の和信号Σには、再び、雑音による微動が生じているのが分かる。   Thereafter, the level discriminator 24 determines that the signal level of the sum signal Σ has reached 0.4 [V], which is the band limitation release level, and switches the switching unit 25 of the first to fourth band limiting units 21a to 21d. By switching, the sum signal Σ is calculated on the basis of the output signals a to d that are not band-limited in this figure, in the vicinity of approximately 0.076 seconds. It can be seen that a slight tremor has occurred.

なお、帯域制限を開始させるためにレベル判別器24が判別する帯域制限開始レベル(スルー状態から帯域制限状態へ切り替える閾値)よりも、帯域制限を終了させるためにレベル判別器24が判別する帯域制限解除レベル(帯域制限状態からスルー状態へ切り替える閾値)を大きく設定したのは、チャタリング(接点の開閉が短時間の内に反復する現象)防止のためである。   Note that the bandwidth limit determined by the level discriminator 24 to end the bandwidth limit is higher than the bandwidth limit start level (threshold for switching from the through state to the bandwidth limit state) determined by the level discriminator 24 to start the bandwidth limit. The reason why the release level (threshold for switching from the band-limited state to the through state) is set large is to prevent chattering (a phenomenon in which the opening and closing of the contacts repeats within a short time).

図3(e)に、LPF26への切り替えで帯域制限を施した出力信号a〜dにより取得した差分信号の波形を示す。これは、図3(b)に示した理想的な差分信号に比べると多分に誤差を含んでおり、計測制度が低下していることは否めないものの、図3(c)に示した従来方式(ゼロクロスした和信号により算出した差分信号の波形)のような異常状態は生じておらず、光路微調整手段14の可動ミラー制御に支障のない差分信号を取得できたことが分かる。   FIG. 3E shows the waveform of the difference signal acquired from the output signals a to d subjected to band limitation by switching to the LPF 26. This is more likely to contain errors than the ideal differential signal shown in FIG. 3B, and it cannot be denied that the measurement system has deteriorated, but the conventional method shown in FIG. 3C. It can be seen that an abnormal state such as (the waveform of the differential signal calculated by the zero-crossed sum signal) does not occur, and a differential signal that does not hinder the movable mirror control of the optical path fine adjustment unit 14 can be acquired.

帯域制限のON/OFFを切り替えるためにレベル判別器24に判別させる規定値(帯域制限開始レベルおよび帯域制限解除レベル)は、回路構成に応じた雑音特性に基づいて適宜設定すれば良く、その設定手法は特に限定されるものではない。また、LPF26として用いる帯域通過/遮断特性も、回路構成に応じた雑音特性に基づいて適宜設定すれば良いが、ランダム雑音の振幅の分布は確率的に推定できるので、和信号のゼロクロスを避け、且つ、帯域制限による位置計測精度の低下を最小限とする周波数帯域制限を加え得る特性のフィルタを用いることが望ましい。   The specified values (band limit start level and band limit release level) that are discriminated by the level discriminator 24 in order to switch the band limit ON / OFF may be set as appropriate based on the noise characteristics according to the circuit configuration. The method is not particularly limited. Further, the band pass / cutoff characteristics used as the LPF 26 may be set as appropriate based on the noise characteristics according to the circuit configuration, but the random noise amplitude distribution can be estimated probabilistically, so avoiding zero crossing of the sum signal, In addition, it is desirable to use a filter having a characteristic capable of adding a frequency band restriction that minimizes a decrease in position measurement accuracy due to the band restriction.

次に、帯域制限をかけつつも、上述した第1実施形態の捕捉追尾装置1に設けた精追尾制御手段17よりも差分信号の誤差を抑制できる第2実施形態を説明する。第2実施形態に係る捕捉追尾装置に設ける精追尾制御手段17′の概略構成を図4に示す。なお、図2に示した精追尾制御手段17と同様の構成については、同一符号を付して、その説明を省略する。   Next, a description will be given of a second embodiment in which the error of the difference signal can be suppressed more than the fine tracking control means 17 provided in the acquisition and tracking device 1 of the first embodiment described above while band limitation is applied. FIG. 4 shows a schematic configuration of fine tracking control means 17 ′ provided in the acquisition tracking device according to the second embodiment. In addition, about the structure similar to the fine tracking control means 17 shown in FIG. 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

