JP2005061892A - Pressure vessel system for radiation detector - Google Patents

Pressure vessel system for radiation detector Download PDF

Info

Publication number
JP2005061892A
JP2005061892A JP2003289734A JP2003289734A JP2005061892A JP 2005061892 A JP2005061892 A JP 2005061892A JP 2003289734 A JP2003289734 A JP 2003289734A JP 2003289734 A JP2003289734 A JP 2003289734A JP 2005061892 A JP2005061892 A JP 2005061892A
Authority
JP
Japan
Prior art keywords
pressure vessel
pin
radiation
sensor element
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003289734A
Other languages
Japanese (ja)
Other versions
JP4314373B2 (en
Inventor
Shuji Yamagishi
秀志 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2003289734A priority Critical patent/JP4314373B2/en
Publication of JP2005061892A publication Critical patent/JP2005061892A/en
Application granted granted Critical
Publication of JP4314373B2 publication Critical patent/JP4314373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a very fine signal pulse output from a radiation sensor element is required to be output attenuated through a large number of series resistance lines, corresponding to the number of detection wires or the number of strips in the sensor element, in order to obtain detection position information of a radiation and wherein lowering in the S/N ratio cannot be avoided, the problem wherein the pulse width is widened as a result that a fine current pulse output from the sensor element is required to be sufficiently integrated at several microseconds of time constant by an amplifying circuit in order to reduce a pulse crest value fluctuations and wherein quick measurement, i.e. a wide dynamic range cannot be realized, and the like, in a conventional resistance attenuation system position detecting type radiation sensor. <P>SOLUTION: This multidimensional position detecting type radiation detector, requiring a pressure vessel using an ionization gas, has a structure for transmitting fine and high-speed electrical signal pulses output in several tens or more of multichannels, from an individually mounted multidimensional radiation detecting element to a multichannel amplifying board via a pressure boundary, without attenuation or delays. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、エックス線または中性子散乱を用いた物質の構造解析実験において、高速応答性能、広い計測レンジ及び高位置検出分解能が要求されるエックス線、カンマ線及び中性子インメージングなどの放射線計測に用いられる一次元あるいは二次元放射線検出器用圧力容器システムに関する。   The present invention is used for radiation measurement such as X-rays, comma rays, and neutron imaging that requires high-speed response performance, a wide measurement range and high position detection resolution in structural analysis experiments of materials using X-rays or neutron scattering, for example. The present invention relates to a pressure vessel system for a one-dimensional or two-dimensional radiation detector.

エックス線または中性子を計測するためのガスコンバータを用いたイメージングセンサーでは、通常、それらから得られる一次エネルギーが3×10-15クーロン[C]以下と極めて微少であるが、位置検出分解能を上げるため一次元位置検出型放射線検出器では1[cm]の単位長当たり10チャンネル以上、二次元位置検出型放射線検出器では1[cm2]の単位面積当たり20チャンネル以上のそれぞれの微小出力信号が有する位置情報精度を低下させることなく増幅、処理することが要求される。従来の多次元位置検出型放射線検出器としては、次のものがある。 In an imaging sensor using a gas converter for measuring X-rays or neutrons, the primary energy obtained from them is usually very small as 3 × 10 −15 coulomb [C] or less, but the primary energy is increased to improve the position detection resolution. In the original position detection type radiation detector, the position of each minute output signal having 10 channels or more per unit length of 1 [cm], and in the two-dimensional position detection type radiation detector, 20 channels or more per unit area of 1 [cm 2 ]. Amplification and processing are required without degrading information accuracy. Conventional multi-dimensional position detection type radiation detectors include the following.

(1)直径20[μm]程度の極めて細い金属線を数ミリメートル間隔に張り、それぞれの信号線出力をX軸信号とした一次元マルチワイヤ比例計数管(MWPC)型放射線センサー素子、または上記の金属線に直交する方向に信号線を張ってそれらの信号出力をY軸信号とした構造の二次元マルチワイヤ比例計数管(MWPC)型放射線センサー素子において、これらのセンサーのX軸信号またはX及びY軸信号の両方について、圧力容器内に並べて張られた信号線の片端で、それぞれの信号線と信号線間に同じ値の大きな電気抵抗を接続し、それら多数並べられた直列抵抗列の両端からの二信号のパルス波高値の減衰量が信号の発生した位置から出力間までの距離に比例する原理を用い、二信号を同軸型のフィードスルーを介して圧力容器外に導出して計測する抵抗減衰方式位置検出型放射線センサー。 (1) A one-dimensional multi-wire proportional counter (MWPC) type radiation sensor element in which a very thin metal wire having a diameter of about 20 [μm] is stretched at intervals of several millimeters, and each signal line output is an X-axis signal, or the above-mentioned In a two-dimensional multi-wire proportional counter (MWPC) type radiation sensor element having a structure in which a signal line is extended in a direction orthogonal to a metal line and the signal output is a Y-axis signal, the X-axis signal or X and X of these sensors For both Y-axis signals, one end of the signal line stretched side by side in the pressure vessel is connected to a large electric resistance of the same value between each signal line, and both ends of the series resistor string arranged in large numbers. using the principle of proportional to the distance to between the output from the second signal position attenuation of pulse peak value has occurred in the signal from the second signal to the outside of the pressure vessel through a coaxial feedthrough Resistance attenuation type position detection type radiation sensor for measuring out.

(2)上記の抵抗減衰方式位置検出型放射線センサーにおいて信号線と信号線間に接続された同じ値の大きな電気抵抗の替わりに、信号パルスの伝播を時間的に遅らせる働きをするパルス遅延素子を配置して、それら多数並べられた遅延素子列の両端からの二信号パルスの遅延時間差が信号の発生した位置から出力間までの距離に比例する原理を用い、二信号を同軸型のフィードスルーを介して圧力容器外に導出して計測するパルス遅延方式位置検出型放射線センサー(2) In the above resistance attenuation type position detection type radiation sensor, instead of a large electric resistance of the same value connected between the signal lines, a pulse delay element that works to delay the propagation of the signal pulse in time Using the principle that the delay time difference of two signal pulses from both ends of the delay element array arranged in large numbers is proportional to the distance from the position where the signal is generated to the output, the two signals are coaxially fed through . A pulse-delayed position-detection type radiation sensor that is led out of the pressure vessel and measured.

