JP2005062035A - Method for detecting foreign matter between substrates, near field exposing method, detector of foreign matter between substrates and near field exposure device - Google Patents

Method for detecting foreign matter between substrates, near field exposing method, detector of foreign matter between substrates and near field exposure device Download PDF

Info

Publication number
JP2005062035A
JP2005062035A JP2003293694A JP2003293694A JP2005062035A JP 2005062035 A JP2005062035 A JP 2005062035A JP 2003293694 A JP2003293694 A JP 2003293694A JP 2003293694 A JP2003293694 A JP 2003293694A JP 2005062035 A JP2005062035 A JP 2005062035A
Authority
JP
Japan
Prior art keywords
substrate
foreign matter
exposure
substrates
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003293694A
Other languages
Japanese (ja)
Other versions
JP4721393B2 (en
Inventor
Yasuhisa Inao
耕久 稲生
Akira Kuroda
亮 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003293694A priority Critical patent/JP4721393B2/en
Publication of JP2005062035A publication Critical patent/JP2005062035A/en
Application granted granted Critical
Publication of JP4721393B2 publication Critical patent/JP4721393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting foreign matter between substrates constituted so as to enhance a yield by detecting the foreign matter present between the substrates, and to provide a near field exposing method, a detector of the foreign matter between the substrates and a near field exposure device. <P>SOLUTION: For example, this detection means of the foreign matter between the substrates is adapted to the near field exposing method, which is constituted so as to deform an exposure mask to bring the same into close contact with an object 106 to be treated to perform exposure using the near field bleeding out of the fine opening formed to the exposure mask, or the near field exposure device therefor. This detection means has a means 103 for bringing the exposure mask into close contact with the object to be treated and a means 110 for detecting the deformation of the exposure mask produced by the foreign matter 111 present between the exposure mask and the object to be treated to be bonded to them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板間の異物検出方法、近接場露光方法、基板間の異物検出装置、近接場露光装置に関し、例えば一般に集積回路や液晶ディスプレイ(LCD)などの製造工程におけるフォトマスクや被処理体などの表面に付着した異物を検出し、除去するための技術に関する。   The present invention relates to a foreign matter detection method between substrates, a near-field exposure method, a foreign matter detection device between substrates, and a near-field exposure device, for example, generally a photomask or an object to be processed in a manufacturing process such as an integrated circuit or a liquid crystal display (LCD). It is related with the technique for detecting and removing the foreign material adhering to the surface.

近年の電子機器の小型化及び薄型化の要請から、電子機器に搭載される半導体素子の微細化への要求はますます高くなっている。例えば、マスクまたはレチクルのパターンに対するデザインルールはライン・アンド・スペース(L&S)130nmを量産工程で達成しようとし、今後益々小さくなることが予想される。近年主流である投影露光装置は、一般に、光源から出射された光束を利用してマスクを照明する照明光学系とマスクと被露光物との間に配置される投影光学系とを有する。
投影露光装置では一般に解像度は使用する光源の波長が略限界であると言われ、エキシマレーザーを使用しても投影露光装置は0.10μm以下のパタ−ンを形成することが困難である。加えて、仮に、より短い波長を有する光源が存在しても、かかる短波長の露光光を投影光学系に使用される光学材料(即ち、レンズの硝材)が透過できずに(その結果被露光物に投影できずに)露光ができなくなるという問題もある。
Due to the recent demand for smaller and thinner electronic devices, there is an increasing demand for miniaturization of semiconductor elements mounted on electronic devices. For example, the design rule for a mask or reticle pattern is expected to be 130% in line and space (L & S) in a mass production process, and is expected to become smaller in the future. 2. Description of the Related Art In recent years, projection exposure apparatuses that have become mainstream generally include an illumination optical system that illuminates a mask using a light beam emitted from a light source, and a projection optical system that is disposed between the mask and an object to be exposed.
In a projection exposure apparatus, it is generally said that the wavelength of a light source to be used is substantially limited in resolution, and even if an excimer laser is used, it is difficult for the projection exposure apparatus to form a pattern of 0.10 μm or less. In addition, even if there is a light source having a shorter wavelength, the optical material used for the projection optical system (that is, the glass material of the lens) cannot pass through the exposure light having the shorter wavelength (as a result, the exposure target is exposed). There is also a problem that exposure cannot be performed (because it cannot be projected onto an object).

かかる問題に対して、近年、0.1μm以下の微細加工を可能にする手段として近接場光学顕微鏡(Scanning Near Field Optical Microscope:SNOM)の原理を用いた露光装置が提案されている。このような露光装置として、例えば、特許文献1あるいは特許文献2では、マスク面の法線方向に弾性変形可能なマスクをレジストに密着させ、マスク面に形成した100nm以下の大きさの微小開口パターンから滲み出す近接場光を用いて被露光物に光の波長限界を越える局所的な露光を行う装置が提案されている。この方式の特徴として、微小な開口からにじみ出る近接場光は、その開口に入射した光の波長程度の距離までに局在するため、被処理体と開口との距離を、光の波長以下、望ましくは100nm以下の距離にまで近づける必要がある。そのため、露光マスクとして弾性変形が可能なマスクとし、基板のうねりなどに対しても露光マスクを撓ませることで基板に対して倣わせるように構成されている。
特開平11−145051号公報 特開平11−184094号公報
In recent years, an exposure apparatus using the principle of a scanning near field optical microscope (SNOM) has been proposed as a means for enabling fine processing of 0.1 μm or less to deal with such problems. As such an exposure apparatus, for example, in Patent Document 1 or Patent Document 2, a mask that is elastically deformable in the normal direction of the mask surface is brought into close contact with the resist, and a fine aperture pattern having a size of 100 nm or less formed on the mask surface. There has been proposed an apparatus that performs local exposure on an object to be exposed that exceeds the wavelength limit of light using near-field light that oozes out from the light. As a feature of this method, near-field light that oozes out from a minute aperture is localized up to a distance of about the wavelength of the light incident on the aperture, so the distance between the object to be processed and the aperture is preferably less than the wavelength of the light. Needs to be close to a distance of 100 nm or less. For this reason, a mask that can be elastically deformed is used as the exposure mask, and is configured to follow the substrate by bending the exposure mask even when the substrate is wavy.
Japanese Patent Laid-Open No. 11-145051 JP-A-11-184094

しかしながら、この弾性変形可能なマスクが被露光物に対して密着せず、近接場光の存在しない領域にまで離れている状態で露光を行うと、被露光物には光の波長限界を超える局所的な露光を行うことができないことがある。特に、マスクと被処理体の間に異物が挟まると、図3に示すように異物302の存在する部分だけでなく、それ以外にもその周囲にわたり微小開口305が被処理体303に密着しない非密着領域304が存在することとなり、異物302周辺一帯にまでフォトマスク301と被処理体303の間に間隙が生じてしまう。その結果、被処理体303に近接場光306が到達せずに、次の処理に進んでしまうこととなり、そのためパターンを形成することができず、製造したウエハやガラス基板に欠陥が生じ、歩留まりの低下が起こることがあった。   However, when exposure is performed in a state where the elastically deformable mask is not in close contact with the object to be exposed and is separated to a region where no near-field light exists, the object to be exposed has a local area exceeding the wavelength limit of light. Exposure may not be possible. In particular, when a foreign object is caught between the mask and the object to be processed, not only the part where the foreign object 302 exists as shown in FIG. The close contact region 304 exists, and a gap is generated between the photomask 301 and the object to be processed 303 even around the foreign substance 302. As a result, the near-field light 306 does not reach the workpiece 303, and the process proceeds to the next process. Therefore, a pattern cannot be formed, and a defect occurs in the manufactured wafer or glass substrate, resulting in a yield. There was a decrease in

そこで、本発明は、上記課題を解決し、基板間に存在する異物を検出することにより、歩留まりを向上させることが可能となる基板間の異物検出方法、近接場露光方法、基板間の異物検出装置、近接場露光装置を提供することを目的とするものである。   Therefore, the present invention solves the above problems and detects foreign matter existing between the substrates, thereby improving the yield. The foreign matter detection method between the substrates, the near-field exposure method, and the foreign matter detection between the substrates. An object of the present invention is to provide an apparatus and a near-field exposure apparatus.