精追尾制御手段17′において、第1〜第4受光素子16a〜16dからプリアンプ回路20を経て供給される出力信号a〜dは、夫々第1帯域制限手段31a,第2帯域制限手段31b,第3帯域制限手段31c,第4帯域制限手段31dに至る。これら第1〜第4帯域制限手段31a〜31dからの出力信号a〜dを受けた加減算回路から和信号Σを受けるレベル判別器32は、和信号Σの信号レベルに応じて、第1〜第4帯域制限手段31a〜31dを制御する。   In the fine tracking control means 17 ′, the output signals a to d supplied from the first to fourth light receiving elements 16a to 16d through the preamplifier circuit 20 are the first band limiting means 31a, the second band limiting means 31b, The third band limiting unit 31c and the fourth band limiting unit 31d are reached. The level discriminator 32 that receives the sum signal Σ from the adder / subtractor circuit that has received the output signals a to d from the first to fourth band limiting units 31a to 31d, according to the signal level of the sum signal Σ. The four-band limiting means 31a to 31d are controlled.

これら第1〜第4帯域制限手段31a〜31dは、3接点切替式のスイッチを有する切替手段33によって、プリアンプ回路20からの信号をそのまま加減算回路22へ送出するスルー状態と、プリアンプ回路20から初段低周波通過フィルタ(以下、初段LPF)34aを通して帯域制限した信号を加減算回路22へ送出する初段帯域制限状態と、プリアンプ回路20から次段低周波通過フィルタ(以下、次段LPF)34bを通して帯域制限した信号を加減算回路22へ送出する次段帯域制限状態と、に切替可能なものである。   These first to fourth band limiting units 31a to 31d are switched from a pre-amplifier circuit 20 to a first state by a switching state 33 having a three-contact switching type switch. A first-stage band-limited state in which a band-limited signal is sent to the adder / subtracter circuit 22 through a low-frequency pass filter (hereinafter referred to as first-stage LPF) 34a, and a band-limited signal from the preamplifier circuit 20 through the next-stage low-frequency pass filter (hereinafter referred to as next-stage LPF) 34b. It is possible to switch to a next-stage band-limited state in which the processed signal is sent to the adder / subtracter circuit 22.

ここで、初段LPF34aと次段LPF34bには、各々透過/遮断周波数の帯域が異なるものを用い、初段LPF34aの時定数よりも次段LPF34bの時定数を長くすることで、初段LPF34aよりも次段LPF34bの方が帯域制限周波数が低い(出力信号a〜dを平滑化し易い)特性とする。このような特性の初段LPF34a,次段LPF34bを用いるなら、QD受光器16の受光強度がある程度高く、多少の雑音成分が残ってもゼロクロスが生じる可能性が低い場合には、初段LPF34aを用いて出力信号a〜dの帯域制限を行うことができ、QD受光器16の受光強度が極めて低く、些細な雑音成分によってもゼロクロスが生じる危険性がある場合には、次段LPF34bを用いて出力信号a〜dの帯域制限を行うことができる。   Here, the first-stage LPF 34a and the next-stage LPF 34b have different transmission / cutoff frequency bands, and the time constant of the next-stage LPF 34b is made longer than the time constant of the first-stage LPF 34a, so that The LPF 34b has a characteristic that the band limit frequency is lower (the output signals a to d are easier to smooth). If the first-stage LPF 34a and the next-stage LPF 34b having such characteristics are used, the first-stage LPF 34a is used when the light reception intensity of the QD light receiver 16 is high to some extent and the possibility of zero crossing is low even if some noise components remain. When the band of the output signals a to d can be limited, the received light intensity of the QD light receiver 16 is extremely low, and there is a risk that zero crossing may occur due to a minor noise component, the output signal is output using the next-stage LPF 34b. Bands a to d can be limited.