上記の抵抗減衰方式位置検出型放射線センサー及びパルス遅延方式位置検出型放射線センサーではMWPC型放射線センサーを用いた場合の例であるが、MWPC型放射線センサー素子を、マイクロストリップガスカウンタ(MSGC)型放射線センサー素子又はマイクロピクセルガスカウンター(MPGC)型放射線センサー素子などに置換えた二次元位置検出型放射線センサーなどがある。   The above resistance attenuation type position detection type radiation sensor and pulse delay type position detection type radiation sensor are examples in which the MWPC type radiation sensor is used, but the MWPC type radiation sensor element is a microstrip gas counter (MSGC) type radiation. There is a two-dimensional position detection type radiation sensor or the like replaced with a sensor element or a micropixel gas counter (MPGC) type radiation sensor element.

マイクロストリップガスカウンタ(MSGC)型放射線センサー素子とは、絶縁基板表面上に幅10[μm]程度の陽極ストリップを、そして両脇に50[μm]程度の絶縁ギャップを介して陽極ストリップを挟む形で幅100[μm]程度の陰極ストリップを配置した電極対を多数並べ、裏面には陽極ストリップと直交する方向に表面の陽電極と同じピッチで陰極ストリップと同等幅のバックストリップを配置して、それぞれの陽極ストリップ出力をX軸信号として、それぞれのバックストリップの出力をY軸信号とした構造のものである。   The microstrip gas counter (MSGC) type radiation sensor element has an anode strip having a width of about 10 [μm] on an insulating substrate surface and an anode strip sandwiched between both sides through an insulating gap of about 50 [μm]. A large number of electrode pairs on which cathode strips having a width of about 100 [μm] are arranged, and on the back side, back strips having the same width as the cathode strips are arranged at the same pitch as the positive electrodes on the surface in the direction orthogonal to the anode strips, Each anode strip output is an X-axis signal, and each back strip output is a Y-axis signal.

又、マイクロピクセルガスカウンター(MPGC)型放射線センサー素子とは、絶縁基板裏面に多数本の陽電極線を数100[μm]間隔で配置し、それそれの陽電極の長さ方向に陽電極線と接する絶縁基板部分に数100[μm]間隔で絶縁基板を貫通する直径50[μm]以下の円柱状の金属製スタッドピンを成形し、表面のスタッドピンの真上に陽電極線と直交する方向に陰電極線を配置して、その陰電極線とスタッドピンが重なる部分にスタッドピンと同心で幅100[μm]程度のドーナツ状絶縁ギャップを設け、それぞれの陽電極線出力をX軸信号、それぞれの陰電極線出力をY軸信号とした構造のものである。  The micropixel gas counter (MPGC) type radiation sensor element has a large number of positive electrode wires arranged at intervals of several hundreds [μm] on the back surface of an insulating substrate, and positive electrode wires in the length direction of the positive electrodes. A cylindrical metal stud pin having a diameter of 50 [μm] or less that penetrates the insulating substrate at intervals of several hundreds [μm] is formed on the insulating substrate portion in contact with the surface, and is orthogonal to the positive electrode line right above the stud pin on the surface. A negative electrode line is arranged in the direction, and a donut-shaped insulation gap of about 100 [μm] width is provided concentrically with the stud pin at a portion where the negative electrode line and the stud pin overlap, and each positive electrode line output is an X-axis signal, Each negative electrode line output is a Y-axis signal.

又、本発明の背景技術には、更に次のものものがある。
(1) MWPC原理に基づいた二次元位置検出型検出器が中性子小角散乱実験装置のために製作された。その検出器の有感面積は640x640mm2である。中性子検出効率と高位置分解能の性能を得るため、そして視差を最小にするため、混合ガスは190kPa 3He + 100kPa CF4にし、そして有感体積を30mm厚さにした。検出器の最大中性子計数率の設計は105イベント/秒である。計算上の中性子検出効率は2Åの中性子で60%であり、そしてアノードグリッドにおける測定された中性子エネルギー分解能は代表的で20%(半値幅)であった。有感面で検出された中性子の位置は、ワイヤ対ワイヤ法(高い分解能の5x5mm2はワイヤ座標によって定義された)を使って決定された。16チャンネルの電荷型前置増幅器/増幅器/コンパレーターモジュールは、チャンネル感度が0.1V/fC、ノイズラインの幅が0.4fCそしてチャンネル間クロストークが5%以下の性能を持ったものが開発された(非特許文献1)。
The background art of the present invention further includes the following.
(1) A two-dimensional position detector based on the MWPC principle was fabricated for a small neutron scattering experiment. Sensitive area of the detector is 640x640mm 2. In order to obtain the performance of neutron detection efficiency and high position resolution, and to minimize the parallax, the mixed gas was 190 kPa 3 He + 100 kPa CF 4 and the sensitive volume was 30 mm thick. The maximum neutron count rate design of the detector is 10 5 events / second. The calculated neutron detection efficiency was 60% with 2Å neutrons, and the measured neutron energy resolution in the anode grid was typically 20% (half width). The position of the neutron detected on the sensitive surface was determined using the wire-to-wire method (high resolution 5x5mm 2 defined by wire coordinates). A 16-channel charge preamplifier / amplifier / comparator module has been developed that has a channel sensitivity of 0.1 V / fC, a noise line width of 0.4 fC, and channel-to-channel crosstalk of less than 5%. (Non-Patent Document 1).