本発明は、以下のように構成した基板間の異物検出方法、近接場露光方法、基板間の異物検出装置、近接場露光装置を提供するものである。
すなわち、本発明の基板間の異物検出方法は、弾性変形可能な第1の基板を、弾性変形しない第2の基板に対して変形させて密着させた際に、これら基板間に存在する異物を検出する基板間の異物検出方法であって、前記第1の基板を、前記第2の基板に密着させる工程と、前記第1の基板と前記第2の基板との間に存在するこれら基板に付着した異物によって生じる該第1の基板の変形を検出する工程と、を有することを特徴としている。
また、本発明の基板間の異物検出方法は、前記第1の基板の変形を検出する工程を、前記第1の基板と平坦な基準面とに光を照射する工程と、前記第1の基板から反射する該第1の基板からの反射光と、該基準面から反射する該基準面からの反射光と、による干渉縞を観察する工程と、を有する構成とすることができる。
また、本発明の基板間の異物検出方法は、前記第1の基板と平坦な基準面とに光を照射する工程において、前記第1の基板への光の照射を、該第1の基板全面に亙って照射するように構成することができる。
また、本発明の基板間の異物検出方法は、前記第1の基板と平坦な基準面とに光を照射する工程において、前記第1の基板への光の照射を、該第1の基板全面を光走査するように構成することができる。
また、本発明の基板間の異物検出方法は、前記基準面を、前記第2の基板で構成することができる。
また、本発明の基板間の異物検出方法は、前記第1の基板を前記光に対して透明とし、前記第1の基板と平坦な基準面への光の照射を、該第1の基板側から照射するように構成することができる。
また、本発明の基板間の異物検出方法は、前記第2の基板が前記光に対して透明とし、前記第1の基板と平坦な基準面への光の照射を、該第2の基板側から照射するように構成することができる。
また、本発明の基板間の異物検出方法は、前記干渉縞を観察する工程が、該干渉縞から前記異物の位置、高さ、大きさ、あるいは前記第1の基板と前記第2の基板が離間している領域、等を算出する工程を含むように構成することができる。
また、本発明の近接場露光方法は、露光マスクを変形させ被処理体に対して密着させ、該露光マスクに形成した微小開口からにじみ出る近接場を用いて露光を行う近接場露光方法において、
前記露光マスクを被処理体に対して密着させる際に、該露光マスクと被処理体との間に存在する異物を検出する工程を有することを特徴としている。
また、本発明の近接場露光方法は、前記異物を検出する工程を、上記した基板間の異物検出方法を用いて異物を検出するように構成することができる。
また、本発明の近接場露光方法は、前記異物を検出する工程は、異物の検出結果に基づいて、異物を除去し、または、露光マスクあるいは被処理体を異物の付着していないものと交換するように構成することができる。
また、本発明の基板間の異物検出装置は、弾性変形可能な第1の基板と弾性変形しない第2の基板との間に存在する異物を検出する基板間の異物検出装置であって、前記第1の基板と前記第2の基板を密着する密着手段と、前記第1の基板と前記第2の基板の間に存在するこれら基板に付着した異物により生じる該第1の基板の変形を検出する形状検出手段と、を有することを特徴としている。
また、本発明の基板間の異物検出装置は、前記形状検出手段が、前記第1の基板と平坦な基準面に光を照射する光照射手段と、前記第1の基板から反射する反射光と、前記基準面から反射する反射光とによる干渉縞の光を、受光する受光素子と、を有する構成とすることができる。
また、本発明の基板間の異物検出装置は、前記形状検出手段が、前記第1の基板と平坦な基準面に光を照射する光照射手段と、前記第1の基板から反射する反射光と、前記基準面から反射する反射光とによる干渉縞の光を受光する受光光学系と、前記受光光学系を通して得られる光を受光する受光素子と、を有する構成とすることができる。
また、本発明の基板間の異物検出装置は、前記基準面を前記第2の基板で構成することができる。
また、本発明の基板間の異物検出装置は、前記第1の基板が照射する光に対して透明であり、前記光照射手段が前記第1の基板から照射する光照射手段である構成とすることができる。
また、本発明の基板間の異物検出装置は、前記第2の基板が照射する光に対して透明であり、前記光照射手段が前記第2の基板側から照射する光照射手段である構成とすることができる。
また、本発明の基板間の異物検出装置は、前記受光素子からの信号により前記異物の情報を得る手段と、前記第1の基板と前記第2の基板とが離間している領域を算出する処理装置と、を有する構成とすることができる。
また、本発明の近接場露光装置は、露光マスクを変形させ被処理体に対して密着させ、該露光マスクに形成した微小開口からにじみ出る近接場を用いて露光を行う近接場露光装置において、前記露光マスクと被処理体との間に存在する異物を検出する異物検出手段を有することを特徴としている。
また、本発明の近接場露光装置は、前記異物検出手段を、上記した基板間の異物検出装置によって構成することができる。
また、本発明の近接場露光装置は、前記異物検出手段を、異物の検出結果に基づいて、異物を除去し、または、露光マスクあるいは被処理体を異物の付着していないものと交換する異物検出処理手段を有する構成とすることができる。
The present invention provides a foreign matter detection method between substrates, a near field exposure method, a foreign matter detection device between substrates, and a near field exposure device configured as follows.
That is, in the foreign matter detection method between substrates of the present invention, when a first substrate that is elastically deformable is deformed and brought into close contact with a second substrate that is not elastically deformed, foreign matter existing between these substrates is detected. A method for detecting foreign matter between substrates to be detected, comprising: a step of bringing the first substrate into close contact with the second substrate; and a step of attaching the first substrate to the second substrate between the first substrate and the second substrate. And a step of detecting deformation of the first substrate caused by the adhered foreign matter.
In the foreign matter detection method between substrates according to the present invention, the step of detecting deformation of the first substrate includes the step of irradiating the first substrate and a flat reference surface with light, and the first substrate. And a step of observing interference fringes due to the reflected light from the first substrate reflected from the reference surface and the reflected light from the reference surface reflected from the reference surface.
In the foreign matter detection method between substrates according to the present invention, in the step of irradiating light on the first substrate and a flat reference surface, the first substrate is irradiated with light on the entire surface of the first substrate. It can comprise so that it may irradiate over.
In the foreign matter detection method between substrates according to the present invention, in the step of irradiating light on the first substrate and a flat reference surface, the first substrate is irradiated with light on the entire surface of the first substrate. Can be configured to perform optical scanning.
In the foreign matter detection method between substrates of the present invention, the reference surface can be constituted by the second substrate.
In the foreign matter detection method between substrates according to the present invention, the first substrate is made transparent to the light, and the first substrate and a flat reference surface are irradiated with light on the first substrate side. It can comprise so that it may irradiate from.
In the foreign matter detection method between substrates according to the present invention, the second substrate is transparent to the light, and light irradiation to the first substrate and a flat reference surface is performed on the second substrate side. It can comprise so that it may irradiate from.
Further, in the foreign matter detection method between substrates according to the present invention, the step of observing the interference fringes includes the position, height and size of the foreign matter from the interference fringes, or the first substrate and the second substrate. It can comprise so that the process of calculating the area | region etc. which are spaced apart may be included.
The near-field exposure method of the present invention is a near-field exposure method in which an exposure mask is deformed and brought into close contact with an object to be processed, and exposure is performed using a near-field that oozes out from a minute opening formed in the exposure mask.
When the exposure mask is brought into intimate contact with the object to be processed, the method includes a step of detecting foreign matter existing between the exposure mask and the object to be processed.
In the near-field exposure method of the present invention, the step of detecting the foreign matter can be configured to detect the foreign matter using the foreign matter detection method between the substrates described above.
In the near-field exposure method of the present invention, the step of detecting the foreign matter may be performed by removing the foreign matter based on the detection result of the foreign matter or replacing the exposure mask or the object to be processed with a foreign matter not attached. Can be configured to.
The foreign matter detection device between substrates of the present invention is a foreign matter detection device between substrates for detecting foreign matter existing between a first substrate that can be elastically deformed and a second substrate that is not elastically deformed. Detecting deformation of the first substrate caused by foreign matter adhering to the first substrate and the second substrate, and adhesion means for bringing the first substrate and the second substrate into close contact with each other existing between the first substrate and the second substrate And a shape detecting means.
In the foreign matter detection apparatus between substrates according to the present invention, the shape detection unit includes a light irradiation unit that irradiates light to the first substrate and a flat reference surface, and reflected light that is reflected from the first substrate. And a light receiving element that receives light of interference fringes caused by reflected light reflected from the reference surface.
In the foreign matter detection apparatus between substrates according to the present invention, the shape detection unit includes a light irradiation unit that irradiates light to the first substrate and a flat reference surface, and reflected light that is reflected from the first substrate. A light receiving optical system that receives light of interference fringes caused by reflected light reflected from the reference surface, and a light receiving element that receives light obtained through the light receiving optical system can be used.
In the foreign matter detection apparatus between substrates according to the present invention, the reference plane can be constituted by the second substrate.
The foreign matter detection apparatus between substrates of the present invention is transparent to the light irradiated by the first substrate, and the light irradiation means is a light irradiation means for irradiation from the first substrate. be able to.
The foreign matter detection apparatus between substrates of the present invention is transparent to the light emitted by the second substrate, and the light irradiating means is a light irradiating means for irradiating from the second substrate side. can do.
The foreign matter detection apparatus between substrates according to the present invention calculates a region where the means for obtaining the foreign matter information from the signal from the light receiving element and the first substrate and the second substrate are separated from each other. And a processing apparatus.
Further, the near-field exposure apparatus of the present invention is a near-field exposure apparatus that performs exposure using a near-field that is deformed and brought into close contact with an object to be processed and oozes from a minute opening formed in the exposure mask. It is characterized by having foreign matter detection means for detecting foreign matter existing between the exposure mask and the object to be processed.
In the near-field exposure apparatus of the present invention, the foreign matter detection means can be constituted by the foreign matter detection device between substrates described above.
In the near-field exposure apparatus of the present invention, the foreign substance detecting means removes the foreign substance based on the detection result of the foreign substance, or replaces the exposure mask or the object to be processed with a foreign object not attached. It can be set as the structure which has a detection process means.