そこで、上述した構成の第1〜第4帯域制限手段31a〜31dの制御を行うレベル判別器32は、QD受光器16に当たったビームスポットの強度が低下することに伴って、加減算回路22からの和信号Σの信号レベルが規定値(予め定めた初段帯域制限開始レベル)まで低下したことを検出すると、第1〜第4帯域制限手段31a〜31dの各切替手段33…に切替信号を送って、初段のフィルタである初段LPF34aを各出力信号a〜dが通るように切り替えさせ、第1〜第4帯域制限手段31a〜31dを初段帯域制限状態に変更させ、高周波の雑音成分がカットされた出力信号a〜dが加減算回路22へ供給されるようにする。   Therefore, the level discriminator 32 that controls the first to fourth band limiting units 31a to 31d having the above-described configuration is supplied from the addition / subtraction circuit 22 as the intensity of the beam spot hitting the QD light receiver 16 decreases. When the signal level of the sum signal .SIGMA. Is reduced to a specified value (predetermined initial stage band limitation start level), a switching signal is sent to each of the switching units 33... Of the first to fourth band limiting units 31a to 31d. Thus, the first-stage LPF 34a, which is the first-stage filter, is switched so that the output signals a to d pass therethrough, and the first to fourth band-limiting means 31a to 31d are changed to the first-stage band-limited state, and high-frequency noise components are cut. The output signals a to d are supplied to the addition / subtraction circuit 22.

初段LPF34aに切り替えられた後、QD受光器16に当たったビームスポットの強度が更に低下することに伴って、加減算回路22からの和信号Σの信号レベルが規定値(予め定めた次段帯域制限開始レベル)まで低下したことをレベル判別手段32が検出すると、第1〜第4帯域制限手段31a〜31dの各切替手段33…に切替信号を送って、次段のフィルタである次段LPF34bを各出力信号a〜dが通るように切り替えさせ、第1〜第4帯域制限手段31a〜31dを次段帯域制限状態に変更させ、更に低周波の雑音成分がカットされた出力信号a〜dが加減算回路22へ供給されるようにする。   After the switching to the first-stage LPF 34a, the signal level of the sum signal Σ from the adder / subtractor circuit 22 becomes a specified value (predetermined next-stage band limit) as the intensity of the beam spot hitting the QD light receiver 16 further decreases. When the level discriminating means 32 detects that the level has dropped to the start level), it sends a switching signal to each of the switching means 33... Of the first to fourth band limiting means 31a to 31d, and the next stage LPF 34b, which is the next stage filter, is sent. The output signals a to d are switched so that each of the output signals a to d passes, the first to fourth band limiting units 31 a to 31 d are changed to the next band limiting state, and the output signals a to d from which the low frequency noise components are further cut are obtained. It is supplied to the addition / subtraction circuit 22.

上記のように帯域制限が行われた後、QD受光器16に当たったビームスポットの強度が上昇することに伴って、加減算回路22からの和信号Σの信号レベルが規定値(予め定めた次段帯域制限解除レベル)に達したことを検出したレベル判別器32は、第1〜第4帯域制限手段31a〜31dの各切替手段33…に切替信号を送って、初段のフィルタである初段LPF34aを各出力信号a〜dが通るように切り替えさせ、第1〜第4帯域制限手段31a〜31dを次段帯域制限状態から初段帯域制限状態に戻す。   After the band limitation is performed as described above, the signal level of the sum signal Σ from the adder / subtractor circuit 22 is increased to a specified value (predetermined next) as the intensity of the beam spot hitting the QD light receiver 16 increases. The level discriminator 32 that has detected that the first stage LPF 34a, which is the first stage filter, sends a switching signal to the switching means 33 of the first to fourth band limiting units 31a to 31d. Are switched so that the output signals a to d pass, and the first to fourth band limiting units 31a to 31d are returned from the next stage band limited state to the first stage band limited state.

初段LPF34aに切り替えられた後、QD受光器16に当たったビームスポットの強度が更に上昇することに伴って、加減算回路22からの和信号Σの信号レベルが規定値(予め定めた初段帯域制限解除レベル)に達したことを検出したレベル判別器32は、第1〜第4帯域制限手段31a〜31dの各切替手段33…に切替信号を送って、第1〜第4帯域制限手段31a〜31dをスルー状態に変更させ、プリアンプ回路20からの出力信号a〜dがそのまま加減算回路22へ供給されるようにする。   After the switching to the first-stage LPF 34a, the signal level of the sum signal Σ from the adder / subtractor circuit 22 is increased to a specified value (predetermined first-stage band limit release) as the intensity of the beam spot hitting the QD light receiver 16 further increases. The level discriminator 32, which has detected that the level has been reached, sends a switching signal to the switching means 33 of the first to fourth band limiting means 31a to 31d, and the first to fourth band limiting means 31a to 31d. Is changed to the through state, and the output signals a to d from the preamplifier circuit 20 are supplied to the adder / subtractor circuit 22 as they are.

