JP2005061313A - Engine exhaust control device - Google Patents

Engine exhaust control device Download PDF

Info

Publication number
JP2005061313A
JP2005061313A JP2003291992A JP2003291992A JP2005061313A JP 2005061313 A JP2005061313 A JP 2005061313A JP 2003291992 A JP2003291992 A JP 2003291992A JP 2003291992 A JP2003291992 A JP 2003291992A JP 2005061313 A JP2005061313 A JP 2005061313A
Authority
JP
Japan
Prior art keywords
poisoning
amount
temperature
release
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291992A
Other languages
Japanese (ja)
Inventor
Hideaki Takahashi
秀明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003291992A priority Critical patent/JP2005061313A/en
Publication of JP2005061313A publication Critical patent/JP2005061313A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform poisoning release while suppressing the deterioration of fuel economy and a manifold catalyst in an upstream side, when it is judged that it is the time to release the poisoning of sulfur adhering to a NOx trapping catalyst provided for an exhaust passage. <P>SOLUTION: At the time of poisoning release, temperature is raised at two stages. Initially, the poisoning release is performed at a relatively low temperature. After sulfur in a state capable of being released at the relatively low temperature is removed, the temperature is further raised to perform the poisoning release at a relatively high temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排気通路にNOxトラップ機能を有する排気浄化触媒を備える場合に、その触媒に付着した硫黄(S)の被毒解除を好適に行うことのできるエンジンの排気浄化装置に関する。   The present invention relates to an engine exhaust purification device that can suitably perform detoxication of sulfur (S) adhering to a catalyst when an exhaust purification catalyst having a NOx trap function is provided in an exhaust passage.

従来の技術として、特許文献1に記載されているように、NOx吸収剤(NOxトラップ触媒)に付着した硫黄の脱離性(脱離のしやすさ)を判定し、その判定結果に応じて、硫黄放出のために行う空燃比のリッチ化又は排ガスの昇温の少なくともいずれか一方を調整・抑制するものがある。
特開2002−364348号公報
As described in Patent Document 1, as a conventional technique, the detachability (ease of detachment) of sulfur attached to the NOx absorbent (NOx trap catalyst) is determined, and the determination result is determined according to the determination result. There are some which adjust / suppress at least one of the enrichment of the air-fuel ratio and the temperature rise of the exhaust gas for sulfur release.
JP 2002-364348 A

しかしながら、従来の技術では、脱離困難な硫黄がある程度たまった時点で、高温での被毒解除を行うという構成になっていたため、高温の被毒解除を行う場合には、一気に高温側の被毒解除可能温度まで上げる必要があることから、被毒解除可能温度に上げるまでに時間がかかり、その間の燃費悪化が発生する。また、NOxトラップ触媒の上流の排気マニホールドの直下に三元触媒(マニホールド触媒)を配置する場合、マニホールド触媒は比較的早期に温度上昇するため、その劣化が大きくなるという問題があった。   However, the conventional technology is configured to release the poisoning at a high temperature when sulfur that is difficult to desorb has accumulated to some extent. Since it is necessary to raise the temperature to be able to release poisoning, it takes time to raise the temperature to be able to release poisoning, and the fuel consumption deteriorates during that time. Further, when a three-way catalyst (manifold catalyst) is arranged directly under the exhaust manifold upstream of the NOx trap catalyst, the temperature of the manifold catalyst rises relatively early, and there is a problem that the deterioration thereof becomes large.

本発明では、被毒解除時の温度上昇を2段階として、初めに比較的低温で被毒解除を行う低温被毒解除と、比較的低温で解除可能な状態の硫黄が除去された時点で、更に温度上昇させて、比較的高温で被毒解除を行う高温被毒解除と、を行う構成とする。   In the present invention, the temperature rise at the time of releasing the poisoning is divided into two stages, and at the time when the low-temperature poisoning release in which the poisoning is released at a relatively low temperature and sulfur in a state that can be released at a relatively low temperature are removed, Further, the temperature is increased, and the high temperature poisoning release for releasing the poisoning at a relatively high temperature is performed.

本発明によれば、初めに比較的低温で解除可能な状態の硫黄(例えば貴金属に付着する硫黄)から解除し、その後、比較的高温でないと解除できない状態の硫黄(トラップ剤に付着する硫黄)を解除するので、初めから高温で被毒解除を行う場合に比べ、触媒が高温にさらされる時間が短くなる。また、一気に温度を上げる場合に比べ、温度が上がる時間が短くなるため、燃費悪化、マニホールド触媒の劣化を抑えることが可能となる。   According to the present invention, sulfur that can be released at a relatively low temperature (for example, sulfur adhering to a noble metal) is released first, and then sulfur that can only be released at a relatively high temperature (sulfur that adheres to a trapping agent). Therefore, the time during which the catalyst is exposed to high temperature is shorter than when the poisoning is released from the beginning at a high temperature. In addition, since the time during which the temperature is increased is shorter than when the temperature is increased all at once, it is possible to suppress deterioration of fuel consumption and deterioration of the manifold catalyst.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すエンジンのシステム図である。
エンジン(内燃機関)1の吸気通路2には吸入空気量を制御する電制スロットル弁3が設置され、エンジン1の燃焼室4には燃料噴射弁5と点火プラグ6とが設置されており、これらはエンジンコントロールユニット(以下ECUという)7により駆動される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an engine system diagram showing an embodiment of the present invention.
An electric throttle valve 3 for controlling the amount of intake air is installed in the intake passage 2 of the engine (internal combustion engine) 1, and a fuel injection valve 5 and a spark plug 6 are installed in the combustion chamber 4 of the engine 1, These are driven by an engine control unit (hereinafter referred to as ECU) 7.

ECU7には、吸気通路2の電制スロットル弁3上流に設けたエアフローメータ8により検出される吸入空気量Qaの他、アクセルペダルセンサ9により検出されるアクセル開度Apo、クランク角センサ10により検出されるエンジン回転数Ne、水温センサ11により検出されるエンジン冷却水温度Twなどが入力されている。
ECU7では、主にアクセル開度Apoに基づいて、エンジン1に必要な負荷(要求トルク)Lを算出する。そして、負荷L、エンジン回転数Ne、エンジン冷却水温度Tw等に基づいて、目標空燃比TFBYAを算出する。尚、ここでいう目標空燃比TFBYAは、空気過剰率λの逆数であり、理論空燃比(ストイキ)では1.0、リーン空燃比では1より小さな値をとる。そして、この目標空燃比TFBYAを実現すべく必要な空気量を得るために電制スロットル弁3を駆動する。すなわち、同一の負荷で考えた場合、目標空燃比がストイキよりもリーンであるほど、スロットル開度を大きくして吸気空気量Qaを増加させ、またストイキに近づくほど、スロットル開度を小さくして吸入空気量Qaを減少させる。
In addition to the intake air amount Qa detected by the air flow meter 8 provided upstream of the electric throttle valve 3 in the intake passage 2, the ECU 7 detects the accelerator opening Apo detected by the accelerator pedal sensor 9 and the crank angle sensor 10. The engine rotation speed Ne, the engine coolant temperature Tw detected by the water temperature sensor 11, and the like are input.
The ECU 7 calculates a load (required torque) L necessary for the engine 1 mainly based on the accelerator opening Apo. Then, the target air-fuel ratio TFBYA is calculated based on the load L, the engine speed Ne, the engine coolant temperature Tw, and the like. The target air-fuel ratio TFBYA here is the reciprocal of the excess air ratio λ, and takes a value smaller than 1.0 for the stoichiometric air-fuel ratio (stoichiometric) and 1 for the lean air-fuel ratio. Then, the electric throttle valve 3 is driven in order to obtain an air amount necessary to realize the target air-fuel ratio TFBYA. That is, in the case of the same load, the leaner the target air-fuel ratio is, the larger the throttle opening becomes, thereby increasing the intake air amount Qa, and the closer the stoichiometric, the smaller the throttle opening. Reduce intake air amount Qa.