本発明によれば、基板間に存在する異物を検出することができる基板間の異物検出方法及び異物検出装置を提供することができ、これを近接場露光に適用することで、製造したウエハやガラス基板に欠陥が生じることを防止することができ、歩留まりの向上を図ることが可能となる近接場露光方法、及び近接場露光装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the foreign material detection method and foreign material detection apparatus which can detect the foreign material which exists between board | substrates can be provided, and this is applied to a near field exposure, The manufactured wafer, It is possible to realize a near-field exposure method and a near-field exposure apparatus that can prevent defects in the glass substrate and can improve the yield.

[実施の形態1]
図1は、本発明の実施の形態1における構成を示す図であり、(a)は上記した本発明の異物検出手段を適用した近接場露光装置の構成を示す図、(b)は受光素子上に照射されている光の強度分布による干渉縞を示す図である。
図1において、101は露光マスクであり、これは図4に示した露光マスクと同様の構成を有している。すなわち、ここでの露光マスクは、図4に示すように露光に用いる光に対して透明なマスク母材401上に、露光に用いる光に対して遮光性のある遮光層402が形成されており、その遮光層に任意のパターンに対応した微小開口403が形成されているものである。この露光マスクは、小さな異物に接触することで撓むように、薄膜の弾性体404で構成されており、この薄膜は支持体405によって支持されている。
また、ここでの露光マスクの「裏面」とは圧力調整容器に面している側であり図1紙面中では上側を指し、「おもて面」とは、その反対側を言う。
[Embodiment 1]
FIG. 1 is a diagram showing a configuration in Embodiment 1 of the present invention, (a) is a diagram showing a configuration of a near-field exposure apparatus to which the above-described foreign matter detection means of the present invention is applied, and (b) is a light receiving element. It is a figure which shows the interference fringe by the intensity distribution of the light irradiated on.
In FIG. 1, reference numeral 101 denotes an exposure mask, which has the same configuration as the exposure mask shown in FIG. That is, in this exposure mask, as shown in FIG. 4, a light shielding layer 402 having a light shielding property for light used for exposure is formed on a mask base material 401 that is transparent to the light used for exposure. In the light shielding layer, a minute opening 403 corresponding to an arbitrary pattern is formed. This exposure mask is composed of a thin film elastic body 404 so as to bend when it comes into contact with a small foreign substance, and this thin film is supported by a support body 405.
In addition, the “back surface” of the exposure mask here is the side facing the pressure control container, and refers to the upper side in FIG. 1, and the “front surface” refers to the opposite side.

図1における近接場露光装置は大きく分類すると、圧力調整容器、圧力調整手段、露光マスク、光源、被処理体、異物検出用光源、異物検出用コリメータレンズ、ハーフミラー、参照面、受光素子とに分かれる。露光マスクを圧力調整装置に裏面を面して配置し、被処理体に相対させて配置する。
この露光マスク101は、近接場露光装置の圧力調整容器103内に、それぞれ露光マスク101の裏面が面するように配置され、圧力調整によりマスクの薄膜部のたわみを調整するように構成されている。
被処理体としては、基板105の表面にレジスト106を形成する(以下、これを106/基板105と記す)。このレジスト106/基板105を、ステージ118上に取り付け、露光マスク101面法線方向にステージ118を駆動し、露光マスク101のおもて面と基板105上のレジスト106面との間隔が全面にわたって100nm以下になるように両者を密着させる。
The near-field exposure apparatus in FIG. 1 is roughly classified into a pressure adjustment container, a pressure adjustment means, an exposure mask, a light source, a workpiece, a foreign object detection light source, a foreign object detection collimator lens, a half mirror, a reference surface, and a light receiving element. Divided. The exposure mask is arranged with the back surface facing the pressure adjusting device, and is arranged relative to the object to be processed.
The exposure mask 101 is disposed in the pressure adjustment container 103 of the near-field exposure apparatus so that the back surface of the exposure mask 101 faces, and is configured to adjust the deflection of the thin film portion of the mask by pressure adjustment. .
As an object to be processed, a resist 106 is formed on the surface of the substrate 105 (hereinafter referred to as 106 / substrate 105). The resist 106 / substrate 105 is mounted on a stage 118, the stage 118 is driven in the normal direction of the exposure mask 101 surface, and the distance between the front surface of the exposure mask 101 and the resist 106 surface on the substrate 105 extends over the entire surface. Both are brought into close contact with each other so as to be 100 nm or less.

密着させる方法として、露光マスク101の裏面からおもて面方向に向かって圧力を印加することにより、露光マスク101に弾性変形による撓みを生じさせ、レジスト106/基板105へ押し付けるようにすることにより、全面にわたって密着させることができる。
このような圧力を印加する方法の一例として、図1に示したように、露光マスク101のおもて面を圧力調整容器103外側に面するように、裏面を圧力調整容器103内側に面するように配置させ、ポンプ等の圧力調整手段117を用いて、圧力調整容器103内に高圧ガスを導入し、圧力調整容器103内が外気圧より高い圧力になるようにする。他の例として、圧力調整容器103の内部を照明光に対して透明な液体で満たし、シリンダーを用いて圧力調整容器103内部の液体の圧力を調整するようにしても良い。
As a close contact method, by applying pressure from the back surface of the exposure mask 101 toward the front surface, the exposure mask 101 is bent due to elastic deformation and pressed against the resist 106 / substrate 105. , It can be adhered over the entire surface.
As an example of a method for applying such pressure, as shown in FIG. 1, the back surface faces the inside of the pressure adjustment container 103 so that the front surface of the exposure mask 101 faces the outside of the pressure adjustment container 103. The high pressure gas is introduced into the pressure regulating container 103 by using the pressure regulating means 117 such as a pump so that the pressure inside the pressure regulating container 103 is higher than the external pressure. As another example, the pressure adjustment container 103 may be filled with a liquid transparent to illumination light, and the pressure of the liquid inside the pressure adjustment container 103 may be adjusted using a cylinder.

ここでは、露光マスク101とレジスト106/基板105を密着させるために、露光マスク101の裏面を圧力調整容器103内に配置し、圧力調整容器103内より低い外気圧との圧力差により、露光マスク101の裏面側からおもて面側に圧力が加わるようにした例を示したが、逆の構成として、露光マスクのおもて面およびレジスト/基板を減圧容器内に配置し、減圧容器内より高い外気圧との圧力差により、露光マスクの裏面側からおもて面側に圧力が加わるようにしても良い。いずれにしても、マスクのおもて面側に比べ、裏面側が高い圧力となるような圧力差を設けるようにすれば良い。   Here, in order to bring the exposure mask 101 and the resist 106 / substrate 105 into close contact with each other, the back surface of the exposure mask 101 is disposed in the pressure adjustment container 103, and the exposure mask is caused by the pressure difference from the lower external pressure than in the pressure adjustment container 103. Although an example in which pressure is applied to the front surface side from the back surface side of 101 is shown, as an opposite configuration, the front surface of the exposure mask and the resist / substrate are arranged in a decompression vessel, Pressure may be applied from the back side of the exposure mask to the front side due to a pressure difference with a higher external pressure. In any case, a pressure difference may be provided so that the pressure on the back surface side is higher than that on the front surface side of the mask.

つぎに、本実施の形態における異物の検出方法について説明する。
図1の露光マスク101、異物検出用光源、ハーフミラー、参照面、受光素子に注目して詳細に説明する。図1(a)では、露光マスクと被処理体であるレジスト/基板の間に異物が挟まり、薄膜である露光マスクが変形している。
図1(b)は受光素子上に照射されている光の強度分布で紙面下方から見た図であり、干渉縞が見えている。図1中の111は露光マスクと被処理体にはさまれた異物、107は異物検出用光源、108はハーフミラー、109は参照面、110は受光素子である。
Next, a foreign object detection method according to the present embodiment will be described.
The exposure mask 101, foreign object detection light source, half mirror, reference surface, and light receiving element in FIG. 1 will be described in detail. In FIG. 1A, foreign matter is sandwiched between the exposure mask and the resist / substrate that is the object to be processed, and the exposure mask that is a thin film is deformed.
FIG. 1B is a view of the intensity distribution of light irradiated on the light receiving element as viewed from the lower side of the drawing, and interference fringes are visible. In FIG. 1, reference numeral 111 denotes a foreign substance sandwiched between the exposure mask and the object to be processed, 107 a foreign substance detection light source, 108 a half mirror, 109 a reference surface, and 110 a light receiving element.