すなわち、本実施形態に係る捕捉追尾装置の精追尾制御手段が備えるレベル判別器32は、「時定数の異なる2以上の低周波帯域通過フィルタを備えるものとし、上記帯域制限制御手段は、和信号の信号レベルの低下に応じて、時定数の短いものから時定数の長いものへ順次切り替え、和信号の信号レベルの上昇に応じて、時定数の長いものから短いものへ順次切り替えてスルー状態へ戻す帯域制限手段」として機能するのである。   That is, the level discriminator 32 included in the fine tracking control unit of the acquisition and tracking device according to the present embodiment includes “two or more low-frequency bandpass filters having different time constants, and the band limiting control unit includes a sum signal. As the signal level decreases, the time constant is switched from the short time constant to the long time constant, and as the sum signal level increases, the time constant is switched from the long time constant to the short one. It functions as a "band limiting means for returning".

図5に、上述した2段フィルタ切り替え方式を採用した精追尾制御手段17′における各種信号のシミュレーション波形を示す。例えば、和信号Σの信号レベルが初段帯域制限開始レベルである0.3〔V〕になったのをレベル判別器32が判別して、第1〜第4帯域制限手段31a〜31dの切替手段33により初段LPF34aに切り替えさせる信号を出力する(初段のフィルタ切り替え信号をONにする)のが概ね0.035秒付近で、その後に帯域制限された出力信号a〜dに基づいて計算された和信号Σが多少平滑化されているのが分かる。   FIG. 5 shows simulation waveforms of various signals in the fine tracking control means 17 ′ adopting the above-described two-stage filter switching method. For example, the level discriminator 32 determines that the signal level of the sum signal Σ has reached the first stage band restriction start level of 0.3 [V], and the switching means for the first to fourth band restriction means 31a to 31d. 33 is approximately 0.035 seconds for outputting a signal for switching to the first-stage LPF 34a (the first-stage filter switching signal is turned ON), and the sum calculated based on the band-limited output signals a to d thereafter. It can be seen that the signal Σ is somewhat smoothed.

更に受光信号の強度が低下し、和信号Σの信号レベルが次段帯域制限開始レベルである0.03〔V〕になったのをレベル判別器32が判別して、第1〜第4帯域制限手段31a〜31dの切替手段33により次段LPF34bに切り替えさせる信号を出力する(次段のフィルタ切り替え信号をONにし、初段のフィルタ切り替え信号をOFFにする)のが概ね0.046秒付近で、その後に帯域制限された出力信号a〜dに基づいて計算された和信号Σが更に平滑化されているのが分かる。   Furthermore, the level discriminator 32 discriminates that the intensity of the received light signal has decreased and the signal level of the sum signal Σ has reached 0.03 [V] which is the next band restriction start level. The switching means 33 of the limiting means 31a to 31d outputs a signal for switching to the next-stage LPF 34b (turning on the next-stage filter switching signal and turning off the first-stage filter switching signal) in about 0.046 seconds. Then, it can be seen that the sum signal Σ calculated based on the band-limited output signals a to d is further smoothed.

その後、受光信号の強度が上昇し、和信号Σの信号レベルが次段帯域制限解除レベルである0.2〔V〕になったのをレベル判別器32が判別して、第1〜第4帯域制限手段31a〜31dの切替手段33により初段LPF34aに切り替えさせる信号を出力する(初段のフィルタ切り替え信号をONにし、次段のフィルタ切り替え信号をOFFにする)のが概ね0.075秒付近で、その後に帯域制限された出力信号a〜dに基づいて計算された和信号Σに、雑音による微動が生じているのが分かる。   Thereafter, the intensity of the received light signal increases, and the level discriminator 32 discriminates that the signal level of the sum signal Σ has reached the next-stage band restriction release level of 0.2 [V]. A signal for switching to the first-stage LPF 34a is output by the switching means 33 of the band limiting means 31a to 31d (the first-stage filter switching signal is turned on and the next-stage filter switching signal is turned off) in about 0.075 seconds. Then, it can be seen that fine movement due to noise occurs in the sum signal Σ calculated based on the band-limited output signals a to d.