(2) 我々はマイクロチップ モジュール(MCM)技術を用いて、検出面積5cm x 5cmの二次元マイクロストリップ ガス チェンバ(MSGC)を開発した。それは17mmの薄い素子基板、200 mmのピッチの254アノードと255バックストリップを有している。MSGCは、500ピン以上を持った大きなピングリッドアレイ(PGA)パッケージにマウントされている。それは読出し電子回路と組み合わされたイメージングMSGCからの大量の信号を容易に接続することを可能にする。本誌において、我々は強烈なX線線源の近くで作動するX線イメージング検出器としてのMSGCの能力について報告する。高輝度X線の下での安定な作動を得るために、約20mm素子基板と約1015W/squareの表面抵抗が解決策であることがわかった。表面抵抗の制御はポリイミド素子基板の表面に有機チタンをコーティングすることで行った。この改善により、MSGCが107Hz/mm2の高計数率の下で約103秒間安定に作動した。また、MSGCはX線発生器からの中程度輝度のX線の下で数ヶ月間作動した。この測定において、ヒットした電極の位置を記録するだけのシンプルな読取り法を用い、約60mmRMS位置分解能を有した高品質デジタルX線イメージングを達成した(非特許文献2)。 (2) We have developed a two-dimensional microstrip gas chamber (MSGC) with a detection area of 5cm x 5cm using microchip module (MCM) technology. It has a 17 mm thin element substrate, a 254 anode with a 200 mm pitch and a 255 backstrip. The MSGC is mounted in a large pin grid array (PGA) package with over 500 pins. It makes it possible to easily connect a large amount of signals from the imaging MSGC combined with readout electronics. In this paper, we report on the ability of MSGC as an X-ray imaging detector to operate near an intense X-ray source. In order to obtain stable operation under high-intensity X-rays, it was found that a solution of about 20 mm element substrate and about 10 15 W / square surface resistance was the solution. The surface resistance was controlled by coating the surface of the polyimide element substrate with organic titanium. This improvement, MSGC is activated about 103 seconds stable under high count rate 10 7 Hz / mm 2. The MSGC also operated for several months under moderate-brightness X-rays from an X-ray generator. In this measurement, high-quality digital X-ray imaging having a resolution of about 60 mm RMS was achieved by using a simple reading method that only records the position of the hit electrode (Non-patent Document 2).

(3) X線、ガンマ線及び荷電粒子のイメージングのために、斬新なガスを用いた検出器Micro Pixel Chamber(mu-PIC)が開発された。そのmu-PICは、大面積検出器が容易に生産できる両面プリント回路基板を基本にして製作される。0.4mmピッチ、3cmx3cm面積の mu-PICを用いた作動テストは成功裡に行われた。ガスゲインと安定性はこのテストで測定された。103のガスゲインにおける5日間の連続作動テストで、アノードとカソード間放電はおろかゲインの減少さえなかった。また、107cps/mm2の輝度のX線照射までゲインの低下は観測されなかった(非特許文献3)。
著者:Knott,-R.B.; Watt,-G.; Boldeman,-J.W.; Smith,-G.C.; et al.題名:A large 2D PSD for thermal neutron detector.発行所(書名):Nuclear-Instruments-and-Methods-in-Physics-Research.-SectionA,-Accelerators,Spectrometers.発行日:(21 Jun 1997). 該当頁:v.392(1-3). P.62-67 著者:Toru Tanimori; Atsuhiko Ochi; Seiji Minami, Tomofumi Naga.題名:Development of an imaging microstrip gas chamber with a 5cm x tcm area based on multi-chip module technology. 発行所(書名):Nuclear-Instruments-and-Methods-in-Physics-Research.-Section-A 381 (1996).受理日:(6 May 1996). 該当頁: P.280-288 著者:Ochi Atsuhiko; Nagayoshi Tsutomu; Koishi Satoshi, Tanimori,-Toru; et al.題名:Development of micro pixel chamber.Nuclear-Instruments-and-Methods-in-Physics-Research.-Section-A,-Accelerators,-Spectrometers,-Detectors-and-Associated-Equipment (1 Feb 2002) v. 478(1-2)発行日:(1 Feb 2002). 該当頁: p. 196-199
(3) The detector Micro Pixel Chamber (mu-PIC) using a novel gas was developed for imaging X-rays, gamma rays and charged particles. The mu-PIC is manufactured on the basis of a double-sided printed circuit board that can easily produce a large area detector. An operational test using a 0.4 mm pitch, 3 cm x 3 cm area mu-PIC was successfully performed. Gas gain and stability were measured in this test. In a five-day continuous operation test at a gas gain of 10 3 , the anode-to-cathode discharge was not even reduced. Further, no decrease in gain was observed until X-ray irradiation with a luminance of 10 7 cps / mm 2 (Non-patent Document 3).
Author: Knott, -RB; Watt, -G .; Boldeman, -JW; Smith, -GC; et al. Title: A large 2D PSD for thermal neutron detector. -in-Physics-Research.-SectionA, -Accelerators, Spectrometers. Date of issue: (21 Jun 1997). Applicable page: v.392 (1-3). P.62-67 Author: Toru Tanimori; Atsuhiko Ochi; Seiji Minami, Tomofumi Naga. Title: Development of an imaging microstrip gas chamber with a 5cm x tcm area based on multi-chip module technology. Publication (book title): Nuclear-Instruments-and-Methods -in-Physics-Research.-Section-A 381 (1996). Date of acceptance: (6 May 1996). Applicable page: P.280-288 Author: Ochi Atsuhiko; Nagayoshi Tsutomu; Koishi Satoshi, Tanimori, -Toru; et al. Title: Development of micro pixel chamber.Nuclear-Instruments-and-Methods-in-Physics-Research.-Section-A, -Accelerators,- Spectrometers, -Detectors-and-Associated-Equipment (1 Feb 2002) v. 478 (1-2) Publication date: (1 Feb 2002). Corresponding page: p. 196-199