図1に示すように薄膜である露光マスク101と被処理体であるレジスト106/基板105との間に異物111をはさんで密着させると、薄膜が撓み異物の大きさや形などに応じた変形が生じる。ここで、異物検出用光源107から射出した異物検出用光PLを、ビームエキスパタンダー112などを通し、異物を検出したいだけの領域にまで広げる。そして、コリメータレンズ113を通し平行光とした後、ハーフミラー108によりその光を2つに分け、一方を露光マスク101の異物検出を行いたい薄膜部に、もう一方を光学的に平滑な表面を持つ参照面109に照射する。そこからの反射光を、ハーフミラー108を通して受光素子110に照射し、反射光同士の干渉を受光素子110上で観察する。つまり、これはトワイマン・グリーン干渉計と同様の構成となっている。   As shown in FIG. 1, when the foreign substance 111 is put in close contact between the exposure mask 101, which is a thin film, and the resist 106 / substrate 105, which is an object to be processed, the thin film bends and deforms according to the size and shape of the foreign substance. Occurs. Here, the foreign matter detection light PL emitted from the foreign matter detection light source 107 is extended to an area where it is desired to detect the foreign matter through the beam expander 112 or the like. Then, after collimating the light through the collimator lens 113, the light is divided into two by the half mirror 108. One is a thin film portion on the exposure mask 101 where foreign matter is to be detected, and the other is an optically smooth surface. The reference surface 109 is irradiated. Reflected light therefrom is irradiated onto the light receiving element 110 through the half mirror 108, and interference between the reflected lights is observed on the light receiving element 110. That is, it has the same configuration as the Twiman Green interferometer.

露光マスク101とレジスト106/基板105が異物111により密着を阻害された領域は、基板に対して密着せずに撓んだ状態であるため、参照面109との光路差が変化し、受光素子110上には異物を中心とした干渉縞(図1(b))が観察される。この干渉縞から異物の位置、高さ、薄膜と基板とが密着していない非密着領域を推測することができる。受光素子110で検出した信号から、異物の位置、高さ、非密着領域を算出し、露光に影響を及ぼす異物であったら異物除去を行うか、使用している被処理体、または露光マスクを新しいものに交換し処理を進める。   Since the region where the exposure mask 101 and the resist 106 / substrate 105 are blocked from being adhered by the foreign substance 111 is bent without contacting the substrate, the optical path difference from the reference surface 109 changes, and the light receiving element. Interference fringes (FIG. 1B) centering on foreign matter are observed on 110. From the interference fringes, the position and height of the foreign matter, and the non-contact region where the thin film and the substrate are not in close contact can be estimated. From the signal detected by the light receiving element 110, the position, height, and non-contact area of the foreign matter are calculated, and if the foreign matter affects the exposure, the foreign matter is removed, or the object to be processed or the exposure mask is used. Replace with a new one and proceed.

つぎに、以上のように異物の検出処理が行われた後、本実施の形態においては近接場光による露光が、つぎのように行われれる。
まず、異物検出のために用いたハーフミラー108と受光素子110を、図示しないアクチュエーターで露光光を遮らない位置まで移動する。
次に露光処理に移る。図1において、露光光源115から出射される露光光ELをコリメータレンズ114で平行光にした後、ガラス窓116を通し、圧力調整容器103内に導入し、露光マスクに対して裏面(図1では上側)から照射し、露光マスク101おもて面のマスク母材104上の金属薄膜102に形成された微小開口パターンから滲み出す近接場光でレジストの露光を行う。
以上のような構成とすることで、薄膜の露光マスクと被処理体の間に存在する異物の検出処理を行うことができ、その結果、製造したウエハやガラス基板などに欠陥が少なくなり歩留まりを向上させることができた。
Next, after the foreign object detection processing is performed as described above, in the present embodiment, exposure with near-field light is performed as follows.
First, the half mirror 108 and the light receiving element 110 used for detecting foreign matter are moved to a position where the exposure light is not blocked by an actuator (not shown).
Next, the exposure process is performed. In FIG. 1, the exposure light EL emitted from the exposure light source 115 is collimated by the collimator lens 114, then introduced through the glass window 116 and introduced into the pressure adjustment container 103, and the back surface (in FIG. 1) The resist is exposed with near-field light that irradiates from the upper side) and exudes from a fine aperture pattern formed in the metal thin film 102 on the mask base material 104 on the front surface of the exposure mask 101.
By adopting the above-described configuration, it is possible to detect foreign matter existing between the thin-film exposure mask and the object to be processed, and as a result, there are fewer defects in the manufactured wafer or glass substrate and the yield is reduced. I was able to improve.

[実施の形態2]
図2は、上記した本発明の異物検出手段を適用した実施の形態2における近接場露光装置の構成を示す図である。
これは、実施の形態1と同様に、薄膜である露光マスクと被処理体との間に存在する異物を薄膜の変形により検出する異物検出の形態である。また、薄膜の変形を検出する方法は、基本的に実施の形態1と同様である。実施の形態1と異なる点について以下に説明する。
実施の形態1では、異物を検出したい領域全面に一度に異物検出用光を照射していた。これに対して、本実施の形態では、図2に示したように、光源から出射した光をガルバノミラーなどの光を偏向することのできる偏向素子211,212で、2次元的にハーフミラーを通し露光マスク201上を走査することで、異物を検出したい領域に2次元的に光を照射する。露光マスク201と参照面209からの反射光を受光素子210で検出する。このとき、露光マスク201上を走査する異物検出用光PLと同期して、受光素子210上に到達する露光マスク201と参照面209からの反射光が干渉した光の強度を検出する。光を照射した位置とその時検出した光強度から干渉縞を検出することができる。この干渉縞から異物の位置、高さ、薄膜と基板とが密着していない非密着領域を推測することができる。
以上のような構成とすることで、薄膜の露光マスクと被処理体の間に存在する異物の検出が行えた。その結果、製造したウエハやガラス基板などの欠陥が少なくなり歩留まりを向上することができた。
[Embodiment 2]
FIG. 2 is a diagram showing a configuration of a near-field exposure apparatus according to Embodiment 2 to which the above-described foreign matter detection means of the present invention is applied.
As in the first embodiment, this is a form of foreign matter detection in which foreign matter existing between an exposure mask that is a thin film and an object to be processed is detected by deformation of the thin film. The method for detecting the deformation of the thin film is basically the same as in the first embodiment. Differences from the first embodiment will be described below.
In the first embodiment, the foreign matter detection light is irradiated at once to the entire area where foreign matter is to be detected. In contrast, in the present embodiment, as shown in FIG. 2, the half mirror is two-dimensionally formed by the deflecting elements 211 and 212 that can deflect the light emitted from the light source such as a galvano mirror. By scanning the through-exposure mask 201, light is irradiated two-dimensionally on a region where foreign matter is to be detected. Reflected light from the exposure mask 201 and the reference surface 209 is detected by the light receiving element 210. At this time, in synchronism with the foreign matter detection light PL that scans on the exposure mask 201, the intensity of the light that is reflected from the exposure mask 201 that reaches the light receiving element 210 and the reflected light from the reference surface 209 is detected. Interference fringes can be detected from the position irradiated with light and the light intensity detected at that time. From the interference fringes, the position and height of the foreign matter, and the non-contact region where the thin film and the substrate are not in close contact can be estimated.
By adopting the above-described configuration, the foreign matter existing between the thin film exposure mask and the object to be processed can be detected. As a result, defects such as manufactured wafers and glass substrates were reduced, and the yield could be improved.

[実施の形態3]
つぎに図5〜図7を参照して、本発明の実施の形態3における異物の検出方法について説明する。
図6は、本実施の形態の特徴を最もよく表す図面であり、同図の601は擬似マスク、602は検査の対象となる被処理体、603は擬似マスクと被処理体との間にはさまれた異物、604は擬似マスクと被処理体が密着していない領域である。
擬似マスクの詳細は図5に示す。同図の501は照明光に対して透明な擬似マスク、502はその擬似マスクを支持する支持体、503は擬似マスクが薄膜となっている薄膜部である。
図6(a)は、異物603が擬似マスク601と被処理体602に挟まっている状態の断面図、図6(b)は、擬似マスク601裏面側から見た図である。ここでいう擬似マスクのおもて裏とは、被処理体602と密着する面をおもて面、その逆を裏面とする。ここでの擬似マスクとは、通常フォトマスクには光を遮光するための金属などの遮光層が設けられているが、裏面側から観察することが目的のため遮光層を設けていないマスクのことをいう。また、小さな異物に接触することで撓むように擬似マスクは、薄膜の弾性体で構成している。
[Embodiment 3]
Next, a foreign object detection method according to Embodiment 3 of the present invention will be described with reference to FIGS.
FIG. 6 is a drawing that best represents the features of the present embodiment, in which 601 is a pseudo mask, 602 is an object to be inspected, and 603 is between the pseudo mask and the object to be processed. A foreign substance 604 is an area where the pseudo mask and the object to be processed are not in close contact.
The details of the pseudo mask are shown in FIG. In the figure, 501 is a pseudo mask transparent to illumination light, 502 is a support for supporting the pseudo mask, and 503 is a thin film portion in which the pseudo mask is a thin film.
FIG. 6A is a cross-sectional view of a state in which the foreign material 603 is sandwiched between the pseudo mask 601 and the object to be processed 602, and FIG. 6B is a view seen from the back side of the pseudo mask 601. Here, the front surface of the pseudo mask refers to the front surface that is in close contact with the object to be processed 602, and the reverse is the rear surface. Here, the pseudo mask is a mask in which a photomask is usually provided with a light shielding layer such as metal for shielding light, but is not provided with a light shielding layer for the purpose of observation from the back side. Say. Further, the pseudo mask is formed of a thin film elastic body so as to bend when it comes into contact with a small foreign matter.