更に受光信号の強度が上昇し、和信号Σの信号レベルが初段帯域制限解除レベルである0.4〔V〕になったのをレベル判別器32が判別して、第1〜第4帯域制限手段31a〜31dの切替手段33をスルーに切り替えさせる信号を出力する(初段のフィルタの切り替え信号をOFFにする)のが概ね0.78秒付近で、その後に帯域制限されない出力信号a〜dに基づいて計算された和信号Σには、再び、雑音による顕著な微動が生じているのが分かる。   Further, the intensity of the received light signal is increased, and the level discriminator 32 determines that the signal level of the sum signal Σ has reached the first stage band restriction release level of 0.4 [V], and the first to fourth band restrictions. A signal for switching the switching means 33 of the means 31a to 31d to through is output (turning off the first stage filter switching signal) in about 0.78 seconds, and thereafter the output signals ad are not band-limited. It can be seen that the fine signal caused by the noise is generated again in the sum signal Σ calculated based on this.

なお、第2実施形態においても、チャタリング防止のために、初段帯域制限開始レベルよりも初段帯域制限解除レベルを、次段帯域制限開始レベルよりも次段帯域制限解除レベルを、各々大きく設定してある。   Also in the second embodiment, in order to prevent chattering, the first-stage band restriction release level is set higher than the first-stage band restriction start level, and the next-stage band restriction release level is set higher than the next-stage band restriction start level. is there.

図5(d)に、初段LPF34a,次段LPF34bへの切り替えで帯域制限を施した出力信号a〜dにより取得した差分信号の波形を示す。これも、図3(b)に示した理想的な差分信号に比べると多分に誤差を含んでおり、計測制度が低下していることは否めないものの、図3(e)に示した第1実施形態で取得される差分信号よりも誤差を抑制できたことが分かる。   FIG. 5D shows the waveform of the differential signal acquired from the output signals a to d subjected to band limitation by switching to the first-stage LPF 34a and the next-stage LPF 34b. This also includes an error as compared with the ideal differential signal shown in FIG. 3B, and although it cannot be denied that the measurement system has deteriorated, the first difference shown in FIG. It can be seen that the error can be suppressed more than the difference signal acquired in the embodiment.

各段の帯域制限のON/OFFを切り替えるためにレベル判別器32に判別させる規定値(各段の帯域制限開始レベルおよび帯域制限解除レベル)は、回路構成に応じた雑音特性に基づいて適宜設定すれば良く、その設定手法は特に限定されるものではない。また、初段LPF34a,次段LPF34bとして用いる各フィルタの帯域通過/遮断特性も、回路構成に応じた雑音特性に基づいて適宜設定すれば良いが、ランダム雑音の振幅の分布は確率的に推定できるので、和信号のゼロクロスを避け、且つ、各帯域制限による位置計測精度の低下を最小限とする周波数帯域制限を加え得る特性のフィルタを用いることが望ましい。   The specified values (band limit start level and band limit release level of each stage) to be discriminated by the level discriminator 32 in order to switch ON / OFF of the band limit at each stage are appropriately set based on the noise characteristics according to the circuit configuration. The setting method is not particularly limited. The band pass / cutoff characteristics of the filters used as the first-stage LPF 34a and the next-stage LPF 34b may be set as appropriate based on the noise characteristics according to the circuit configuration, but the random noise amplitude distribution can be estimated probabilistically. It is desirable to use a filter having a characteristic capable of adding a frequency band limit that avoids zero crossing of the sum signal and minimizes a decrease in position measurement accuracy due to each band limit.

なお、上述した第2実施形態では、2つのLPFを用いて強度低下に応じて切り替えるものとしたが、3つ以上のLPFを用いて強度低下に応じて切り替えるようにしても良い。   In the second embodiment described above, two LPFs are used for switching according to strength reduction. However, three or more LPFs may be used for switching according to strength reduction.

捕捉追尾装置を含む光通信システムの概略構成図である。It is a schematic block diagram of the optical communication system containing an acquisition tracking apparatus. 第1実施形態に係る捕捉追尾装置に設ける精追尾制御手段の概略構成図である。It is a schematic block diagram of the fine tracking control means provided in the acquisition tracking apparatus which concerns on 1st Embodiment. 精追尾制御手段(主に図2の構成)における各種信号のシミュレーション波形図である。It is a simulation waveform figure of various signals in fine tracking control means (mainly composition of Drawing 2). 第2実施形態に係る捕捉追尾装置に設ける精追尾制御手段の概略構成図である。It is a schematic block diagram of the fine tracking control means provided in the acquisition tracking apparatus which concerns on 2nd Embodiment. 精追尾制御手段(図4の構成)における各種信号のシミュレーション波形図である。It is a simulation waveform figure of various signals in fine tracking control means (configuration of Drawing 4).