エックス線または中性子散乱を用いた物質の構造解析実験に用いられるエックス線及び中性子インメージングセンサには、数100[μm]の極めて高い位置検出分解能と5桁以上のダイナミックレンジ、高い信号対雑音比(S/N)、その上、高い作動安定性が求められる。これらを実現するためには、先ず、一次元または二次元放射線センサー素子から出力される10-13クーロン[C]以下の極めて微小な信号パルスを減衰させずにパルス増幅用アンプ回路へ伝送すること、アンプ出力のパルス信号幅を数マイクロ秒以下にすること、及び、位置検出するための信号ラインの両端から出力される二信号の時間遅延を0.5[μs]以下にすることが要求される。 X-ray and neutron imaging sensors used in structural analysis experiments of materials using X-rays or neutron scattering have extremely high position detection resolution of several hundreds [μm], a dynamic range of 5 digits or more, and a high signal-to-noise ratio (S / N) and high operational stability. In order to realize these, first, an extremely small signal pulse of 10 −13 coulomb [C] or less output from a one-dimensional or two-dimensional radiation sensor element is transmitted to a pulse amplification amplifier circuit without being attenuated. The pulse signal width of the amplifier output is required to be several microseconds or less, and the time delay of two signals output from both ends of the signal line for position detection is required to be 0.5 [μs] or less. The

従来の抵抗減衰方式位置検出型放射線センサーでは放射線の検出位置情報を得るため、放射線センサー素子の検出ワイヤ数またはストリップ数に対応した多数個の直列抵抗列を通して、センサー素子から出力される極めて微小な信号パルスを減衰させて出力する必要がありS/Nの低下が避けられないこと、さらに、パルス波高値変動を少なくするためにセンサー素子から出力される微小電流パルスをアンプ回路により数マイクロ秒の時定数で十分な積分をする必要がある結果、信号パルス幅が広がり、高速の計測、即ち広いダイナミックレンジの実現などに課題があった。   In order to obtain the radiation detection position information in the conventional resistance attenuation type position detection type radiation sensor, the extremely small amount output from the sensor element is passed through a large number of series resistance arrays corresponding to the number of detection wires or strips of the radiation sensor element. It is necessary to attenuate and output the signal pulse, and the reduction in S / N is unavoidable. Further, in order to reduce the fluctuation of the pulse peak value, a minute current pulse output from the sensor element is several microseconds by an amplifier circuit. As a result of the necessity of sufficient integration with the time constant, the signal pulse width is widened, and there is a problem in high-speed measurement, that is, realization of a wide dynamic range.

パルス遅延方式位置検出型放射線センサーでは放射線の検出位置情報を得るため、放射線センサー素子の検出ワイヤ数またはストリップ数に対応した多数個の直列のパルス遅延素子列を通して、センサー素子から出力される極めて微小な信号パルスを大きく遅延させて出力する必要があり、この結果、出力信号パルスの伝播距離に応じた信号パルスの立上りの劣化をもたらし位置検出精度を低下させること、また、信号ラインの両端から出力される二信号パルス間に長い時間間隔が生じることから高速の計測、即ち広いダイナミックレンジの実現が難しいこと、さらに、パルス遅延素子で信号パルスを大幅に遅延させると信号パルス波高の減衰が生じてS/Nの低下が避けられないことなどの課題があった。   In order to obtain the detection position information of the radiation in the pulse delay type position detection type radiation sensor, the extremely small amount output from the sensor element through a large number of serial pulse delay element arrays corresponding to the number of detection wires or strips of the radiation sensor element. Output signal pulse must be output with a large delay. As a result, the rise of the signal pulse in accordance with the propagation distance of the output signal pulse is deteriorated, the position detection accuracy is lowered, and the signal is output from both ends of the signal line. Since a long time interval occurs between two signal pulses, it is difficult to achieve high-speed measurement, that is, to achieve a wide dynamic range. Furthermore, if the signal pulse is significantly delayed by a pulse delay element, the signal pulse wave height is attenuated. There were problems such as the inevitable decrease in S / N.

本発明は、電離ガスを用いた圧力容器を必要とする多次元位置検出型放射線検出器において、装着された多次元放射線検出素子から数10チャンネル以上の多チャンネルで出力される微小且つ高速電気信号パルスを個別に減衰及び遅延無く、圧力バウンダリーを介してダイレクトに多チャンネルアンプ基板に伝送する構造を有した放射線検出器用圧力容器システムを提供するものである。   The present invention is a multi-dimensional position detection type radiation detector that requires a pressure vessel using ionized gas, and a minute and high-speed electric signal output from the mounted multi-dimensional radiation detection element through several tens of channels. The present invention provides a pressure vessel system for a radiation detector having a structure in which pulses are directly transmitted to a multi-channel amplifier board through a pressure boundary without being individually attenuated and delayed.

本発明は放射線センサー素子のそれぞれの検出ワイヤまたはストリップから出力される微小信号パルス一個一個を検出器圧力容器に設けた多ピンのフィードスルーを介してダイレクトにアンプ回路に伝送できるため、微小信号パルスの減衰が殆ど生じず高いS/Nが得られ、従来の抵抗減衰方式位置検出型放射線センサー及びパルス遅延方式位置検出型放射線センサーの課題を解決する。   According to the present invention, each minute signal pulse output from each detection wire or strip of the radiation sensor element can be directly transmitted to the amplifier circuit through a multi-pin feedthrough provided in the detector pressure vessel. Attenuation is hardly generated and a high S / N is obtained, and the problems of the conventional resistance attenuation type position detection type radiation sensor and pulse delay type position detection type radiation sensor are solved.

本発明は放射線センサー素子のそれぞれの検出ワイヤまたはストリップから出力される微小信号パルス一個一個を検出器圧力容器に設けた多ピンのフィードスルーを介してダイレクトにアンプ回路に伝送できるため、微小信号パルスを高速の電流パルスとしてアンプ回路により直接増幅でき、且つ、それぞれの信号パルスをデジタル化してデジタル信号により位置検出処理できる結果、位置検出精度を大幅に向上させる効果、その上、高速化を図れることから広いダイナミックレンジの実現を提供する。   According to the present invention, each minute signal pulse output from each detection wire or strip of the radiation sensor element can be directly transmitted to the amplifier circuit through a multi-pin feedthrough provided in the detector pressure vessel. Can be directly amplified by the amplifier circuit as a high-speed current pulse, and each signal pulse can be digitized and position detection processing can be performed with a digital signal. As a result, the position detection accuracy can be greatly improved, and the speed can be increased. Provides a wide dynamic range.