図6のように擬似マスクと被処理体の間に異物をはさんで密着させると、擬似マスク601が撓み密着領域と異物を中心とした非密着領域604が出来る。この非密着領域604に対してある波長λの光を照射すると、図6(b)のように擬似マスク裏面側から見ると異物603を中心に干渉縞605が現れる。
これは、擬似マスクおもて面と被処理体表面からの反射した光が干渉し、擬似マスクおもて面と被処理体表面の間隙が、“nλ/2(nは整数)”となる部分で光が強めあい、“(2n+1)λ/4”となる部分で弱めあっているために起こる。つまり干渉縞605により、異物603が存在する場所、異物の高さ(大きさ)、非密着領域604の広さを推測することができる。
干渉縞605から異物の情報(位置・高さ・非密着領域など)を記憶し、擬似マスク601を異なる個所の被処理体602に移動し、再び被処理体602に密着させ、干渉縞605から異物603の情報を読み取る。この動作を繰り返し、記憶した異物603の位置や大きさを比較することで、擬似マスク601に付着している異物と被処理体602に付着している異物603の選定が行え、被処理体602に付着している異物603について情報が得られる。
As shown in FIG. 6, when the foreign substance is adhered between the pseudo mask and the object to be processed, the pseudo mask 601 is bent to form a non-contact area 604 centering on the foreign substance. When this non-contact region 604 is irradiated with light of a certain wavelength λ, interference fringes 605 appear around the foreign material 603 as seen from the back side of the pseudo mask as shown in FIG. 6B.
This is because the light reflected from the surface of the pseudo mask and the surface of the object to be processed interferes, and the gap between the surface of the pseudo mask and the surface of the object to be processed becomes “nλ / 2 (n is an integer)”. This occurs because light is strengthened at the part and weakened at the part where “(2n + 1) λ / 4”. That is, the interference fringe 605 can estimate the location where the foreign matter 603 exists, the height (size) of the foreign matter, and the width of the non-contact region 604.
Foreign matter information (position, height, non-contact region, etc.) is stored from the interference fringe 605, the pseudo mask 601 is moved to the object to be processed 602 at a different location, and is again brought into close contact with the object to be processed 602. The information of the foreign object 603 is read. By repeating this operation and comparing the position and size of the stored foreign matter 603, the foreign matter adhering to the pseudo mask 601 and the foreign matter 603 adhering to the object to be processed 602 can be selected. Information about the foreign matter 603 adhering to the surface is obtained.

ここでは、マスク裏面側から観察するために遮光層のない擬似マスク601を用いたが、図7のように図6における被処理体602を透明基板703に変え、構成を上記と逆にすることで、遮光膜が設けられた通常の露光マスク705上に付着した異物を検出することができる。
ここでの露光マスクは、実施の形態1で述べたとおり図4に示す露光マスクと同様の構成を有しており、図4に示すように露光に用いる光に対して透明なマスク母材401上に、露光に用いる光に対して遮光性のある遮光層402が形成されており、その遮光層に任意のパターンに対応した微小開口403が形成されているものである。上述した擬似マスクと同様で露光マスクも、小さな異物に接触することで撓むように、薄膜の弾性体404で構成している。この薄膜は、支持体405によって支持されている。
Here, a pseudo mask 601 without a light shielding layer is used for observation from the back side of the mask, but the object 602 in FIG. 6 is changed to a transparent substrate 703 as shown in FIG. Thus, it is possible to detect foreign matter adhering to a normal exposure mask 705 provided with a light shielding film.
The exposure mask here has the same configuration as the exposure mask shown in FIG. 4 as described in Embodiment 1, and as shown in FIG. 4, a mask base material 401 that is transparent to the light used for exposure. Further, a light shielding layer 402 having a light shielding property to light used for exposure is formed, and a minute opening 403 corresponding to an arbitrary pattern is formed in the light shielding layer. Similar to the above-described pseudo mask, the exposure mask is also composed of a thin-film elastic body 404 so as to bend when it comes into contact with a small foreign matter. This thin film is supported by a support 405.

図7において、露光マスク705上の遮光層701を透明基板703に密着させ、その間に異物704がはさまると上記と同様に非密着領域706ができる。その領域にある波長λの光を照射し、透明基板703側から観察することで干渉縞707が観察できる。透明基板703の複数個所で同様に干渉縞707を観察することで、露光マスク705上に付着している異物と透明基板703上に付着している異物の選定を行い、露光マスク705に付着している異物について情報を得ることができる。
以上のような構成で擬似マスクと被処理体の、及びマスクと透明基板の間にある異物を検出することが可能である。この両者の検出を異なった被処理体または透明基板上で行うことにより、被処理体、マスクに付着している異物の数、位置、高さ、非密着領域を検出することが可能になる。
[実施の形態4]
以上のような本発明の異物検出方法を、近接場光を用いた露光装置に組み込んだ実施の形態4について、図8を参照して説明する。
図8における露光マスク801は、図4に示した露光マスクと同様の構成の露光マスクである。また、擬似マスク802は、図5に示した擬似マスクと同様の構成の擬似マスクである。ここでの露光マスク及び擬似マスクの「裏面」とは共に薄膜に対して支持体が存在している側を指し、「おもて面」とは、その反対側を言う。
この露光マスク801及び擬似マスク802は、近接場露光装置の2つある圧力調整容器803,804内に、それぞれ露光マスク801・擬似マスク802の裏面が面するように配置して圧力調整を加えマスクの薄膜部のたわみを調整する。
In FIG. 7, when the light shielding layer 701 on the exposure mask 705 is brought into close contact with the transparent substrate 703 and the foreign substance 704 is sandwiched therebetween, a non-contact region 706 is formed in the same manner as described above. The interference fringes 707 can be observed by irradiating light with a wavelength λ in that region and observing from the transparent substrate 703 side. By similarly observing the interference fringes 707 at a plurality of locations on the transparent substrate 703, the foreign matter adhering to the exposure mask 705 and the foreign matter adhering to the transparent substrate 703 are selected and attached to the exposure mask 705. It is possible to obtain information about the foreign matter that is present.
With the configuration described above, it is possible to detect foreign substances between the pseudo mask and the object to be processed and between the mask and the transparent substrate. By performing both detections on different objects to be processed or transparent substrates, it is possible to detect the number, position, height, and non-contact area of the foreign objects attached to the object to be processed and the mask.
[Embodiment 4]
Embodiment 4 in which the above-described foreign matter detection method of the present invention is incorporated in an exposure apparatus using near-field light will be described with reference to FIG.
An exposure mask 801 in FIG. 8 is an exposure mask having the same configuration as the exposure mask shown in FIG. The pseudo mask 802 is a pseudo mask having the same configuration as the pseudo mask shown in FIG. The “back surface” of the exposure mask and the pseudo mask here refers to the side where the support is present with respect to the thin film, and the “front surface” refers to the opposite side.
The exposure mask 801 and the pseudo mask 802 are arranged in pressure adjusting containers 803 and 804 of the two near-field exposure apparatuses so that the back surfaces of the exposure mask 801 and the pseudo mask 802 face each other, and pressure adjustment is performed. Adjust the deflection of the thin film part.

図8における近接場露光装置は大きく分類すると、圧力調整容器、圧力調整手段、擬似マスク、露光マスク、光源、被処理体、透明基板、受光光学系、受光素子とに分かれる。露光マスク及び擬似マスクを圧力調整装置に裏面を面して配置し、透明基板及び被処理体に相対させて配置する。
被処理体としては、基板805の表面にレジスト806を形成する。レジスト806/基板805をステージ815上に取り付け、擬似マスク802面法線方向にステージ815を駆動し、擬似マスク802のおもて面と基板805上のレジスト806面との間隔が全面にわたって100nm以下になるように両者を密着させる。
密着させる方法として、擬似マスク802の裏面からおもて面方向に向かって圧力を印加することにより、擬似マスク802に弾性変形による撓みを生じさせ、レジスト806/基板805へ押し付けるようにすることにより、全面にわたって密着させることができる。
The near-field exposure apparatus in FIG. 8 is roughly classified into a pressure adjustment container, a pressure adjustment means, a pseudo mask, an exposure mask, a light source, an object to be processed, a transparent substrate, a light receiving optical system, and a light receiving element. The exposure mask and the pseudo mask are arranged facing the back surface of the pressure adjusting device, and are arranged so as to be opposed to the transparent substrate and the object to be processed.
As an object to be processed, a resist 806 is formed on the surface of a substrate 805. A resist 806 / substrate 805 is mounted on the stage 815, the stage 815 is driven in the normal direction of the pseudo mask 802, and the distance between the front surface of the pseudo mask 802 and the resist 806 surface on the substrate 805 is 100 nm or less over the entire surface. The two are brought into close contact with each other.
As a close contact method, by applying pressure from the back surface of the pseudo mask 802 toward the front surface, the pseudo mask 802 is caused to bend due to elastic deformation and pressed against the resist 806 / substrate 805. , It can be adhered over the entire surface.