符号の説明Explanation of symbols

1 捕捉追尾装置
2 望遠鏡
3 ジンバル機構
13 粗追尾制御手段
14 光路微調整手段
16 QD受光器
16a〜16d 第1〜第4受光素子
17 精追尾制御手段
21a〜21d 第1〜第4帯域制限手段
24 レベル判別器
25 切替手段
26 LPF
17′ 精追尾制御手段
31a〜31d 第1〜第4帯域制限手段
32 レベル判別器
33 切替手段
34a 初段LPF
34b 次段LPF
DESCRIPTION OF SYMBOLS 1 Acquisition tracking apparatus 2 Telescope 3 Gimbal mechanism 13 Coarse tracking control means 14 Optical path fine adjustment means 16 QD light receivers 16a to 16d First to fourth light receiving elements 17 Fine tracking control means 21a to 21d First to fourth band limiting means 24 Level discriminator 25 switching means 26 LPF
17 'fine tracking control means 31a to 31d first to fourth band limiting means 32 level discriminator 33 switching means 34a first stage LPF
34b Next stage LPF

Claims (2)

空間レーザ通信を行う通信相手局からのレーザビームを受信し、この受信レーザビームに基づいて指向方向を粗く調整する粗追尾制御手段と、
受信レーザビームを4象限受光器で受け、4象限受光器の各受光素子からの出力信号を用いて受光スポットの中心からのズレの指標となる差分信号を取得し、この差分信号に基づいて指向方向を精細に調整する精追尾制御手段と、
を備える空間レーザ通信用捕捉追尾装置において、
上記精追尾制御手段は、
4象限受光器の受光素子からの信号をそのまま通過させるスルー状態と、4象限受光器の受光素子からの信号を低周波の帯域通過フィルタへ通す帯域制限状態と、に切り替え可能な帯域制限手段と、
上記帯域制限手段を通過した各受光素子からの信号の総和である和信号の信号レベルが低下して、予め定めた帯域制限開始レベルに達することで、上記帯域制限手段をスルー状態から帯域制限状態に変換させ、帯域制限開始レベルよりも低かった和信号の信号レベルが上昇して、予め定めた帯域制限解除レベルに達することで、上記帯域制限手段を帯域制限状態からスルー状態に変換させる帯域制限制御手段と、
を備える空間レーザ通信用捕捉追尾装置。
Coarse tracking control means for receiving a laser beam from a communication partner station that performs spatial laser communication and coarsely adjusting a directivity direction based on the received laser beam;
The received laser beam is received by a four-quadrant light receiver, and a differential signal that serves as an index of deviation from the center of the light-receiving spot is obtained using output signals from the respective light-receiving elements of the four-quadrant light receiver, and directed based on the difference signal. Fine tracking control means for finely adjusting the direction;
In space laser communication acquisition and tracking device comprising:
The fine tracking control means is
Band limiting means capable of switching between a through state in which the signal from the light receiving element of the four quadrant light receiver is passed as it is and a band limited state in which the signal from the light receiving element of the four quadrant light receiver is passed through the low frequency band pass filter; ,
When the signal level of the sum signal, which is the sum of the signals from the respective light receiving elements that have passed through the band limiting unit, decreases and reaches a predetermined band limiting start level, the band limiting unit is changed from the through state to the band limiting state. The band limiter converts the band limiter from the band limit state to the through state by increasing the signal level of the sum signal that is lower than the band limit start level and reaching a predetermined band limit release level. Control means;
A capture and tracking device for spatial laser communication.
上記帯域制限手段は、時定数の異なる2以上の帯域通過フィルタを備えるものとし、
上記帯域制限制御手段は、和信号の信号レベルの低下に応じて、時定数の短いものから時定数の長いものへ順次切り替え、和信号の信号レベルの上昇に応じて、時定数の長いものから短いものへ順次切り替えてスルー状態へ戻すようにしたことを特徴とする請求項1に記載の空間レーザ通信用捕捉追尾装置。
The band limiting means includes two or more band pass filters having different time constants,
The band limiting control means sequentially switches from the short time constant to the long time constant according to the decrease in the signal level of the sum signal, and from the long time constant according to the increase in the signal level of the sum signal. 2. The acquisition and tracking device for spatial laser communication according to claim 1, wherein the system is sequentially switched to a short one and returned to the through state.
JP2003295766A 2003-08-20 2003-08-20 Capture and tracking apparatus for spatial laser communication Pending JP2005065131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295766A JP2005065131A (en) 2003-08-20 2003-08-20 Capture and tracking apparatus for spatial laser communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295766A JP2005065131A (en) 2003-08-20 2003-08-20 Capture and tracking apparatus for spatial laser communication