本発明は放射線センサー素子のそれぞれの検出ワイヤまたはストリップから出力される微小信号パルス一個一個を検出器圧力容器に設けた多ピンのフィードスルーを介してダイレクトにアンプ回路に伝送できるため、ガス圧力容器内に信号パルス減衰用の多数の抵抗素子、または、信号パルス遅延用の多数のパルス遅延素子を組み込む必要がなくなり、この結果、圧力容器の大幅な小型化、且つ圧力容器壁の板厚の削減を与えることから圧力容器入射窓における被計測放射線の減衰及び散乱を減少させる効果、その上抵抗素子または信号パルス遅延による電離ガスの劣化をなくす効果を提供する。   According to the present invention, each minute signal pulse output from each detection wire or strip of the radiation sensor element can be directly transmitted to the amplifier circuit through a multi-pin feedthrough provided in the detector pressure vessel. It is no longer necessary to incorporate a large number of resistance elements for signal pulse attenuation or a large number of pulse delay elements for signal pulse delay in the inside, and as a result, the pressure vessel can be greatly reduced in size and the thickness of the pressure vessel wall can be reduced. Therefore, an effect of reducing attenuation and scattering of the radiation to be measured at the pressure vessel entrance window, and an effect of eliminating the deterioration of the ionized gas due to the resistance element or the signal pulse delay are provided.

本発明は圧力容器内の多ピンフィードスルーと一次元または二次元放射線センサー素子との接続にソケット配列構造を採用することによって、狭い圧力容器内における多数の配線接続の困難な作業をなくし、放射線センサー素子の初期マウント作業及び放射線センサー素子故障時の交換を容易にするなどの効果を提供する。   The present invention eliminates the difficult task of connecting a large number of wires in a narrow pressure vessel by adopting a socket arrangement structure for connecting a multi-pin feedthrough in a pressure vessel and a one-dimensional or two-dimensional radiation sensor element. It provides effects such as easy mounting of the sensor element and easy replacement when the radiation sensor element fails.

本発明は圧力容器外の多ピンフィードスルーとアンプ回路ボードまたはマザーボードとの接続にソケット配列構造を採用することによって、高密度の配線をなくし、配線による信号の劣化を防ぐことができ、マザーボードなどの交換を可能にする効果を提供する。   By adopting a socket arrangement structure for connecting the multi-pin feedthrough outside the pressure vessel and the amplifier circuit board or motherboard, the present invention can eliminate high-density wiring and prevent signal deterioration due to wiring. Provides the effect of enabling the exchange of

図1に、本発明の放射線検出器用圧力容器システムを用いた中性子イメージングセンサーの構成を示す。1は放射線検出器用圧力容器キャップ、1aは中性子入射窓、1bは中性子、2は混合ガス加圧用バルブ、3は圧力容器端盤フランジ、3aはメタルガスケット、3bはフランジ装着用ボルト、4はフィードスルー用セラミック盤、4aはフィードスルーピン配列、5は二次元位置検出型放射線センサー素子、5aは放射線センサー素子マウント用基板、5bはドリフトプレート、6はアンプ回路基板、6aはフィードスルーピン接続用スルーホール配列を示す。   In FIG. 1, the structure of the neutron imaging sensor using the pressure vessel system for radiation detectors of this invention is shown. 1 is a pressure vessel cap for a radiation detector, 1a is a neutron entrance window, 1b is neutron, 2 is a valve for gas mixture pressurization, 3 is a pressure vessel end flange, 3a is a metal gasket, 3b is a flange mounting bolt, 4 is a feed Ceramic board for through, 4a is a feedthrough pin arrangement, 5 is a two-dimensional position detection type radiation sensor element, 5a is a substrate for mounting a radiation sensor element, 5b is a drift plate, 6 is an amplifier circuit board, 6a is for connecting a feedthrough pin A through-hole arrangement is shown.

図2は、図1の5及び5a部品を分解して示した図である。スルーホール配列基板を圧力容器端盤フランジのフィードスルーピンに装着し、各ピンを半だ付けした後、二次元位置検出型放射線センサー素子をスルーホール配列基板上にマウントする。5は二次元位置検出型放射線センサー素子、5aはスルーホール配列基板、5cはスルーホール配列、5dはボンディングパットである。   FIG. 2 is an exploded view of the parts 5 and 5a of FIG. The through-hole array substrate is mounted on the feed-through pin of the pressure vessel end plate flange, and after each pin is attached halfway, the two-dimensional position detection type radiation sensor element is mounted on the through-hole array substrate. 5 is a two-dimensional position detection type radiation sensor element, 5a is a through-hole array substrate, 5c is a through-hole array, and 5d is a bonding pad.

図3は、図1の放射線検出器用圧力容器システムにおいて、多ピンICパッケージにマウントされた二次元位置検出型放射線センサー素子を、両端がソケット配列で製作された部品を使って、圧力容器端盤フランジのフィードスルーピン配列に装着する場合の部品構成を示した図である。ソケット配列部品7をフィードスルーピン配列4aに装着した後、ソケット配列部品の上部に二次元位置検出型放射線センサー素子8をマウントする。ここで3は圧力容器端盤フランジ、4aはフィードスルーピン配列、7はソケット配列部品、8は多ピンICパッケージにマウントされた二次元位置検出型放射線センサー素子である。   FIG. 3 is a cross-sectional view of the pressure vessel end plate of the radiation detector pressure vessel system shown in FIG. 1 using a two-dimensional position detection type radiation sensor element mounted on a multi-pin IC package, using parts made of sockets at both ends. It is the figure which showed the components structure in the case of mounting | wearing with the feedthrough pin arrangement | sequence of a flange. After the socket array component 7 is mounted on the feedthrough pin array 4a, the two-dimensional position detection type radiation sensor element 8 is mounted on the socket array component. Here, 3 is a pressure vessel end plate flange, 4a is a feedthrough pin arrangement, 7 is a socket arrangement component, and 8 is a two-dimensional position detection type radiation sensor element mounted on a multi-pin IC package.

図4は、図1のアンプ回路基板6を図1に示すソケット配列付きマザーボード9に置換えて、多数のアンプ回路基板を装着できるようにした構造を示す。ソケット配列9aを図1の圧力容器端盤フランジ3の下面に突き出たフィードスルーピン配列に装着し、マザーボードに設けたそれぞれの多ピンコネクタにアンプ回路基板10を装着して用いる。9はソケット配列付きマザーボード、9aはソケット配列、9bは多ピンコネクタ、10はアンプ回路基板、10aは信号入力用多ピンコネクタ、10bはアンプモジュール、10cは信号出力用多ピンコネクタである。   FIG. 4 shows a structure in which the amplifier circuit board 6 in FIG. 1 is replaced with the motherboard 9 with socket arrangement shown in FIG. 1 so that a large number of amplifier circuit boards can be mounted. The socket array 9a is attached to the feedthrough pin array protruding from the lower surface of the pressure vessel end panel flange 3 in FIG. 1, and the amplifier circuit board 10 is attached to each multi-pin connector provided on the mother board. 9 is a motherboard with a socket arrangement, 9a is a socket arrangement, 9b is a multi-pin connector, 10 is an amplifier circuit board, 10a is a multi-pin connector for signal input, 10b is an amplifier module, and 10c is a multi-pin connector for signal output.

図5は、 発明の放射線検出器用圧力容器システムを組立て完成させた外観図である。1は放射線検出器用圧力容器キャップ、1aは中性子入射窓、1bは中性子、2は混合ガス加圧用バルブ、3は圧力容器端盤フランジ、9はソケット配列付きマザーボード、10はアンプ回路基板、10aは信号入力用多ピンコネクタ、10bはアンプモジュール、10cは信号出力用多ピンコネクタである。   FIG. 5 is an external view of the completed pressure detector system for a radiation detector according to the invention. 1 is a pressure vessel cap for a radiation detector, 1a is a neutron entrance window, 1b is neutron, 2 is a valve for gas mixture pressurization, 3 is a pressure vessel end plate flange, 9 is a motherboard with a socket array, 10 is an amplifier circuit board, 10a is A multi-pin connector for signal input, 10b is an amplifier module, and 10c is a multi-pin connector for signal output.

一例として、本発明を中性子イメージングセンサーに応用した場合の構成を図1に示す。中性子イメージングセンサーでは放射線検出器用圧力容器キャップ1、中性子入射窓1a、中性子1b、混合ガス加圧用バルブ2、圧力容器端盤フランジ3、メタルガスケット3a、フランジ装着用ボルト3b、フィードスルー用セラミック盤4、フィードスルーピン配列4、二次元位置検出型放射線センサー素子5、放射線センサー素子マウント用基板5a、ドリフトプレート5b、アンプ回路基板6、フィードスルーピン接続用スルーホール配列6aから構成される。実際の使用に際しては、圧力容器端盤フランジの上面に突き出たフィードスルーピンに二次元位置検出型放射線センサー素子をマウントし、圧力容器キャップはフランジ装着用ボルトを用いて圧力容器端盤フランジに装着する。また、アンプ回路基板はそのアンプ回路基板のスルーホール配列を圧力容器端盤フランジの下面に突き出たフィードスルーピンにはめ込み電気的に接続する。混合ガス加圧用バルブから中性子コンバータ及び電離ガスとして働く混合ガスを加圧し、ドリフトプレートに負電圧、放射線センサー素子の陽極と陰極間に正負電圧をそれぞれ印加する。中性子の測定では、中性子入射によってドリフトプレートと放射線センサー素子の間に発生した電子群がドリフトプレートによる負電界によって、放射線センサー素子面にドリフトされ、放射線センサー素子面の極近傍の強電界領域で電子群がガス増幅されて、この電子雲により陽極及び陰極にそれぞれ負及び正の微小電気信号パルスが誘起される。発明の放射線検出器用圧力容器システムでは放射線センサー素子の全電極ラインがダイレクトに多ピンフィードスルー配列を介してアンプ回路に接続されるため、数本から数10本のX軸及びY軸電極ラインにそれぞれ誘起された微小電気信号パルスはパラレルにそれぞれのアンプ回路系統に入力されて、増幅、デジタル化された後、位置検出の信号処理が行われる。   As an example, FIG. 1 shows a configuration when the present invention is applied to a neutron imaging sensor. In the neutron imaging sensor, a pressure vessel cap 1 for a radiation detector, a neutron entrance window 1a, a neutron 1b, a mixed gas pressurizing valve 2, a pressure vessel end plate flange 3, a metal gasket 3a, a flange mounting bolt 3b, and a feedthrough ceramic plate 4 , A feedthrough pin array 4, a two-dimensional position detection type radiation sensor element 5, a radiation sensor element mounting substrate 5a, a drift plate 5b, an amplifier circuit substrate 6, and a feedthrough pin connection through hole array 6a. In actual use, a two-dimensional position detection type radiation sensor element is mounted on the feedthrough pin protruding from the upper surface of the pressure vessel end plate flange, and the pressure vessel cap is attached to the pressure vessel end plate flange using a flange mounting bolt. To do. The amplifier circuit board is electrically connected by inserting the through-hole arrangement of the amplifier circuit board into the feedthrough pin protruding from the lower surface of the pressure vessel end plate flange. A mixed gas acting as a neutron converter and an ionized gas is pressurized from a mixed gas pressurizing valve, and a negative voltage is applied to the drift plate, and a positive and negative voltage is applied between the anode and the cathode of the radiation sensor element. In the measurement of neutrons, a group of electrons generated between the drift plate and the radiation sensor element due to neutron incidence is drifted to the surface of the radiation sensor element by the negative electric field generated by the drift plate, and electrons are generated in the strong electric field region near the radiation sensor element surface. The group is gas amplified and the electron cloud induces negative and positive micro electrical signal pulses at the anode and cathode, respectively. In the pressure vessel system for the radiation detector of the invention, since all the electrode lines of the radiation sensor element are directly connected to the amplifier circuit through the multi-pin feedthrough arrangement, the X-axis and Y-axis electrode lines can be connected from several to several tens. The induced minute electric signal pulses are input in parallel to the respective amplifier circuit systems, amplified and digitized, and then subjected to position detection signal processing.

本発明の放射線検出器用圧力容器システムを用いた中性子イメージングセンサーの構成を示す図である。It is a figure which shows the structure of the neutron imaging sensor using the pressure vessel system for radiation detectors of this invention.

(符号の説明)
1.放射線検出器用圧力容器キャップ、1a.中性子入射窓、1b.中性子、2.混合ガス加圧用バルブ、3.圧力容器端盤フランジ、3a.メタルガスケット、3b.フランジ装着用ボルト、4.フィードスルー用セラミック盤、4a.フィードスルーピン配列、5.二次元位置検出型放射線センサー素子、5a.放射線センサー素子マウント用基板、5b.ドリフトプレート、6.アンプ回路基板、6a.フィードスルーピン接続用スルーホール配列。
図1の5及び5a部品を分解して示した図である。
(Explanation of symbols)
1. Pressure detector cap for radiation detector, 1a. Neutron entrance window, 1b. Neutrons, 2. 2. Valve for gas mixture pressurization, Pressure vessel end flange, 3a. Metal gasket, 3b. 3. flange mounting bolts; Ceramic board for feedthrough, 4a. 4. Feedthrough pin arrangement; Two-dimensional position detection type radiation sensor element, 5a. Radiation sensor element mounting substrate, 5b. 5. drift plate; Amplifier circuit board, 6a. Through-hole arrangement for feed-through pin connection.
It is the figure which decomposed | disassembled and shown 5 and 5a components of FIG.

(符号の説明)
5.二次元位置検出型放射線センサー素子、5a.スルーホール配列基板、5c.スルーホール配列、5d.ボンディングパット。
図1の放射線検出器用圧力容器システムにおいて、多ピンICパッケージにマウントされた二次元位置検出型放射線センサー素子を、両端がソケット配列で製作された部品を使って、圧力容器端盤フランジのフィードスルーピン配列に装着する場合の部品構成を示した図である。
(Explanation of symbols)
5). Two-dimensional position detection type radiation sensor element, 5a. Through-hole array substrate, 5c. Through-hole arrangement, 5d. Bonding pad.
In the pressure vessel system for a radiation detector shown in FIG. 1, a two-dimensional position detection type radiation sensor element mounted on a multi-pin IC package is used to feed through a flange of a pressure vessel end plate using parts manufactured with a socket arrangement at both ends. It is the figure which showed the component structure in the case of mounting | wearing with a pin arrangement.

(符号の説明)
3.圧力容器端盤フランジ、4a.フィードスルーピン配列、7.ソケット配列部品、8.多ピンICパッケージにマウントされた二次元位置検出型放射線センサー素子。
図1のアンプ回路基板(6)を図1に示すソケット配列付きマザーボード9に置換えて、多数のアンプ回路基板を装着できるようにした構造を示す。
(Explanation of symbols)
3. Pressure vessel end flange, 4a. 6. Feedthrough pin arrangement, 7. Socket arrangement parts A two-dimensional position detection type radiation sensor element mounted on a multi-pin IC package.
1 shows a structure in which a large number of amplifier circuit boards can be mounted by replacing the amplifier circuit board (6) of FIG. 1 with a motherboard 9 with a socket arrangement shown in FIG.

(符号の説明)
9.ソケット配列付きマザーボード、9a.ソケット配列、9b.多ピンコネクタ、10.アンプ回路基板、10a.信号入力用多ピンコネクタ、10b.アンプモジュール、10c.信号出力用多ピンコネクタ。
本発明の放射線検出器用圧力容器システムを組立て完成させた外観図を示す。
(Explanation of symbols)
9. Motherboard with socket arrangement, 9a. Socket array, 9b. Multi-pin connector, 10. Amplifier circuit board, 10a. Multi-pin connector for signal input, 10b. Amplifier module, 10c. Multi-pin connector for signal output.
The external view which assembled and completed the pressure vessel system for radiation detectors of this invention is shown.

(符号の説明)
1.放射線検出器用圧力容器キャップ、1a.中性子入射窓、1b.中性子、2.混合ガス加圧用バルブ、3.圧力容器端盤フランジ、9.ソケット配列付きマザーボード、10.アンプ回路基板、10a.信号入力用多ピンコネクタ、10b.アンプモジュール、10c.信号出力用多ピンコネクタ。
(Explanation of symbols)
1. Pressure detector cap for radiation detector, 1a. Neutron entrance window, 1b. Neutrons, 2. 2. Valve for gas mixture pressurization, 8. Pressure vessel end plate flange, 10. Motherboard with socket arrangement Amplifier circuit board, 10a. Multi-pin connector for signal input, 10b. Amplifier module, 10c. Multi-pin connector for signal output.

Claims (3)