このような圧力を印加する方法の一例として、図8に示したように、擬似マスク802のおもて面を圧力調整容器803外側に面するように、裏面を圧力調整容器803内側に面するように配置させ、ポンプ等の圧力調整手段809を用いて、圧力調整容器803内に高圧ガスを導入し、圧力調整容器803内が外気圧より高い圧力になるようにする。他の例として、圧力調整容器803の内部を照明光に対して透明な液体で満たし、シリンダーを用いて圧力調整容器803内部の液体の圧力を調整するようにしても良い。   As an example of a method for applying such pressure, as shown in FIG. 8, the back surface faces the inside of the pressure regulation container 803 so that the front surface of the pseudo mask 802 faces the outside of the pressure regulation container 803. The high pressure gas is introduced into the pressure regulating container 803 by using the pressure regulating means 809 such as a pump so that the pressure regulating container 803 has a pressure higher than the external pressure. As another example, the inside of the pressure adjustment container 803 may be filled with a liquid transparent to illumination light, and the pressure of the liquid inside the pressure adjustment container 803 may be adjusted using a cylinder.

ここでは、擬似マスク802とレジスト806/基板805を密着させるために、擬似マスクの裏面を圧力調整容器803内に配置し、圧力調整容器803内より低い外気圧との圧力差により、擬似マスク802の裏面側からおもて面側に圧力が加わるようにした例を示したが、逆の構成として、擬似マスクのおもて面およびレジスト/基板を減圧容器内に配置し、減圧容器内より高い外気圧との圧力差により、近接場マスクの裏面側からおもて面側に圧力が加わるようにしても良い。いずれにしても、マスクのおもて面側に比べ、裏面側が高い圧力となるような圧力差を設けるようにすれば良い。   Here, in order to bring the pseudo mask 802 and the resist 806 / substrate 805 into close contact with each other, the back surface of the pseudo mask is disposed in the pressure adjustment container 803, and the pseudo mask 802 is caused by a pressure difference with the external pressure lower than that in the pressure adjustment container 803. Although an example is shown in which pressure is applied from the back side to the front side, as a reverse configuration, the front side of the pseudo mask and the resist / substrate are placed in a vacuum container, Pressure may be applied from the back surface side of the near-field mask to the front surface side due to a pressure difference with a high external pressure. In any case, a pressure difference may be provided so that the pressure on the back surface side is higher than that on the front surface side of the mask.

その後、上述した本発明の異物検出方法を用いて擬似マスク802とレジスト806/基板805との間にはさまれている異物の検出を行う。擬似マスク802の裏面側から光を照射し、擬似マスクとレジスト806/基板805との間に異物を中心に生じている間隙による干渉縞を擬似マスク802裏側から対物レンズ等の光学系807を通してCCDなどの受光素子808で検出する。その後、検出するレジスト806/基板805の場所を変え、上記と同様に異物検出を行うことで、擬似マスク802に付着している異物とレジスト806/基板805に付着している異物の選定を行い、レジスト806/基板805に付着している異物を検出する。
ここで、検出した受光素子からの信号をモニターで見るだけでも良いが、画像処理システム821を通し、画像処理を行い異物の情報などを算出して自動的に記憶、マッピングしても良い。
検出した結果、レジスト/基板上に異物が付着していた場合、そのレジスト/基板を露光処理せずに処分するか、異物除去を行った上で露光処理に進ませる。
Thereafter, the foreign matter sandwiched between the pseudo mask 802 and the resist 806 / substrate 805 is detected using the foreign matter detection method of the present invention described above. Light is irradiated from the back side of the pseudo mask 802, and interference fringes due to a gap generated around the foreign substance between the pseudo mask and the resist 806 / substrate 805 are caused to pass through the optical system 807 such as an objective lens from the back side of the pseudo mask 802 through the CCD. It is detected by a light receiving element 808 such as. Thereafter, the location of the resist 806 / substrate 805 to be detected is changed, and foreign matter detection is performed in the same manner as described above, so that the foreign matter attached to the pseudo mask 802 and the foreign matter attached to the resist 806 / substrate 805 are selected. The foreign matter adhering to the resist 806 / substrate 805 is detected.
Here, the detected signal from the light receiving element may be merely viewed on the monitor, but the image processing may be performed through the image processing system 821 to calculate information on the foreign matter, and may be automatically stored and mapped.
As a result of the detection, if foreign matter is adhered on the resist / substrate, the resist / substrate is disposed without being subjected to the exposure processing, or the foreign matter is removed and then the exposure processing is performed.

以上記したレジスト/基板に付着している異物の検出と並行して、同様に露光マスク801と透明基板818との間の異物の検出も行う。
透明基板818をステージ817に取り付け、露光マスク801面法線方向にステージ817を駆動し、露光マスク801の表面と透明基板818表面との間隔が前面にわたって100nm以下になるように密着させる。密着させる方法は、上述した擬似マスク802とレジスト806/基板805との密着方法と同様の方法を用いる。
In parallel with the detection of the foreign matter adhering to the resist / substrate described above, the foreign matter between the exposure mask 801 and the transparent substrate 818 is similarly detected.
A transparent substrate 818 is attached to the stage 817, and the stage 817 is driven in the normal direction of the exposure mask 801 surface, so that the distance between the surface of the exposure mask 801 and the surface of the transparent substrate 818 is 100 nm or less over the front surface. As a method for the close contact, the same method as the close contact method between the pseudo mask 802 and the resist 806 / substrate 805 described above is used.

その後、上述した本発明の異物検出方法を用いて露光マスク801と透明基板818との間にはさまれている異物の検出を行う。透明基板818の裏面側(ステージ側)から光を照射し、露光マスク801と透明基板818との間に異物を中心に生じている間隙による干渉縞を透明基板818裏側から対物レンズ等の光学系810を通してCCDなどの受光素子811で検出する。その後、検出する透明基板818の場所を変え、上記と同様に異物検出を行うことで、露光マスク801に付着している異物と透明基板818に付着している異物の選定を行い、露光マスク801に付着している異物を検出する。
ここで、検出した受光素子からの信号をモニターで見るだけでも良いが、画像処理システム822を通し、画像処理を行い異物の情報などを算出して自動的に記憶、マッピングしても良い。
検出した結果、露光マスクに異物が付着していた場合、その露光マスクを用いた露光処理は行わず、新しいマスクに交換するか、露光マスクの洗浄後、再び異物検出を行い異物除去を確認し露光処理に進む。
Thereafter, the foreign matter sandwiched between the exposure mask 801 and the transparent substrate 818 is detected using the foreign matter detection method of the present invention described above. An optical system such as an objective lens is formed from the back side of the transparent substrate 818 by irradiating light from the back side (stage side) of the transparent substrate 818 and causing interference fringes due to a gap between the exposure mask 801 and the transparent substrate 818 with a foreign object as a center. Detection is performed by a light receiving element 811 such as a CCD through 810. Thereafter, the location of the transparent substrate 818 to be detected is changed, and foreign matter detection is performed in the same manner as described above, whereby the foreign matter attached to the exposure mask 801 and the foreign matter attached to the transparent substrate 818 are selected, and the exposure mask 801 is selected. Detect foreign matter adhering to the.
Here, the detected signal from the light receiving element may be simply viewed on the monitor, but the image processing may be performed through the image processing system 822 to calculate information on the foreign matter, and may be automatically stored and mapped.
As a result of detection, if foreign matter is attached to the exposure mask, do not perform exposure processing using the exposure mask, replace it with a new mask, or clean the exposure mask and detect foreign matter again to confirm the removal of foreign matter. Proceed to exposure processing.

以上で、被処理体(レジスト806/基板805)及び露光マスク801に付着している異物の検出を行い、被処理体(レジスト806/基板805)及び露光マスク801ともに異物が付着していない状態となった。その後、被処理体(レジスト806/基板805)をステージ815を駆動することにより露光処理位置816に移動させる。それと並行して露光マスク801の付いている圧力調整容器804を図示しないアクチュエータにより露光処理位置816にまで移動させる。
ステージ815を駆動することにより、露光マスク801に対する被処理体(レジスト806/基板805)のマスク面内2次元方向の相対位置合わせを行う。次に、マスク面法線方向にステージ815を駆動し、露光マスク801のおもて面と被処理体(レジスト806/基板805)との間隔が全面にわたって100nm以下になるように両者を密着させる。この密着させる方法は、上述した異物検出時の密着方法と同様の方法を用いる。
As described above, the foreign matter adhering to the object to be processed (resist 806 / substrate 805) and the exposure mask 801 is detected, and no foreign matter is attached to the object to be processed (resist 806 / substrate 805) and the exposure mask 801. It became. Thereafter, the object to be processed (resist 806 / substrate 805) is moved to the exposure processing position 816 by driving the stage 815. At the same time, the pressure adjustment container 804 with the exposure mask 801 is moved to the exposure processing position 816 by an actuator (not shown).
By driving the stage 815, relative alignment of the object to be processed (resist 806 / substrate 805) in the two-dimensional direction in the mask plane with respect to the exposure mask 801 is performed. Next, the stage 815 is driven in the normal direction of the mask surface, and both are brought into close contact so that the distance between the front surface of the exposure mask 801 and the object to be processed (resist 806 / substrate 805) is 100 nm or less over the entire surface. . As the method for the close contact, the same method as the close contact method at the time of detecting the foreign matter described above is used.