Publications (1)

Publication Number Publication Date
JP2005065131A true JP2005065131A (en) 2005-03-10

Family

ID=34371874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295766A Pending JP2005065131A (en) 2003-08-20 2003-08-20 Capture and tracking apparatus for spatial laser communication

Country Status (1)

Country Link
JP (1) JP2005065131A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020100A (en) * 2005-07-11 2007-01-25 Hamamatsu Photonics Kk Incidence state detection method and optical wireless communication apparatus
JP2008066926A (en) * 2006-09-06 2008-03-21 Ic Master:Kk Automatic attitude control system for laser communication device and automatic attitude control method
JP2012060499A (en) * 2010-09-10 2012-03-22 National Institute Of Information & Communication Technology Optical wireless communication apparatus
JP2012237628A (en) * 2011-05-11 2012-12-06 Mitsubishi Electric Corp Acquisition tracking device
JP2012253484A (en) * 2011-06-01 2012-12-20 Nec Corp Acquisition and tracking control device
WO2014115397A1 (en) * 2013-01-25 2014-07-31 シャープ株式会社 Light sensor and electronic device
JP2016510557A (en) * 2013-02-12 2016-04-07 レイセオン カンパニー Multiple access point laser communication terminal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020100A (en) * 2005-07-11 2007-01-25 Hamamatsu Photonics Kk Incidence state detection method and optical wireless communication apparatus
JP4615384B2 (en) * 2005-07-11 2011-01-19 浜松ホトニクス株式会社 Incident state detection method and optical wireless communication apparatus
JP2008066926A (en) * 2006-09-06 2008-03-21 Ic Master:Kk Automatic attitude control system for laser communication device and automatic attitude control method
JP2012060499A (en) * 2010-09-10 2012-03-22 National Institute Of Information & Communication Technology Optical wireless communication apparatus
JP2012237628A (en) * 2011-05-11 2012-12-06 Mitsubishi Electric Corp Acquisition tracking device
JP2012253484A (en) * 2011-06-01 2012-12-20 Nec Corp Acquisition and tracking control device
WO2014115397A1 (en) * 2013-01-25 2014-07-31 シャープ株式会社 Light sensor and electronic device
JP5985663B2 (en) * 2013-01-25 2016-09-06 シャープ株式会社 Optical sensor and electronic equipment
JP2016510557A (en) * 2013-02-12 2016-04-07 レイセオン カンパニー Multiple access point laser communication terminal

Similar Documents

Publication Publication Date Title
EP0653852B1 (en) Free space optical communication system
JP2005065131A (en) Capture and tracking apparatus for spatial laser communication
US5467219A (en) Control device for an optical amplifier
JP3550836B2 (en) Tracking servo device and tracking servo method in optical device
JP2005341494A (en) Optical transmission space discriminating device and optical space transmission device
WO2015190097A1 (en) Light reception device and light reception method
JPWO2018139412A1 (en) Detection system and detection method
KR20060046642A (en) Laser noise cancel circuit and optical disk device
JPH05346535A (en) Range finding device
US20050094238A1 (en) Method and arrangement for performing triggering and timing of triggering
JP3327711B2 (en) Laser scattered light incident direction detection device in guidance control of flying object using laser scattered light
EP1503526B1 (en) System and method for eliminating effect of external interference on active tracking for free space optics communication
JP2007020100A (en) Incidence state detection method and optical wireless communication apparatus
KR20220086668A (en) Wireless Power Transmission System with Adaptive Dynamic Safety Management
JP2011014225A5 (en)
KR101589716B1 (en) Apparatus for generating position difference signal of infrared position tracker
JPH11101872A (en) Laser range finder
JPH02216076A (en) Light beam tracking method and apparatus
JPH09281237A (en) Laser distance measuring instrument
JPWO2004095736A1 (en) Reception error rate controller
KR20230139444A (en) Apparatus for Controlling Camera Interchangeable Lens and Camera Including the Same
JP2690082B2 (en) Focus control circuit
JP2011119919A (en) System and apparatus for optical wireless communication
JP3841218B2 (en) DVD player and disk player
CN101159143A (en) CD ROM seeking signal producing device and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307