また、実際の吸入空気量Qaとエンジン回転数Neとから、基本燃料噴射量Tp=K×Qa/Ne(Kは定数)を演算し、これに目標空燃比TFBYAを乗じることで、最終的な燃料噴射量Ti=Tp×TFBYA×COEF(COEFは各種補正係数)を演算する。そして、このTiに対応するパルス幅の燃料噴射パルス信号により燃料噴射弁5を駆動する。尚、点火プラグ6の点火時期は、エンジン回転数Ne及び負荷Lに基づいて制御する。   Further, the basic fuel injection amount Tp = K × Qa / Ne (K is a constant) is calculated from the actual intake air amount Qa and the engine speed Ne, and this is multiplied by the target air-fuel ratio TFBYA to obtain a final value. The fuel injection amount Ti = Tp × TFBYA × COEF (COEF is various correction coefficients) is calculated. The fuel injection valve 5 is driven by a fuel injection pulse signal having a pulse width corresponding to Ti. The ignition timing of the spark plug 6 is controlled based on the engine speed Ne and the load L.

エンジン1の排気通路12には、上流側にマニホールド触媒として三元触媒13が設けられ、下流側には床下触媒としてNOxトラップ触媒14が設けられている。下流側のNOxトラップ触媒14には、その触媒温度を検出する手段として、触媒温度センサ15が装着され、その信号はECU7に入力されている。尚、触媒温度は排気温度等から推定してもよい。   The exhaust passage 12 of the engine 1 is provided with a three-way catalyst 13 as a manifold catalyst on the upstream side, and a NOx trap catalyst 14 as an underfloor catalyst on the downstream side. The downstream NOx trap catalyst 14 is equipped with a catalyst temperature sensor 15 as means for detecting the catalyst temperature, and the signal is input to the ECU 7. The catalyst temperature may be estimated from the exhaust temperature or the like.

上流側の三元触媒13は、例えば、白金Pt、パラジウムPd、ロジウムRh等の貴金属を少なくとも1成分担持したアルミナをハニカム担体にコーティングしたものであり、排気空燃比がストイキの時にはHC,CO,NOxを同時に浄化し、排気空燃比がリーンの時にはHC,COを酸化反応で浄化する特性を有するものである。
下流側のNOxトラップ触媒14は、前記三元触媒の構成に、更にバリウムBaで代表されるアルカリ土類、セシウムCsで代表されるアルカリ金属から選ばれた少なくとも1つの成分(NOxトラップ剤)を添加したもので、上記三元触媒の特性に加えて、排気空燃比がリーンの条件で排気中のNOxをトラップし、ストイキ〜リッチの条件で排気中の還元成分(HC,CO)によりトラップしたNOxを放出すると同時に還元浄化する特性を有するものである。
The upstream three-way catalyst 13 is, for example, a honeycomb carrier coated with alumina supporting at least one component of a noble metal such as platinum Pt, palladium Pd, rhodium Rh, etc. When the exhaust air-fuel ratio is stoichiometric, HC, CO, It has the characteristic of simultaneously purifying NOx and purifying HC and CO by an oxidation reaction when the exhaust air-fuel ratio is lean.
The downstream NOx trap catalyst 14 further includes at least one component (NOx trapping agent) selected from an alkaline earth represented by barium Ba and an alkali metal represented by cesium Cs in the configuration of the three-way catalyst. In addition to the characteristics of the above three-way catalyst, NOx in the exhaust is trapped when the exhaust air-fuel ratio is lean, and trapped by reducing components (HC, CO) in the exhaust under stoichiometric to rich conditions It has the characteristic of reducing and purifying simultaneously with releasing NOx.

ところで、NOxトラップ触媒14では、NOxをトラップするのと同じ原理で、硫黄をSOxの形でトラップしてしまうことで、硫黄被毒を生じる。硫黄被毒を生じると、NOxトラップ能力が減少するので、適宜、硫黄の被毒解除を行うことが必要となる。硫黄の被毒解除のためには、排気を還元雰囲気(排気空燃比をストイキ〜リッチ)とした状態で、NOxトラップ触媒14の温度を上昇させる必要がある。   By the way, in the NOx trap catalyst 14, sulfur poisoning occurs by trapping sulfur in the form of SOx on the same principle as trapping NOx. When sulfur poisoning occurs, the NOx trapping capability decreases, so it is necessary to appropriately cancel sulfur poisoning. In order to release sulfur poisoning, it is necessary to raise the temperature of the NOx trap catalyst 14 in a state where the exhaust is in a reducing atmosphere (exhaust air-fuel ratio is stoichiometric to rich).

また、NOxトラップ触媒14に付着した硫黄には、その付着状態により、脱離しやすいものと、脱離しにくいものとがある。脱離しやすいのは、貴金属に付着した硫黄で、比較的低温(650〜700℃)で解除可能である。脱離しにくいのは、トラップ材に付着した硫黄で、比較的高温(750℃以上)でないと解除できない。
このような背景の元に、本発明では、図2及び図3のフローチャートにより、被毒解除の制御を行う。
Further, the sulfur adhering to the NOx trap catalyst 14 includes those that are easily desorbed and those that are not easily desorbed depending on the adhesion state. It is sulfur that adheres to the noble metal that is easily desorbed and can be released at a relatively low temperature (650 to 700 ° C.). The sulfur that is difficult to desorb is sulfur adhering to the trap material and cannot be released unless the temperature is relatively high (750 ° C. or higher).
Based on such a background, in the present invention, the poisoning release control is performed according to the flowcharts of FIGS. 2 and 3.

尚、以下のフローチャートの説明では、比較的低温で解除可能な状態の硫黄を「飛びやすい硫黄」といい、比較的高温でないと解除できない状態の硫黄を「飛びにくい硫黄」という。また、飛びやすい硫黄の被毒解除可能温度を「被毒解除温度1」といい、飛びにくい硫黄の被毒解除可能温度を「被毒解除温度2」という。被毒解除温度1<被毒解除温度2であり、被毒解除温度1は例えば650℃、被毒解除温度2は例えば750℃とする。また、飛びやすい硫黄の被毒量を「被毒量1」といい、飛びにくい硫黄の被毒量を「被毒量2」といい、別々に推定する。   In the following description of the flowchart, sulfur in a state that can be released at a relatively low temperature is referred to as “easy to fly”, and sulfur in a state that cannot be released at a relatively high temperature is referred to as “non-flying sulfur”. Further, the sulfur detoxification release temperature that is easy to fly is called “poisoning release temperature 1”, and the sulfur detoxification release temperature that is difficult to fly is called “poisoning release temperature 2”. It is assumed that the poisoning release temperature 1 <the poisoning release temperature 2, the poisoning release temperature 1 is, for example, 650 ° C., and the poisoning release temperature 2 is, for example, 750 ° C. Further, the sulfur poisoning amount that is easy to fly is referred to as “poisoning amount 1”, and the sulfur poisoning amount that is difficult to fly is referred to as “poisoning amount 2”, which is estimated separately.

図2は被毒量推定のフローチャートである。
S1では、空燃比がストイキ〜リッチであるか否かを判定し、YESの場合はS2へ進み、NOの場合はS4へ進む。
S2では、触媒温度が高温側の被毒解除温度2(例えば750℃)を超えているか否かを判定し、YESの場合はS11へ、NOの場合はS3へ進む。
FIG. 2 is a flowchart of poisoning amount estimation.
In S1, it is determined whether the air-fuel ratio is stoichiometric or rich. If YES, the process proceeds to S2, and if NO, the process proceeds to S4.
In S2, it is determined whether or not the catalyst temperature exceeds a high-temperature side poisoning release temperature 2 (for example, 750 ° C.). If YES, the process proceeds to S11, and if NO, the process proceeds to S3.