この後、露光光源813から出射される露光光819をコリメータレンズ814で平行光にした後、ガラス窓820を通し、圧力調整容器804内に導入し、露光マスク801に対して裏面(図8では上側)から照射し、露光マスク801おもて面のマスク母材上の遮光膜に形成された微小開口パターンから滲み出す近接場で被処理体(レジスト806/基板805)であるレジスト806の露光を行う。   Thereafter, the exposure light 819 emitted from the exposure light source 813 is collimated by the collimator lens 814, then passed through the glass window 820, introduced into the pressure adjustment container 804, and the back surface (in FIG. 8, in FIG. 8). Exposure of the resist 806, which is the object to be processed (resist 806 / substrate 805), in the near field that irradiates from the upper side) and exudes from the minute opening pattern formed in the light shielding film on the mask base material of the exposure mask 801. I do.

つぎに、近接場露光終了後における露光マスクと被処理体の剥離に関しては以下のように行う。
圧力調整手段812を用いて、圧力調整容器804内の圧力を外気圧より小さくし、被処理体から露光マスク801を剥離させる。
前述したように、密着時の圧力印加の装置構成において、図8とは逆の構成として、露光マスクのおもて面およびレジスト/基板を減圧容器内に配置し、減圧容器内より高い外気圧との圧力差により、露光マスクの裏面側からおもて面側に圧力が加わるようにした場合は、剥離時には、容器内を外気圧より高い圧力にすればよい。
いずれにしても剥離時には、露光マスクのおもて面側に比べ、裏面側が低い圧力となるような圧力差を設けるようにすれば良い。
以上のような構成とすることで、薄膜の露光マスクと被処理体の間に存在する異物の検出が行えた。その結果、製造したウエハやガラス基板などの欠陥が少なくなり歩留まりを向上することができた。
Next, peeling of the exposure mask and the object to be processed after the near-field exposure is completed is performed as follows.
Using the pressure adjusting means 812, the pressure in the pressure adjusting container 804 is made smaller than the external atmospheric pressure, and the exposure mask 801 is peeled from the object to be processed.
As described above, in the apparatus configuration for applying pressure at the time of close contact, the front surface of the exposure mask and the resist / substrate are arranged in a decompression container as a construction opposite to that in FIG. When the pressure is applied from the back surface side of the exposure mask to the front surface side due to the pressure difference between and the inside of the container, the pressure inside the container may be set higher than the external pressure at the time of peeling.
In any case, at the time of peeling, a pressure difference may be provided so that the pressure on the back surface side is lower than that on the front surface side of the exposure mask.
By adopting the above-described configuration, the foreign matter existing between the thin film exposure mask and the object to be processed can be detected. As a result, defects such as manufactured wafers and glass substrates were reduced, and the yield could be improved.

本発明の実施の形態1における構成を示す図であり、(a)は本発明の異物検出手段を適用した近接場露光装置の構成を示す図、(b)は受光素子上に照射されている光の強度分布による干渉縞を示す図。It is a figure which shows the structure in Embodiment 1 of this invention, (a) is a figure which shows the structure of the near-field exposure apparatus to which the foreign material detection means of this invention is applied, (b) is irradiated on the light receiving element. The figure which shows the interference fringe by the intensity distribution of light. 本発明の実施の形態2における構成を示す図であり、(a)は本発明の異物検出手段を適用した近接場露光装置の構成を示す図、(b)は受光素子上に照射されている光の強度分布による干渉縞を示す図。It is a figure which shows the structure in Embodiment 2 of this invention, (a) is a figure which shows the structure of the near field exposure apparatus to which the foreign material detection means of this invention is applied, (b) is irradiated on the light receiving element. The figure which shows the interference fringe by the intensity distribution of light. 本発明の課題における異物により近接場光を用いた露光が阻害される概念を説明する図。The figure explaining the concept by which the exposure using near field light is inhibited by the foreign material in the subject of this invention. 本発明の実施の形態を説明するための露光マスクの構成を示す図。The figure which shows the structure of the exposure mask for describing embodiment of this invention. 本発明の実施の形態3を説明するための露光マスクの構成を示す図。The figure which shows the structure of the exposure mask for demonstrating Embodiment 3 of this invention. 本発明の実施の形態3の近接場露光における異物検出方法を説明する図。The figure explaining the foreign material detection method in the near field exposure of Embodiment 3 of this invention. 本発明の実施の形態3の別の態様による近接場露光における異物検出方法を説明する図。The figure explaining the foreign material detection method in the near field exposure by another aspect of Embodiment 3 of this invention. 本発明の実施の形態4の近接場露光における異物検出方法を説明する図。The figure explaining the foreign material detection method in the near field exposure of Embodiment 4 of this invention.

符号の説明Explanation of symbols

101、201:露光マスク
102金属遮光膜
103:圧力調整容器
104:マスク母材
105、205:基板
106、206:レジスト
107、207:異物検出用光源
108、208:ハーフミラー
109、209:参照面
110、210:受光素子
111:異物
112:ビームエキスパンダー
113:コリメータレンズ
114:コリメータレンズ
115:露光光源
116:ガラス窓
117:圧力調整手段
118:ステージ
211、212:偏向素子
301:フォトマスク
302:異物
303:被処理体
304:非密着領域
305:微小開口
306:近接場光
401:マスク母材
402:遮光層
403:微小開口
404:薄膜の弾性体
405:支持体
501:擬似マスク
502:支持体
503:薄膜部
601:擬似マスク
602:被処理体
603:異物
604:非密着領域
605:干渉縞
701:遮光層
702:マスク母材
703:透明基板
704:異物
705:露光マスク
706:非密着領域
707:干渉縞
801:露光マスク
802:擬似マスク
803、804:圧力調整容器
805:基板
806:レジスト
807、810:受光光学系
808、811:受光素子
809、812:圧力調整手段
813:露光光源
814:コリメータレンズ
815:ステージ
816:露光処理位置
817:ステージ
818:透明基板
819:露光光
820:ガラス窓
821、822:画像処理システム
101, 201: exposure mask 102 metal light shielding film 103: pressure adjusting container 104: mask base material 105, 205: substrate 106, 206: resist 107, 207: light source 108 for detecting foreign matter 108, 208: half mirror 109, 209: reference surface 110, 210: light receiving element 111: foreign matter 112: beam expander 113: collimator lens 114: collimator lens 115: exposure light source 116: glass window 117: pressure adjusting means 118: stage 211, 212: deflection element 301: photomask 302: foreign matter 303: Object 304: Non-contact area 305: Micro opening 306: Near field light 401: Mask base material 402: Light shielding layer 403: Micro opening 404: Thin film elastic body 405: Support body 501: Pseudo mask 502: Support body 503: Thin film portion 601: Pseudo mask 602: Processed 603: Foreign matter 604: Non-contact area 605: Interference fringe 701: Light shielding layer 702: Mask base material 703: Transparent substrate 704: Foreign substance 705: Exposure mask 706: Non-contact area 707: Interference fringe 801: Exposure mask 802: Pseudo mask 803 804: Pressure adjusting container 805: Substrate 806: Resist 807, 810: Light receiving optical system 808, 811: Light receiving element 809, 812: Pressure adjusting means 813: Exposure light source 814: Collimator lens 815: Stage 816: Exposure processing position 817: Stage 818: Transparent substrate 819: Exposure light 820: Glass window 821, 822: Image processing system

Claims (10)