大気圧を上回る高圧または大気圧を下回る低圧の放射線検出用電離ガスを用いた一次元または二次元の位置情報を与える20チャンネル以上の多チャンネル信号出力を有する多次元位置検出型放射線検出器において、電離ガスを封入する一個以上の入力ポートを有した円筒形または箱型圧力容器の圧力バウンダリーを形成する少なくとも一箇所以上の金属壁面に5mm以下の微小ピン間隔の高密度フィードスルーを設けたセラミック絶縁板を気密及び耐圧性のある構造で取付け、圧力容器内に突き出た高密度フィードスルーのピンに多次元放射線センサー素子を直接マウントし、もう一方の圧力容器外に突き出た高密度フィードスルーのピンには多チャンネルアンプ基板を取付けて、放射線センサー素子からの位置情報を有した各チャンネル電気信号パルスを個別に、圧力バウンダリーを介して、ダイレクトにアンプ基板に伝達できるようにした構造の放射線検出器用圧力容器システム。   In a multidimensional position detection type radiation detector having a multichannel signal output of 20 channels or more that gives one-dimensional or two-dimensional position information using an ionizing gas for radiation detection at a high pressure above atmospheric pressure or a low pressure below atmospheric pressure, Ceramic insulation having a high density feedthrough with a minute pin spacing of 5 mm or less on at least one metal wall forming a pressure boundary of a cylindrical or box-type pressure vessel having one or more input ports for enclosing ionized gas The plate is mounted in an airtight and pressure-resistant structure, the multi-dimensional radiation sensor element is directly mounted on the high-density feedthrough pin protruding into the pressure vessel, and the high-density feedthrough pin protruding outside the other pressure vessel A multi-channel amplifier board is attached to each channel with position information from the radiation sensor element. Individually air signal pulse, through the pressure boundary, the radiation detector pressure vessel system of the structure to be transmitted to the amplifier board directly. 請求項1の放射線検出器用圧力容器であって、圧力容器内に突き出た高密度フィードスルーのそれぞれのピンに対して、上端がソケット構造で製作されたピンソケット部品をロウ付け方法でフィードスルーピンに取付けた構造、または上下端の両方がソケット構造のソケット部品をはめ込み、これらのピンソケット配列にピン付きパッケージ構造で製作された放射線センサー素子を直接差込む方法でマウントできるようにした構造の放射線検出器用圧力容器システム。   2. The pressure vessel for a radiation detector according to claim 1, wherein a pin socket component having an upper end made of a socket structure is brazed to each pin of the high density feedthrough protruding into the pressure vessel by a brazing method. Radiation with a structure attached to the top or bottom so that both the upper and lower ends are fitted with socket parts with a socket structure, and radiation sensor elements manufactured with a pinned package structure can be directly inserted into these pin socket arrays. Pressure vessel system for detector. 請求項1又は2の放射線検出器用圧力容器であって、圧力容器外に突き出た高密度フィードスルーのそれぞれのピンに対して、このピン形状配列に合致したソケット配列を電子回路プリント基板上に配置して、圧力容器外側の高密度フィードスルーピン配列にはめ込み、電子回路プリント基板上のアンプ回路群により多次元放射線検出器からの多チャンネル信号を増幅するようにした構造を特徴とする放射線検出器用圧力容器システム。   3. A pressure vessel for a radiation detector according to claim 1, wherein a socket arrangement that matches the pin shape arrangement is arranged on an electronic circuit printed board for each pin of the high-density feedthrough that protrudes outside the pressure vessel. For a radiation detector characterized by a structure in which a multichannel signal from a multidimensional radiation detector is amplified by a group of amplifier circuits on an electronic circuit printed circuit board, which is fitted into a high-density feedthrough pin array outside the pressure vessel Pressure vessel system.
JP2003289734A 2003-08-08 2003-08-08 Pressure detector system for radiation detector Expired - Lifetime JP4314373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289734A JP4314373B2 (en) 2003-08-08 2003-08-08 Pressure detector system for radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289734A JP4314373B2 (en) 2003-08-08 2003-08-08 Pressure detector system for radiation detector

Publications (2)

Publication Number Publication Date
JP2005061892A true JP2005061892A (en) 2005-03-10
JP4314373B2 JP4314373B2 (en) 2009-08-12

Family

ID=34367971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289734A Expired - Lifetime JP4314373B2 (en) 2003-08-08 2003-08-08 Pressure detector system for radiation detector

Country Status (1)

Country Link
JP (1) JP4314373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987074A (en) * 2021-02-09 2021-06-18 中国科学院深圳先进技术研究院 Three-dimensional array type X-ray detector, X-ray detection unit and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987074A (en) * 2021-02-09 2021-06-18 中国科学院深圳先进技术研究院 Three-dimensional array type X-ray detector, X-ray detection unit and preparation method thereof
CN112987074B (en) * 2021-02-09 2024-01-23 中国科学院深圳先进技术研究院 Three-dimensional array type X-ray detector, X-ray detection unit and preparation method thereof

Also Published As

Publication number Publication date
JP4314373B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
US6133575A (en) High-resolution position detector for high-flux ionizing particle streams
KR20020011382A (en) Radiation detect or and an apparatus for use in radiography
US6841784B2 (en) Radiation sensor device
US10191180B2 (en) Large scale gas electron multiplier and detection method
EP1640712B1 (en) Time-resolved measurement device and position-sensitive electron multiplier tube
WO2009149593A1 (en) Array solid-state detector for detecting radiations
EP2489060B1 (en) A radiographic imaging device and a detector for a radiographic imaging device
CA2399007C (en) A method and a device for radiography and a radiation detector
KR100784196B1 (en) Apparatus and method for array GEM digital imaging radiation detector
US5604783A (en) Medical imaging devices using low-dose X or gamma ionizing radiation
CZ884586A3 (en) Apparatus for detection and localization of neutral particles
AU2001242943A1 (en) A method and a device for radiography and a radiation detector
JP2005055306A (en) Through-hole type microstrip gas counter element
JP4314373B2 (en) Pressure detector system for radiation detector
JP2007155562A (en) Radiation image detection module and radiation image detection device
Angelico et al. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode
JP5136736B2 (en) Radiation image detection module and radiation image detection apparatus
JP2005055372A (en) Multidimensional position detection type radiation sensor element in micro via electrode structure
JP2009074817A (en) Semiconductor detector module, and radiation detection device or nuclear medicine diagnosis device using the semiconductor detector module
Fischer et al. Pad readout for gas detectors using 128-channel integrated preamplifiers
WO2024094226A1 (en) Dual-energy x-ray detector structure and dual-energy x-ray detection method
CN116430436A (en) Neutron detector
Debbe et al. MWPC with highly segmented cathode pad readout
Canezin et al. In-beam test results of an RPC-based module for position-sensitive neutron detectors with timing readout
JP2009259859A (en) Semiconductor radiation detector, and nuclear medicine diagnostic device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4314373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term