S3では、触媒温度が低温側の被毒解除温度1(例えば650℃)を超えているか否かを判定し、YESの場合はS8へ、NOの場合はS4へ進む。
従って、S1での判定で空燃比がリーンの場合、又は、S3での判定で触媒温度が低温側の被毒解除温度1より低い場合は、S4へ進むことになる。これらの場合は、被毒解除がなされず、被毒量が増加していく場合である。
In S3, it is determined whether or not the catalyst temperature exceeds the low temperature side poisoning release temperature 1 (for example, 650 ° C.). If YES, the process proceeds to S8, and if NO, the process proceeds to S4.
Therefore, if the air-fuel ratio is lean as determined in S1, or if the catalyst temperature is lower than the low-temperature poisoning release temperature 1 as determined in S3, the process proceeds to S4. In these cases, poisoning is not released and the amount of poisoning increases.

S4では、燃料噴射量Tiに所定の係数1を乗じて、飛びやすい硫黄の被毒増加量1を算出する。また、S5では、燃料噴射量Tiに所定の係数2を乗じて、飛びにくい硫黄の被毒増加量2を算出する。
次のS6では、飛びやすい硫黄の被毒量1を、その前回値(old) に、被毒増加量1を加算することで、算出する。また、S7では、飛びにくい硫黄の被毒量2を、その前回値(old) に、被毒増加量2を加算することで、算出する。
In S4, the fuel injection amount Ti is multiplied by a predetermined coefficient 1 to calculate a sulfur poisoning increase amount 1 that is easy to fly. In S5, the fuel injection amount Ti is multiplied by a predetermined coefficient 2 to calculate the sulfur poisoning increase amount 2 that is difficult to fly.
In the next S6, the sulfur poisoning amount 1 that is easy to fly is calculated by adding the poisoning increase amount 1 to the previous value (old). In S7, the poisoning amount 2 of sulfur which is difficult to fly is calculated by adding the poisoning increase amount 2 to the previous value (old).

すなわち、リーン、又は触媒温度<被毒解除温度1の場合は、被毒物質が蓄積していくため、加算していくが、被毒物質は燃料噴射量に比例して排出されて、燃焼排気ガスによって触媒に運ばれるため、燃料噴射量に係数を掛けた値で被毒量を加算していく。また、貴金属に付着する硫黄とトラップ剤に付着する硫黄とでは解除可能温度が異なるが、蓄積比率は一定であるため、飛びやすい硫黄の被毒増加量と飛びにくい硫黄の被毒増加量とは一定の比率としている(係数1:係数2=一定比率)。   That is, when lean or catalyst temperature <poisoning release temperature 1, since poisonous substances accumulate, they are added, but the poisonous substances are discharged in proportion to the fuel injection amount, and combustion exhaust Since the gas is carried to the catalyst, the poisoning amount is added by a value obtained by multiplying the fuel injection amount by a coefficient. In addition, although the releasable temperature differs between sulfur adhering to precious metals and sulfur adhering to the trapping agent, since the accumulation ratio is constant, there is an increase in the amount of sulfur poisoning that is easy to fly and the amount of sulfur poisoning that is difficult to fly The ratio is constant (coefficient 1: coefficient 2 = constant ratio).

S1での判定で空燃比がストイキ〜リッチであり、かつS2、S3での判定で触媒温度が高温側の被毒解除温度2を超えていないものの、低温側の被毒解除温度1を超えている場合は、S8へ進むことになる。この場合は、飛びやすい硫黄のみ、被毒解除がなされる場合である。
S8では、飛びやすい硫黄の被毒量1が一定値1以上か否かを判定し、YESの場合のみS9へ進む。
Although the air-fuel ratio is stoichiometric to rich in the determination in S1, and the catalyst temperature does not exceed the high-temperature side poisoning release temperature 2 in the determination in S2 and S3, it exceeds the low-temperature side poisoning release temperature 1. If so, the process proceeds to S8. In this case, only the sulfur that is easy to fly is detoxified.
In S8, it is determined whether or not the sulfur poisoning amount 1 which is easy to fly is equal to or greater than a fixed value 1, and the process proceeds to S9 only in the case of YES.

S9では、被毒量1の関数として、飛びにくい硫黄の低温での解除速度2を算出する。具体的には、図4の解除速度2の特性に基づき、被毒量1から、解除速度2を算出する。
尚、図4は被毒量と解除速度との関係を場合別に示したもので、「解除速度1」は、飛びにくい硫黄の高温での解除速度、「解除速度2」は飛びやすい硫黄の低温での解除速度、「解除速度3」は飛びやすい硫黄の高温での解除速度を示している。いずれも、被毒量が多いほど解除速度が大となるが、同一被毒量では、解除速度1<解除速度2<解除速度3の特性となる。
In S9, as a function of the poisoning amount 1, a release rate 2 at a low temperature of sulfur which is difficult to fly is calculated. Specifically, the release speed 2 is calculated from the poisoning amount 1 based on the characteristics of the release speed 2 in FIG.
FIG. 4 shows the relationship between the poisoning amount and the release speed for each case. “Release speed 1” is the release speed at high temperature of sulfur which is difficult to fly, and “Release speed 2” is low temperature of sulfur which is easy to fly. “Release speed 3” indicates the release speed at a high temperature of sulfur which is easy to fly. In any case, the release rate increases as the poisoning amount increases. However, with the same poisoning amount, the release speed 1 <release speed 2 <release speed 3 is obtained.

次のS10では、飛びやすい硫黄の被毒量1を、その前回値(old) から、単位時間当たりの被毒減少量である解除速度2を減算することで、更新する。
すなわち、ストイキ〜リッチで、被毒解除温度1<触媒温度<被毒解除温度2の場合は、飛びやすい硫黄のみ、被毒解除がなされるので、飛びやすい硫黄の被毒量1のみを減算していく。
In the next S10, the sulfur poisoning amount 1 which is easy to fly is updated by subtracting the release rate 2 which is the poisoning reduction amount per unit time from the previous value (old).
That is, when stoichiometric to rich and poisoning release temperature 1 <catalyst temperature <poisoning release temperature 2, only the sulfur that can easily fly is detoxified, so only the poisoning amount 1 of sulfur that can easily fly is subtracted. To go.

S1での判定で空燃比がストイキ〜リッチであり、かつS2での判定で触媒温度が高温側の被毒解除温度2を超えているときは、S11へ進むことになる。この場合は、飛びやすい硫黄と飛びにくい硫黄の被毒解除がなされる場合である。
S11では、飛びやすい硫黄の被毒量1が一定値1以上か否かを判定し、YESの場合はS12へ進む。
If the air-fuel ratio is stoichiometric to rich in the determination in S1 and the catalyst temperature exceeds the high-temperature poisoning release temperature 2 in the determination in S2, the process proceeds to S11. In this case, it is a case where the poisoning of sulfur which is easy to fly and sulfur which is difficult to fly is released.
In S11, it is determined whether or not the sulfur poisoning amount 1 that is easy to fly is equal to or greater than a predetermined value 1. If YES, the process proceeds to S12.

S12では、被毒量1の関数として、飛びやすい硫黄の高温での解除速度3を算出する。具体的には、図4の解除速度3の特性に基づき、被毒量1から、解除速度3を算出する。次のS13では、飛びやすい硫黄の被毒量1を、その前回値(old) から、単位時間当たりの被毒減少量である解除速度3を減算することで、更新する。
S11での判定で被毒量1が一定値1未満の場合は、S14へ進む。
In S12, as a function of the poisoning amount 1, a release speed 3 at a high temperature of sulfur which is easy to fly is calculated. Specifically, the release speed 3 is calculated from the poisoning amount 1 based on the characteristics of the release speed 3 in FIG. In the next S13, the sulfur poisoning amount 1 which is easy to fly is updated by subtracting the release rate 3 which is the poisoning reduction amount per unit time from the previous value (old).
If the poisoning amount 1 is less than the fixed value 1 in the determination in S11, the process proceeds to S14.

S14では、飛びにくい硫黄の被毒量2が一定値2以上か否かを判定し、YESの場合のみS15へ進む。
S15では、被毒量2の関数として、飛びにくい硫黄の高温での解除速度1を算出する。具体的には、図4の解除速度1の特性に基づき、被毒量2から、解除速度1を算出する。次のS16では、飛びにくい硫黄の被毒量2を、その前回値(old) から、単位時間当たりの被毒減少量である解除速度1を減算することで、更新する。
In S14, it is determined whether or not the sulfur poisoning amount 2 that is difficult to fly is equal to or greater than a predetermined value 2, and the process proceeds to S15 only in the case of YES.
In S15, as a function of the poisoning amount 2, a release speed 1 at a high temperature of sulfur that is difficult to fly is calculated. Specifically, the release speed 1 is calculated from the poisoning amount 2 based on the characteristics of the release speed 1 in FIG. In the next S16, the sulfur poisoning amount 2 which is difficult to fly is updated by subtracting the release speed 1 which is the poisoning reduction amount per unit time from the previous value (old).

次のS17では、飛びやすい硫黄の被毒量1が一定値3(<一定値1)以上か否かを判定し、YESの場合のみS18へ進む。
S18では、被毒量1の関数として、飛びやすい硫黄の高温での解除速度3を算出する。具体的には、図4の解除速度3の特性に基づき、被毒量1から、解除速度3を算出する。尚、ここで算出される解除速度3は、S12で算出されるものに比べ、被毒量1が減少していることから、小さくなる。次のS19では、飛びやすい硫黄の被毒量1を、その前回値(old) から、単位時間当たりの被毒減少量である解除速度3を減算することで、更新する。
In the next S17, it is determined whether or not the sulfur poisoning amount 1 which is easy to fly is equal to or greater than a certain value 3 (<constant value 1), and the process proceeds to S18 only in the case of YES.
In S18, as a function of the poisoning amount 1, a release speed 3 at a high temperature of sulfur which is easy to fly is calculated. Specifically, the release speed 3 is calculated from the poisoning amount 1 based on the characteristics of the release speed 3 in FIG. The release speed 3 calculated here is smaller than that calculated in S12 because the poisoning amount 1 is reduced. In the next S19, the sulfur poisoning amount 1 which is easy to fly is updated by subtracting the release speed 3 which is the poisoning reduction amount per unit time from the previous value (old).

すなわち、ストイキ〜リッチで、触媒温度>被毒解除温度2の場合は、飛びやすい硫黄の被毒量1が一定値1以上であれば、飛びやすい硫黄から先に解除されるため、被毒量1を減算していく(S12、S13)。被毒量1が一定値1未満となったときには、飛びやすい硫黄の被毒解除がほぼ終了して、飛びにくい硫黄が解除可能となるため、飛びにくい硫黄の被毒量2を減算していく(S15、S16)。また、このときは、少ないながら、飛びやすい硫黄も解除されるため、被毒量1が一定値3以上であれば、被毒量1も減算していく(S18、S19)。   That is, when stoichiometric to rich and the catalyst temperature is greater than the poisoning release temperature 2, if the sulfur poisoning amount 1 that is easy to fly is equal to or greater than a certain value 1, the sulfur that is easy to fly is released first. 1 is subtracted (S12, S13). When the poisoning amount 1 becomes less than a certain value 1, the sulfur poisoning release that is easy to fly is almost finished, and the sulfur that is difficult to fly can be released, so the sulfur poisoning amount 2 that is difficult to fly is subtracted. (S15, S16). At this time, sulfur which is easy to fly is also released, although it is small. If the poisoning amount 1 is 3 or more, the poisoning amount 1 is also subtracted (S18, S19).

図3は被毒解除時期判断を含む被毒解除制御のフローチャートである。
S21では、すでに被毒解除要求フラグが立っているか否かを判定する。被毒解除要求フラグ=1の場合は被毒解除のためS25へ進み、被毒解除要求フラグ=0の場合は被毒解除時期の判断のためS22へ進む。
S22では、被毒量推定のフローチャートにより推定している飛びやすい硫黄の被毒量1と飛びにくい硫黄の被毒量2との和(被毒量1+2)を算出し、被毒量1+2が予め設定した被毒解除必要量1を超えているか否かを判定する。
FIG. 3 is a flowchart of poisoning release control including poisoning release timing determination.
In S21, it is determined whether or not the poisoning cancellation request flag has already been set. If the poisoning release request flag = 1, the process proceeds to S25 for the removal of poisoning. If the poisoning release request flag = 0, the process proceeds to S22 for determining the poisoning release time.
In S22, the sum of the poisoning amount 1 of sulfur that is easy to fly and the poisoning amount 2 of sulfur that is difficult to fly (the poisoning amount 1 + 2) estimated by the flowchart of poisoning amount estimation is calculated. It is determined whether or not the set poisoning release requirement amount 1 is exceeded.

被毒量1+2>被毒解除必要量1の場合は、エミッションに影響を及ぼす可能性があるため、被毒解除時期と判断し、S24へ進んで、被毒解除要求フラグを立てた後、被毒解除のためS25へ進む。
被毒量1+2<被毒解除必要量1の場合は、S23へ進む。
S23では、飛びにくい硫黄の被毒量2が一定値(C22)以上で、かつ、被毒量1+2が前記被毒解除必要量1より小さく設定した被毒解除必要量2を超えているか否かを判定する。
If the amount of poisoning 1 + 2> the amount required for detoxification is 1, there is a possibility of affecting the emission. Therefore, it is determined that it is time to detoxify, proceed to S24, set the poisoning release request flag, Proceed to S25 to cancel the poison.
If the poisoning amount 1 + 2 <the poisoning cancellation necessary amount 1, the process proceeds to S23.
In S23, it is determined whether or not the sulfur poisoning amount 2 which is difficult to fly is equal to or greater than a predetermined value (C22), and the poisoning amount 1 + 2 exceeds the poisoning release required amount 2 set smaller than the poisoning release required amount 1 Determine.

被毒量2>一定値、かつ、被毒量1+2>被毒解除必要量2の場合は、被毒解除時期と判断し、S24へ進んで、被毒解除要求フラグを立てた後、被毒解除のためS25へ進む。飛びにくい硫黄の被毒量2が一定値より多い(比較的多い)場合は、被毒解除時期の判断のための被毒解除必要量を小側に変更(被毒解除必要量1→2)して、被毒解除の頻度を増すためである。   If the poisoning amount 2> the constant value and the poisoning amount 1 + 2> the required amount 2 of poisoning cancellation, it is determined that the poisoning cancellation time is reached, the process proceeds to S24, and the poisoning cancellation request flag is set, and then the poisoning is performed. Proceed to S25 for release. When the poisoning amount 2 of sulfur that is difficult to fly is larger than a certain value (relatively large), the required amount of detoxication for determining the detoxication timing is changed to the smaller side (the necessary amount of detoxication 1 → 2) This is to increase the frequency of release of poisoning.

これに対し、S21〜S23での判定で、全てNOの場合は、被毒解除時期ではないため、被毒解除は行わない。
S25では、低温被毒解除が可能な被毒解除1可能領域であるか否かを判定する。具体的には、図5を参照し、エンジン回転数Neと負荷(トルク)Lとから、境界線L1より高回転・高負荷側(高排気温度側)の領域か否かを判定する。それより低回転・低負荷側の領域(例えば低車速条件)では、点火時期を遅角しても、被毒解除温度1まで昇温させることが困難だからである。被毒解除1可能領域であればS26へ進み、そうでなければ被毒解除1可能領域に入るのを待つことになる。
On the other hand, if all of the determinations in S21 to S23 are NO, it is not the poisoning release timing, so the poisoning release is not performed.
In S25, it is determined whether or not it is a poisoning release 1 possible region where low temperature poisoning release is possible. Specifically, referring to FIG. 5, it is determined from the engine speed Ne and the load (torque) L whether or not the region is on the higher rotation / high load side (high exhaust temperature side) than the boundary line L1. This is because it is difficult to raise the temperature to the poisoning release temperature 1 even if the ignition timing is retarded in an area on the low rotation / low load side (for example, low vehicle speed conditions). If it is the poisoning release 1 possible area, the process proceeds to S26, and if not, it waits to enter the poisoning release 1 possible area.

S26では、飛びやすい硫黄の被毒量1が低温被毒解除の終了を判断するための一定値(C10)以下になっているか否かを判定し、NOの場合はS27へ、YESの場合はS28へ進む。すなわち、初めは飛びやすい硫黄の被毒解除を低温で行うため、被毒量1が一定値以下でない場合は、S27へ進む。
S27では、点火時期を遅角して、被毒解除を行うが、低温で被毒解除を行うため、目標触媒温度を650〜700℃に設定して予め作成した図6に示すようなマップを用い、エンジン回転数Neと負荷(トルク)Lとから、低温用遅角量を検索し、その遅角量の分、点火時期を遅角して、排気温度を上昇させる。尚、図6は、エンジン回転数Neと負荷(トルク)Lとをパラメータとして、ある目標触媒温度(目標排気温度)を得るための点火時期の遅角量の傾向を示したものである。
In S26, it is determined whether or not the sulfur poisoning amount 1 which is easy to fly is equal to or less than a predetermined value (C10) for judging the end of the low-temperature poisoning. If NO, go to S27. If YES, Proceed to S28. That is, since the sulfur poisoning release which is easy to fly is performed at a low temperature at first, if the poisoning amount 1 is not less than a certain value, the process proceeds to S27.
In S27, the ignition timing is retarded to cancel the poisoning. However, in order to cancel the poisoning at a low temperature, a map as shown in FIG. 6 prepared in advance by setting the target catalyst temperature to 650 to 700 ° C. is used. The low-temperature retard amount is searched from the engine speed Ne and the load (torque) L, the ignition timing is retarded by the retard amount, and the exhaust temperature is raised. FIG. 6 shows the tendency of the retard amount of the ignition timing for obtaining a certain target catalyst temperature (target exhaust temperature) using the engine speed Ne and the load (torque) L as parameters.

低温被毒解除により、飛びやすい硫黄の被毒量1が一定値以下となった場合は、S26からS28へ進む。低温被毒解除により、飛びやすい硫黄の被毒量1が一定値以下となった場合は、原則的には、高温被毒解除を行うが、本実施形態では、燃費悪化、触媒劣化への影響を少なくするために、n回に1回、高温被毒解除をキャンセル、又は、n回に1回、高温被毒解除を実行(n回にn−1回、高温被毒解除をキャンセル)する。尚、n≧2とする。   When the sulfur poisoning amount 1 that is easy to fly becomes equal to or less than a certain value due to the low temperature poisoning cancellation, the process proceeds from S26 to S28. When the amount of sulfur poisoning 1 that is easy to fly becomes a certain value or less due to the low temperature poisoning cancellation, the high temperature poisoning is canceled in principle. To reduce the high temperature poisoning cancellation once every n times, or once every n times, the high temperature poisoning cancellation is executed (n-1 times n times, high temperature poisoning cancellation canceled) . Note that n ≧ 2.

このため、S28では、n回に1回、高温被毒解除を実行するものとすると、連続キャンセル回数がn−1回に達しているか否かを判定し、YESの場合は高温被毒解除実行のためS29へ、NOの場合はキャンセルのためS33へ進む。
S29では、飛びにくい硫黄の被毒量2が一定値(C20)以上か否かを判定する。この一定値は、これ未満となった場合に、高温被毒解除の終了と判断するための値である。従って、YESの場合は高温被毒解除実行のためS30へ、NOの場合は高温被毒解除終了のためS33へ進む。
For this reason, in S28, if high temperature poisoning cancellation is to be executed once every n times, it is determined whether or not the number of consecutive cancellations has reached n-1 times. If YES, the high temperature poisoning cancellation is executed. Therefore, the process proceeds to S29. If NO, the process proceeds to S33 for cancellation.
In S29, it is determined whether or not the sulfur poisoning amount 2 that is difficult to fly is equal to or greater than a predetermined value (C20). This constant value is a value for determining the end of the high temperature poisoning cancellation when it becomes less than this. Accordingly, in the case of YES, the process proceeds to S30 for executing the high temperature poisoning cancellation, and in the case of NO, the process proceeds to S33 for completing the high temperature poisoning cancellation.

S30では、高温被毒解除が可能な被毒解除2可能領域であるか否かを判定する。具体的には、図5を参照し、エンジン回転数Neと負荷(トルク)Lとから、境界線L2より高回転・高負荷側(高排気温度側)の領域か否かを判定する。それより低回転・低負荷側の領域では、点火時期を遅角しても、被毒解除温度2まで昇温させることが困難だからである。尚、被毒解除2可能領域は被毒解除1可能領域を含む領域である。被毒解除2可能領域であればS31へ進み、そうでなければS32へ進む。   In S30, it is determined whether or not it is a poisoning release 2 possible region where high temperature poisoning release is possible. Specifically, referring to FIG. 5, it is determined from the engine speed Ne and the load (torque) L whether or not the region is on the higher rotation / high load side (high exhaust temperature side) than the boundary line L2. This is because it is difficult to raise the temperature to the poisoning release temperature 2 even if the ignition timing is retarded in the low rotation / low load region. The poisoning release 2 possible area is an area including the poisoning release 1 possible area. If it is the poisoning release 2 possible region, the process proceeds to S31, and if not, the process proceeds to S32.

S31では、点火時期を遅角して、被毒解除を行うが、高温で被毒解除を行うため、目標触媒温度を750℃以上に設定して予め作成した図6に示すようなマップを用い、エンジン回転数Neと負荷(トルク)Lとから、高温用遅角量を検索し、その遅角量の分、点火時期を遅角して、排気温度を上昇させる。尚、S27で用いるマップとS31で用いるマップは、傾向は同じであるが、目標触媒温度が異なるため、同一運転条件ではS27で用いるマップに比べS31で用いるマップの方が遅角量が大となる。   In S31, the ignition timing is retarded to cancel the poisoning. However, in order to cancel the poisoning at a high temperature, a map as shown in FIG. 6 prepared in advance by setting the target catalyst temperature to 750 ° C. or higher is used. From the engine speed Ne and the load (torque) L, the high-temperature retard amount is searched, the ignition timing is retarded by the retard amount, and the exhaust temperature is raised. The map used in S27 and the map used in S31 have the same tendency, but the target catalyst temperature is different. Therefore, the map used in S31 has a larger retardation amount than the map used in S27 under the same operating conditions. Become.

高温被毒解除により、飛びにくい硫黄の被毒量2が一定値以下となった場合は、S29からS33へ進み、被毒要求フラグ=0として、被毒解除を終了させる。
一方、S28での判定で連続キャンセル回数がn−1回に達しておらず、高温被毒解除のキャンセルのためにS33へ進んだ場合は、被毒解除要求フラグ=0として、高温被毒解除をキャンセルし、被毒解除を終了する。
If the sulfur poisoning amount 2 that is difficult to fly becomes equal to or less than a certain value due to the high temperature poisoning cancellation, the process proceeds from S29 to S33, where the poisoning request flag = 0 and the poisoning cancellation is terminated.
On the other hand, if the number of consecutive cancellations has not reached n-1 in the determination in S28 and the process proceeds to S33 for canceling the high temperature poisoning cancellation, the poisoning cancellation request flag = 0 is set and the high temperature poisoning cancellation is performed. To cancel the poisoning release.

また、S30での判定で被毒解除2可能領域でない場合は、S32へ進むが、S32では、飛びにくい硫黄の被毒量2が一定値(C21)以下で、かつ被毒解除2可能領域外での連続経過時間が一定時間以上となったか否かを判定する。ここでの被毒量2に対する一定値(C21)は、エミッションに影響を及ぼさなくなる値で、S29での一定値(C20)よりは大きな値に設定される。YESの場合は、S33へ進み、被毒解除要求フラグ=0として、高温被毒解除をキャンセルし、被毒解除を終了する。被毒解除2可能領域外での連続経過時間が長くなると、触媒温度が低下し、再度温度を上げるのに時間がかかってしまうので、被毒量2がエミッションに影響を及ぼさない値以下であることを条件として、被毒解除を終了する趣旨である。NOの場合は、被毒解除2可能領域に入るのを待つことになる。   If it is determined in S30 that the poisoning release 2 possible area is not reached, the process proceeds to S32. However, in S32, the sulfur poisoning amount 2 that is difficult to fly is equal to or less than a predetermined value (C21) and is outside the poisoning removal 2 possible area. It is determined whether or not the continuous elapsed time at has reached a certain time. The constant value (C21) for the poisoning amount 2 here is a value that does not affect the emission, and is set to a value larger than the constant value (C20) in S29. In the case of YES, it progresses to S33, sets poisoning cancellation | release request flag = 0, cancels high temperature poisoning cancellation | release, and completes poisoning cancellation | release. If the continuous elapsed time outside the poisoning release 2 possible area becomes longer, the catalyst temperature decreases, and it takes time to raise the temperature again. Therefore, the poisoning amount 2 is less than the value that does not affect the emission. This is to end the poisoning release on the condition. In the case of NO, it waits to enter the poisoning release 2 possible area.

図7は被毒解除時の温度上昇の概念図である。被毒解除時期と判断された時点(t1)で、最初は、触媒温度を低温側の被毒解除温度1(例えば650〜750℃)まで上昇させて、低温被毒解除を行い、飛びやすい硫黄を処理する。その後、飛びやすい硫黄がある程度処理された時点(t2)で、触媒温度を高温側の被毒解除温度2(750℃以上)まで更に上昇させて、高温被毒解除を行い、飛びにくい硫黄を処理する。これは、飛びにくい硫黄が処理される時点(t3)まで続く。   FIG. 7 is a conceptual diagram of the temperature rise when the poisoning is released. At the time point (t1) when it is determined that the poisoning release time is reached, first, the catalyst temperature is raised to the low-temperature side poisoning release temperature 1 (for example, 650 to 750 ° C.), and the low-temperature poisoning release is performed. Process. After that, when the easy-to-fly sulfur is treated to some extent (t2), the catalyst temperature is further raised to the high-temperature-side poisoning release temperature 2 (750 ° C. or higher) to release the high-temperature poisoning, and the sulfur that is difficult to fly is treated. To do. This continues until the point (t3) at which the hard-to-fly sulfur is treated.

図8は従来技術と本発明とを比較する図である。いずれも、排気通路の上流側にマニホールド触媒を有し、下流側にNOxトラップ触媒を有するものとして、マニホールド触媒についてはその入口側で温度(マニ触温度という)を計測し、NOxトラップ触媒についてはその出口側で温度(トラップ温度という)を計測した。
図8(A)は従来技術の場合で、一気に高温被毒解除を行う場合である。この場合、トラップ温度は、トラップ通常時温度から、高温解除時トラップ温度へ上昇する。マニ触温度は、トラップ通常時温度より高いマニ触通常時温度から、高温解除時トラップ温度より高い高温解除時マニ触温度へ上昇する。
FIG. 8 is a diagram comparing the prior art and the present invention. In any case, the manifold catalyst is provided upstream of the exhaust passage and the NOx trap catalyst is provided downstream. As for the manifold catalyst, the temperature (referred to as the manifold contact temperature) is measured at the inlet side. The temperature (called trap temperature) was measured at the outlet side.
FIG. 8A shows the case of the prior art, in which high temperature poisoning is released at once. In this case, the trap temperature rises from the trap normal temperature to the trap temperature when the high temperature is released. The manifold contact temperature rises from the manifold contact normal temperature higher than the trap normal temperature to the high temperature release manifold contact temperature higher than the high temperature release trap temperature.

図8(B)は本発明の場合で、低温被毒解除に続いて、高温被毒解除を行う場合である。この場合、トラップ温度は、低温解除時トラップ温度から、高温解除時トラップ温度へ上昇する。マニ触温度は、低温解除時トラップ温度より高い低温解除時マニ触温度から、高温解除時トラップ温度より高い高温解除時マニ触温度へ上昇する。
両者を比較して言えることは、図8(A)中のaに示されるように、トラップ温度が低温解除時トラップ温度の時に、マニ触温度が本発明に比べて高いことから、マニ触温度が高温解除時マニ触温度に達するのが早くなり、マニ触温度が高温解除時マニ触温度に達してから、トラップ温度が高温解除時トラップ温度に達するまでの、待ち時間が長くなることである。
FIG. 8B shows the case of the present invention, in which the high temperature poisoning release is performed following the low temperature poisoning release. In this case, the trap temperature rises from the trap temperature when the low temperature is released to the trap temperature when the high temperature is released. The manifold contact temperature rises from the low temperature release manifold contact temperature higher than the low temperature release trap temperature to the high temperature release release manifold contact temperature higher than the high temperature release trap temperature.
What can be said by comparing the two is that, as indicated by a in FIG. 8A, when the trap temperature is the trap temperature at low temperature release, the manifold contact temperature is higher than that of the present invention. Will reach the manifold contact temperature when the high temperature is released, and the waiting time from when the manifold contact temperature reaches the manifold contact temperature when the high temperature is released until the trap temperature reaches the trap temperature when the high temperature is released is increased. .

また、図8(B)中のbに示されるように、本発明では、低温解除中に上流部が既に昇温しているためトラップ温度上昇が早い(従来技術に比べて傾きが大きい)ことから、トラップ温度が高温解除時トラップ温度に達するのが早くなり、マニ触温度が高温解除時マニ触温度に達してから、トラップ温度が高温解除時トラップ温度に達するまでの、待ち時間も短くなることである。   In addition, as indicated by b in FIG. 8B, in the present invention, the temperature of the upstream portion has already increased during the release of the low temperature, so the trap temperature rises quickly (the inclination is larger than that of the prior art). Therefore, the trap temperature reaches the trap temperature when the high temperature is released faster, and the waiting time until the trap temperature reaches the trap temperature when the high temperature is released after the manifold contact temperature reaches the manifold temperature when the high temperature is released is shortened. That is.

従って、本実施形態によれば、被毒解除時の温度上昇を2段階として、初めに比較的低温で被毒解除を行う低温被毒解除(S27)と、比較的低温で解除可能な状態の硫黄が除去された時点で、更に温度上昇させて、比較的高温で被毒解除を行う高温被毒解除(S31)と、を行うことにより、初めから高温被毒解除を行う場合に比べ、触媒(NOxトラップ触媒)が高温に達する時間が早くなり、かつ高温にさらされる時間が短くなるため、燃費の悪化や、触媒(特に上流側のマニホールド触媒)の劣化を抑制可能となる。   Therefore, according to the present embodiment, the temperature rise at the time of the release of poisoning is divided into two stages, the low temperature poisoning release (S27) in which the poisoning release is first performed at a relatively low temperature, and the state in which the release can be performed at a relatively low temperature. When the sulfur is removed, the temperature is further increased, and the high temperature poisoning release (S31) for releasing the poisoning at a relatively high temperature is performed. Since the time required for the (NOx trap catalyst) to reach a high temperature is shortened and the time during which the (NOx trap catalyst) is exposed to the high temperature is shortened, deterioration of fuel consumption and deterioration of the catalyst (particularly, the upstream manifold catalyst) can be suppressed.

また、本実施形態によれば、比較的低温で解除可能な状態の硫黄の被毒量である第1被毒量(被毒量1)と、比較的高温でないと解除できない状態の硫黄の被毒量である第2被毒量(被毒量2)とを別々に推定し、被毒解除時期の判断は、前記第1被毒量と前記第2被毒量とに基づいて行うことにより、被毒解除時期を的確に判断できる。
また、本実施形態によれば、被毒量の推定に際し、被毒解除時以外は、運転条件(燃料噴射量Ti)に応じた被毒増加量を加算し、被毒解除時は、触媒温度(及び被毒量)に応じた被毒減少量(解除速度)を減算して、第1及び第2被毒量を算出することにより、被毒量を正確に推定できる。
Further, according to the present embodiment, the first poisoning amount (the poisoning amount 1), which is the sulfur poisoning amount that can be released at a relatively low temperature, and the sulfur poisoning state that can only be released at a relatively high temperature. A second poisoning amount (a poisoning amount 2) that is a poisoning amount is estimated separately, and the determination of the poisoning release time is performed based on the first poisoning amount and the second poisoning amount. Therefore, it is possible to accurately determine the poisoning release time.
In addition, according to the present embodiment, when the poisoning amount is estimated, the poisoning increase amount corresponding to the operating condition (fuel injection amount Ti) is added except when the poisoning is released, and when the poisoning is released, the catalyst temperature is increased. The poisoning amount can be accurately estimated by subtracting the poisoning reduction amount (release speed) corresponding to (and the poisoning amount) and calculating the first and second poisoning amounts.

また、本実施形態によれば、前記第1被毒量算出のための被毒増加量と、前記第2被毒量算出のための被毒増加量とを、蓄積比率は一定との考えに基づいて、一定の比率(係数1:係数2)とすることにより、比較的簡単かつ正確に各被毒量を推定できる。
また、本実施形態によれば、前記第1被毒量算出のための被毒減少量(解除速度)と、前記第2被毒量算出のための被毒減少量(解除速度)とを、触媒温度に対し異なる特性で算出することにより、飛びやすい硫黄と飛びにくい硫黄の特性を考慮して、各被毒量を正確に推定できる。
According to the present embodiment, the increase in poisoning for calculating the first poisoning amount and the increase in poisoning for calculating the second poisoning amount are considered to have a constant accumulation ratio. Based on this, by setting a certain ratio (coefficient 1: coefficient 2), it is possible to estimate each poisoning amount relatively easily and accurately.
Further, according to the present embodiment, the poisoning reduction amount (release speed) for calculating the first poisoning amount and the poisoning reduction amount (release speed) for calculating the second poisoning amount, By calculating with different characteristics with respect to the catalyst temperature, it is possible to accurately estimate each poisoning amount in consideration of the characteristics of sulfur that is likely to fly and sulfur that is difficult to fly.

また、本実施形態によれば、被毒解除時期の判断は、前記第1被毒量と前記第2被毒量との和(被毒量1+2)に基づいて行い、その和が所定の被毒解除必要量(被毒解除必要量1)より大きいときに、被毒解除時期と判断することにより(S22)、被毒解除時期を的確に判断することができる。
また、本実施形態によれば、前記第2被毒量(被毒量2)が一定値より多い場合は、被毒解除時期の判断のための前記被毒解除必要量を小側に変更する(被毒解除必要量1→2)ことにより(S23)、飛びにくい硫黄が多い場合には、解除の機会を多くでき、飛びいにくい硫黄の解除がより容易になる。
Further, according to the present embodiment, the determination of the poisoning release time is performed based on the sum of the first poisoning amount and the second poisoning amount (the poisoning amount 1 + 2), and the sum is a predetermined amount of poisoning. By determining that it is the poisoning release time when it is larger than the poison removal requirement amount (poisoning removal requirement amount 1) (S22), the poisoning release time can be accurately determined.
Further, according to the present embodiment, when the second poisoning amount (poisoning amount 2) is larger than a certain value, the poisoning release required amount for determining the poisoning release timing is changed to a smaller side. (Detoxication required amount 1 → 2) (S23) When there is a lot of sulfur that is difficult to fly, the chance of release can be increased, and the release of sulfur that is difficult to fly becomes easier.

また、本実施形態によれば、運転条件(エンジン回転数、負荷、更には車速などに関連するパラメータ)が予め定めた条件より低排気温度側のときは、高温被毒解除をキャンセルすることにより(S30)、排気温度上昇のための制御量(点火時期の遅角量)が大きくなり過ぎることによる燃費の大幅な悪化を防止できる。
また、本実施形態によれば、高温被毒解除を、低温被毒解除に対し、所定の割合で、キャンセルすることにより(S28)、高温被毒解除の頻度を少なくして、燃費悪化、マニホールド触媒の劣化を抑えることが可能となる。
Further, according to the present embodiment, when the operating conditions (parameters related to the engine speed, load, and further the vehicle speed) are lower than the predetermined conditions, the high temperature poisoning cancellation is canceled. (S30) It is possible to prevent a significant deterioration in fuel consumption due to an excessive increase in the control amount (ignition timing retardation amount) for increasing the exhaust gas temperature.
Further, according to the present embodiment, by canceling the high temperature poisoning cancellation at a predetermined rate with respect to the low temperature poisoning cancellation (S28), the frequency of the high temperature poisoning cancellation is reduced, the fuel consumption is deteriorated, the manifold It becomes possible to suppress deterioration of the catalyst.

また、本実施形態によれば、低温被毒解除及び高温被毒解除は、点火時期の遅角により行い、遅角量を異ならせることで、簡単に実施できる。但し、膨張行程ないし排気行程にてポスト噴射を行い、そのポスト噴射量を制御するなどしてもよい。   Further, according to the present embodiment, the low temperature poisoning release and the high temperature poisoning release can be easily performed by performing retarding of the ignition timing and varying the retard amount. However, post injection may be performed in the expansion stroke or exhaust stroke, and the post injection amount may be controlled.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 被毒量推定のフローチャートFlow chart of poisoning amount estimation 被毒解除時期判断を含む被毒解除制御のフローチャートFlow chart of poisoning release control including poisoning release time judgment 被毒量と被毒解除速度との関係を示す図The figure which shows the relationship between poisoning quantity and poisoning release speed 被毒解除可能領域を示す図Diagram showing poisonable release possible area 遅角量算出用マップを示す図Diagram showing retard amount calculation map 被毒解除時の温度上昇の概念図Conceptual diagram of temperature rise at the time of release of poisoning 従来技術と本発明とを比較する図Diagram comparing the prior art and the present invention

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 電制スロットル弁
4 燃焼室
5 燃料噴射弁
6 点火プラグ
7 ECU
12 排気通路
13 三元触媒(マニホールド触媒)
14 NOxトラップ触媒
15 触媒温度センサ
1 engine
2 Intake passage
3 Electric throttle valve
4 Combustion chamber
5 Fuel injection valve
6 Spark plug
7 ECU
12 Exhaust passage
13 Three-way catalyst (manifold catalyst)
14 NOx trap catalyst
15 Catalyst temperature sensor

Claims (10)

排気通路にNOxトラップ機能を有する排気浄化触媒を備え、該触媒に付着した硫黄の被毒解除時期を判断し、被毒解除時期と判断したときに排気温度を上昇させて被毒解除を行うエンジンの排気浄化装置において、
被毒解除時の温度上昇を2段階として、初めに比較的低温で被毒解除を行う低温被毒解除と、比較的低温で解除可能な状態の硫黄が除去された時点で、更に温度上昇させて、比較的高温で被毒解除を行う高温被毒解除と、を行うことを特徴とするエンジンの排気浄化装置。
An engine having an exhaust gas purification catalyst having a NOx trap function in an exhaust passage, determining the timing of detoxication of sulfur adhering to the catalyst, and increasing the exhaust temperature when it is determined to be the detoxication timing, thereby detoxicating the engine In the exhaust purification device of
The temperature rise at the time of release of poisoning is divided into two stages. At first, when the release of low-temperature poisoning that removes poisoning at a relatively low temperature and when sulfur that can be released at a relatively low temperature is removed, the temperature is further raised. An exhaust purification device for an engine, characterized in that the high temperature poisoning release for releasing the poisoning at a relatively high temperature is performed.
比較的低温で解除可能な状態の硫黄の被毒量である第1被毒量と、比較的高温でないと解除できない状態の硫黄の被毒量である第2被毒量とを別々に推定する被毒量推定手段を有し、
被毒解除時期の判断は、前記第1被毒量と前記第2被毒量とに基づいて行うことを特徴とする請求項1記載のエンジンの排気浄化装置。
A first poisoning amount that is a sulfur poisoning amount that can be released at a relatively low temperature and a second poisoning amount that is a sulfur poisoning amount that can be released only at a relatively high temperature are separately estimated. Having poisoning amount estimation means,
The engine exhaust gas purification apparatus according to claim 1, wherein the determination of the poisoning release timing is performed based on the first poisoning amount and the second poisoning amount.
前記被毒量推定手段は、被毒解除時以外は、運転条件に応じた被毒増加量を加算し、被毒解除時は、触媒温度に応じた被毒減少量を減算して、第1及び第2被毒量を算出することを特徴とする請求項2記載のエンジンの排気浄化装置。   The poisoning amount estimation means adds the poisoning increase amount according to the operating conditions except when the poisoning is released, and subtracts the poisoning reduction amount according to the catalyst temperature when the poisoning is released. 3. The engine exhaust gas purification apparatus according to claim 2, wherein the second poisoning amount is calculated. 前記被毒量推定手段は、前記第1被毒量算出のための被毒増加量と、前記第2被毒量算出のための被毒増加量とを、一定の比率とすることを特徴とする請求項3記載のエンジンの排気浄化装置。   The poisoning amount estimation means sets the poisoning increase amount for calculating the first poisoning amount and the poisoning increase amount for calculating the second poisoning amount at a constant ratio. The exhaust emission control device for an engine according to claim 3. 前記被毒量推定手段は、前記第1被毒量算出のための被毒減少量と、前記第2被毒量算出のための被毒減少量とを、触媒温度に対し異なる特性で算出することを特徴とする請求項3又は請求項4記載のエンジンの排気浄化装置。   The poisoning amount estimation means calculates a poisoning reduction amount for calculating the first poisoning amount and a poisoning reduction amount for calculating the second poisoning amount with different characteristics with respect to the catalyst temperature. The exhaust emission control device for an engine according to claim 3 or 4, 被毒解除時期の判断は、前記第1被毒量と前記第2被毒量との和に基づいて行い、その和が所定の被毒解除必要量より大きいときに、被毒解除時期と判断することを特徴とする請求項2〜請求項5のいずれか1つに記載のエンジンの排気浄化装置。   The determination of the poisoning release time is performed based on the sum of the first poisoning amount and the second poisoning amount, and when the sum is larger than a predetermined required amount of poisoning removal, it is determined that the poisoning release time is reached. The engine exhaust gas purification apparatus according to any one of claims 2 to 5, wherein: 前記第2被毒量が一定値より多い場合は、被毒解除時期の判断のための前記被毒解除必要量を小側に変更することを特徴とする請求項6記載のエンジンの排気浄化装置。   7. The engine exhaust gas purification apparatus according to claim 6, wherein when the second poisoning amount is larger than a predetermined value, the poisoning cancellation required amount for determining the poisoning cancellation timing is changed to a smaller side. . 前記高温被毒解除は、運転条件が予め定めた条件より低排気温度側のときは、キャンセルすることを特徴とする請求項1〜請求項7のいずれか1つに記載のエンジンの排気浄化装置。   The engine exhaust gas purification apparatus according to any one of claims 1 to 7, wherein the high-temperature poisoning cancellation is canceled when an operating condition is on a lower exhaust temperature side than a predetermined condition. . 前記高温被毒解除は、前記低温被毒解除に対し、所定の割合で、キャンセルすることを特徴とする請求項1〜請求項8のいずれか1つに記載のエンジンの排気浄化装置。   The engine exhaust purification device according to any one of claims 1 to 8, wherein the high temperature poisoning cancellation is canceled at a predetermined rate with respect to the low temperature poisoning cancellation. 前記低温被毒解除及び高温被毒解除は、点火時期の遅角により行い、遅角量を異ならせることを特徴とする請求項1〜請求項9のいずれか1つに記載のエンジンの排気浄化装置。   The engine exhaust gas purification according to any one of claims 1 to 9, wherein the low temperature poisoning release and the high temperature poisoning release are performed by retarding the ignition timing, and varying the retard amount. apparatus.
JP2003291992A 2003-08-12 2003-08-12 Engine exhaust control device Pending JP2005061313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291992A JP2005061313A (en) 2003-08-12 2003-08-12 Engine exhaust control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291992A JP2005061313A (en) 2003-08-12 2003-08-12 Engine exhaust control device

Publications (1)

Publication Number Publication Date
JP2005061313A true JP2005061313A (en) 2005-03-10

Family

ID=34369483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291992A Pending JP2005061313A (en) 2003-08-12 2003-08-12 Engine exhaust control device

Country Status (1)

Country Link
JP (1) JP2005061313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184681A (en) * 2014-03-25 2015-10-22 奇美實業股▲分▼有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184681A (en) * 2014-03-25 2015-10-22 奇美實業股▲分▼有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Similar Documents

Publication Publication Date Title
JP4962348B2 (en) Exhaust purification device and purification method for internal combustion engine
JP4253294B2 (en) Engine self-diagnosis device
JP6278039B2 (en) Degradation diagnosis device for selective catalytic reduction catalyst
JP2005048691A (en) Regeneration control device for exhaust filter
JP3618598B2 (en) Exhaust gas purification device for internal combustion engine
JP2004116332A (en) Exhaust emission control device of internal combustion engine
JP4061995B2 (en) Exhaust gas purification device for internal combustion engine
JP6248978B2 (en) Control device for internal combustion engine
US6792749B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2000034946A (en) Exhaust emission control device for internal combustion engine
JP2003328739A (en) Exhaust emission control device of internal-combustion engine
JP3528698B2 (en) Fuel sulfur concentration estimation device
JP3632614B2 (en) Exhaust gas purification device for internal combustion engine
JP3726705B2 (en) Exhaust gas purification device for internal combustion engine
JP2005061313A (en) Engine exhaust control device
JP2940378B2 (en) Fuel supply control device for internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JPWO2003023202A1 (en) Deterioration state evaluation device of exhaust gas purification device
JP3596450B2 (en) Exhaust gas purification device for internal combustion engine
JP4103456B2 (en) Exhaust gas purification device for internal combustion engine
JP2004132230A (en) Exhaust emission control device for internal combustion engine
KR101551015B1 (en) CONTROL-METHOD FOR NOx STRAGE CATALYST
EP2354504B1 (en) Exhaust emission control device for internal combustion engine
JP2001020799A (en) Catalyst temperature estimation system
JP3731404B2 (en) Engine exhaust purification system