弾性変形可能な第1の基板を、弾性変形しない第2の基板に対して変形させて密着させた際に、これら基板間に存在する異物を検出する基板間の異物検出方法であって、
前記第1の基板を、前記第2の基板に密着させる工程と、
前記第1の基板と前記第2の基板との間に存在するこれら基板に付着した異物によって生じる該第1の基板の変形を検出する工程と、
を有することを特徴とする基板間の異物検出方法。
A foreign matter detection method between substrates for detecting foreign matter existing between these substrates when the elastically deformable first substrate is deformed and brought into close contact with a second substrate that is not elastically deformed.
Adhering the first substrate to the second substrate;
Detecting the deformation of the first substrate caused by foreign matter adhering to these substrates existing between the first substrate and the second substrate;
A method for detecting foreign matter between substrates, comprising:
前記第1の基板の変形を検出する工程が、
前記第1の基板と平坦な基準面とに光を照射する工程と、
前記第1の基板から反射する該第1の基板からの反射光と、該基準面から反射する該基準面からの反射光と、による干渉縞を観察する工程と、
を有することを特徴とする請求項1に記載の基板間の異物検出方法。
Detecting the deformation of the first substrate,
Irradiating light onto the first substrate and a flat reference surface;
Observing interference fringes caused by reflected light from the first substrate reflected from the first substrate and reflected light from the reference surface reflected from the reference surface;
The method for detecting foreign matter between substrates according to claim 1, wherein:
前記第1の基板と平坦な基準面とに光を照射する工程において、前記第1の基板への光の照射が、該第1の基板全面に亙って照射する光照射であるか又は、該第1の基板全面を光走査する光照射であることを特徴とする請求項2に記載の基板間の異物検出方法。   In the step of irradiating light to the first substrate and the flat reference surface, the light irradiation to the first substrate is light irradiation to irradiate the entire surface of the first substrate, or 3. The method for detecting foreign matter between substrates according to claim 2, wherein the light irradiation is performed to optically scan the entire surface of the first substrate. 前記基準面が、前記第2の基板であり、前記第1の基板と平坦な基準面への光の照射が、該第1の基板側又は、前記第2の基板側からの照射であることを特徴とする請求項2又は3に記載の基板間の異物検出方法。   The reference surface is the second substrate, and light irradiation to the first substrate and the flat reference surface is irradiation from the first substrate side or the second substrate side. The method for detecting foreign matter between substrates according to claim 2 or 3. 前記干渉縞を観察する工程が、該干渉縞から前記異物の位置、高さ、大きさ、あるいは前記第1の基板と前記第2の基板が離間している領域、等を算出する工程を含むことを特徴とする請求項2〜4のいずれか1項に記載の基板間の異物検出方法。   The step of observing the interference fringes includes a step of calculating, from the interference fringes, the position, height, size of the foreign matter, or a region where the first substrate and the second substrate are separated from each other. The foreign matter detection method between substrates of any one of Claims 2-4 characterized by the above-mentioned. 露光マスクを変形させ被処理体に対して密着させ、該露光マスクに形成した微小開口からにじみ出る近接場を用いて露光を行う近接場露光方法において、
前記露光マスクを被処理体に対して密着させる際に、該露光マスクと被処理体との間に存在する異物を検出する工程を有することを特徴とする近接場露光方法。
In a near-field exposure method in which an exposure mask is deformed and brought into close contact with an object to be processed, and exposure is performed using a near field that oozes out from a minute opening formed in the exposure mask.
A near-field exposure method comprising a step of detecting foreign matter existing between the exposure mask and the object to be processed when the exposure mask is brought into close contact with the object to be processed.
前記異物を検出する工程は、異物の検出結果に基づいて、異物を除去し、または、露光マスクあるいは被処理体を異物の付着していないものと交換する工程を含むことを特徴とする請求項6に記載の近接場露光方法。   The step of detecting the foreign matter includes a step of removing the foreign matter or exchanging the exposure mask or the object to be processed with a foreign matter not attached based on the detection result of the foreign matter. 6. The near-field exposure method according to 6. 弾性変形可能な第1の基板と、弾性変形しない第2の基板との間に存在する異物を検出する基板間の異物検出装置であって、
前記第1の基板と前記第2の基板を密着する密着手段と、
前記第1の基板と前記第2の基板の間に存在するこれら基板に付着した異物により生じる該第1の基板の変形を検出する形状検出手段と、
を有することを特徴とする基板間の異物検出装置。
A foreign matter detection device between substrates for detecting foreign matter existing between a first substrate that is elastically deformable and a second substrate that is not elastically deformed,
An adhesion means for closely adhering the first substrate and the second substrate;
Shape detecting means for detecting deformation of the first substrate caused by foreign matter attached to these substrates existing between the first substrate and the second substrate;
An apparatus for detecting foreign matter between substrates, comprising:
前記形状検出手段が、
前記第1の基板と平坦な基準面に光を照射する光照射手段と、
前記第1の基板から反射する反射光と、前記基準面から反射する反射光とによる干渉縞の光を、受光する受光素子と、を備え、さらに、
該受光素子からの信号により前記異物の情報を得る手段と、
前記第1の基板と前記第2の基板とが離間している領域を算出する処理装置と、
を有することを特徴とする請求項8に記載の基板間の異物検出装置。
The shape detecting means is
A light irradiation means for irradiating the first substrate and a flat reference surface with light;
A light receiving element that receives light of interference fringes caused by reflected light reflected from the first substrate and reflected light reflected from the reference surface; and
Means for obtaining information of the foreign matter from a signal from the light receiving element;
A processing device for calculating a region where the first substrate and the second substrate are separated from each other;
The apparatus for detecting foreign matter between substrates according to claim 8.
露光マスクを変形させ被処理体に対して密着させ、該露光マスクに形成した微小開口からにじみ出る近接場を用いて露光を行う近接場露光装置において、
前記露光マスクと被処理体との間に存在する異物を検出する異物検出手段を有することを特徴とする近接場露光装置。
In a near-field exposure apparatus that performs exposure using a near-field oozing from a minute opening formed in the exposure mask by deforming the exposure mask and closely contacting the object to be processed,
A near-field exposure apparatus, comprising foreign matter detection means for detecting foreign matter existing between the exposure mask and the object to be processed.
JP2003293694A 2003-08-15 2003-08-15 Near-field exposure method Expired - Fee Related JP4721393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293694A JP4721393B2 (en) 2003-08-15 2003-08-15 Near-field exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293694A JP4721393B2 (en) 2003-08-15 2003-08-15 Near-field exposure method

Publications (2)

Publication Number Publication Date
JP2005062035A true JP2005062035A (en) 2005-03-10
JP4721393B2 JP4721393B2 (en) 2011-07-13

Family

ID=34370519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293694A Expired - Fee Related JP4721393B2 (en) 2003-08-15 2003-08-15 Near-field exposure method

Country Status (1)

Country Link
JP (1) JP4721393B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056589A (en) * 2013-09-13 2015-03-23 キヤノン株式会社 Imprinting device, imprinting method, detecting method, and device manufacturing method
JP2016042501A (en) * 2014-08-14 2016-03-31 キヤノン株式会社 Imprint device and manufacturing method of article
JP2016127168A (en) * 2015-01-05 2016-07-11 キヤノン株式会社 Imprint device, imprint method, and article manufacturing method
JPWO2016092697A1 (en) * 2014-12-12 2017-09-21 キヤノン株式会社 Imprint apparatus, imprint method, and article manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118544A (en) * 1990-03-30 1992-04-20 Oki Electric Ind Co Ltd Surface inspection method for color filter
JPH04274744A (en) * 1991-03-01 1992-09-30 Dainippon Printing Co Ltd Inspection method for protrusion of color filter
JP2003156834A (en) * 2001-11-19 2003-05-30 Fuji Photo Film Co Ltd Mask for exposure with near-field light, exposure system and exposure method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118544A (en) * 1990-03-30 1992-04-20 Oki Electric Ind Co Ltd Surface inspection method for color filter
JPH04274744A (en) * 1991-03-01 1992-09-30 Dainippon Printing Co Ltd Inspection method for protrusion of color filter
JP2003156834A (en) * 2001-11-19 2003-05-30 Fuji Photo Film Co Ltd Mask for exposure with near-field light, exposure system and exposure method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056589A (en) * 2013-09-13 2015-03-23 キヤノン株式会社 Imprinting device, imprinting method, detecting method, and device manufacturing method
JP2016042501A (en) * 2014-08-14 2016-03-31 キヤノン株式会社 Imprint device and manufacturing method of article
US10514599B2 (en) 2014-08-14 2019-12-24 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
JPWO2016092697A1 (en) * 2014-12-12 2017-09-21 キヤノン株式会社 Imprint apparatus, imprint method, and article manufacturing method
JP2016127168A (en) * 2015-01-05 2016-07-11 キヤノン株式会社 Imprint device, imprint method, and article manufacturing method
CN105759566A (en) * 2015-01-05 2016-07-13 佳能株式会社 Imprint Apparatus, Imprint Method, And Method Of Manufacturing Article
US10315344B2 (en) 2015-01-05 2019-06-11 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and method of manufacturing article
CN105759566B (en) * 2015-01-05 2020-01-10 佳能株式会社 Imprint apparatus, imprint method, and method of manufacturing article

Also Published As

Publication number Publication date
JP4721393B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
KR102256685B1 (en) Lighting sources for inspection devices, inspection devices and inspection methods
JP7068378B2 (en) Board holder, lithography equipment and device manufacturing method
TWI414783B (en) Method of determining defects in a substrate and apparatus for exposing a substrate in a lithographic process
TWI438423B (en) A method of imaging radiation from an object on a detection device and an inspection device for inspecting an object
JP7437441B2 (en) Method and apparatus for compensating for defects in mask blanks
US8122846B2 (en) Platforms, apparatuses, systems and methods for processing and analyzing substrates
JP6522604B2 (en) Extreme ultraviolet (EUV) substrate inspection system with simplified optical element and method of manufacturing the same
JP3958941B2 (en) Lithographic projection apparatus, method for determining position of alignment mark on substrate and device manufacturing method
JP6773894B2 (en) Methods and devices for deriving corrections, methods and devices for determining structural characteristics, device manufacturing methods
TW201827931A (en) A substrate, a substrate holder, a substrate coating apparatus, a method for coating the substrate and a method for removing the coating
TW200903183A (en) Angularly resolved scatterometer and inspection method
JP4729463B2 (en) Exposure apparatus, particle inspection system, particle inspection method, and device manufacturing method
JP2009105397A (en) Lithography apparatus and method
CN113169057A (en) Laser processing apparatus and control method thereof
JP4721393B2 (en) Near-field exposure method
JP4588010B2 (en) Lithographic apparatus
TWI463274B (en) Lithographic apparatus and substrate handling method
JP2004214415A (en) Pattern plotting method and device
JP4027263B2 (en) Near-field exposure method and apparatus
KR100638371B1 (en) Lithographic Apparatus and Device Manufacturing Method
KR20240001716A (en) Method and system for producing microstructural components
JP2013026424A (en) Manufacturing method of semiconductor device
JP2020173296A (en) Pattern inspection device for euv mask and pattern inspection method for euv mask
JP3903032B2 (en) Near-field exposure method
JP2008141087A (en) Near-field exposure method and near-field exposure apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees