JP2005058952A - Nitrogen removing apparatus - Google Patents

Nitrogen removing apparatus Download PDF

Info

Publication number
JP2005058952A
JP2005058952A JP2003294821A JP2003294821A JP2005058952A JP 2005058952 A JP2005058952 A JP 2005058952A JP 2003294821 A JP2003294821 A JP 2003294821A JP 2003294821 A JP2003294821 A JP 2003294821A JP 2005058952 A JP2005058952 A JP 2005058952A
Authority
JP
Japan
Prior art keywords
cloth
nitrogen
ammonia nitrogen
biofilm
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003294821A
Other languages
Japanese (ja)
Inventor
Yuichi Arito
裕一 有戸
Kazutaka Takami
和孝 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2003294821A priority Critical patent/JP2005058952A/en
Publication of JP2005058952A publication Critical patent/JP2005058952A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ammonia nitrogen removing system effective for purifying organic polluted water or ammonia nitrogen polluted water such as wastewater. <P>SOLUTION: This nitrogen removing apparatus is used for nitrifying and denitrifying ammonia nitrogen in an ammonia nitrogen-containing liquid through a biological membrane to remove the same and constituted of cloth fixed with a biological membrane containing nitrifying bacteria and denitrifying bacteria fixed to one side thereof, a means for supplying the ammonia nitrogen-containing liquid to one side of the cloth and a means for supplying oxygen-containing air to the other surface thereof. The shape of the cloth is preferably a cylindrical or bag-like shape and the thickness of the cloth is preferably 0.05-3 mm while the maximum pore size thereof is 0.3-100 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排水等の有機性汚染水あるいはアンモニア態窒素汚染水等の浄化に有効な、単一槽型硝化脱窒装置による水中のアンモニア態窒素の除去方法及び除去装置に関する。   The present invention relates to a method and apparatus for removing ammonia nitrogen in water by a single tank type nitrification denitrification apparatus, which is effective for purifying organic polluted water such as waste water or ammonia nitrogen polluted water.

水環境の富栄養化などの環境問題が指摘されている中、その原因である窒素等を含む排水処理技術の重要度が増している。その中でも微生物を用いた生物学的窒素除去技術は、低エネルギー消費型で環境適合性の高い技術として注目されている(非特許文献1)。   While environmental problems such as eutrophication of the water environment have been pointed out, the importance of wastewater treatment technology including nitrogen and the like is increasing. Among them, biological nitrogen removal technology using microorganisms is attracting attention as a low energy consumption type and high environmental compatibility technology (Non-Patent Document 1).

排水中の窒素の多くは有機態窒素やアンモニア態窒素であり、有機態窒素はその有機物が加水分解される過程においてアンモニア態窒素となる。従って、窒素除去とは結局、アンモニア態窒素除去のことになる。   Most of the nitrogen in the wastewater is organic nitrogen or ammonia nitrogen, and the organic nitrogen becomes ammonia nitrogen in the process of hydrolysis of the organic matter. Therefore, nitrogen removal eventually means ammonia nitrogen removal.

微生物を用いた生物学的な窒素除去は、アンモニアを硝酸や亜硝酸に酸化する硝化過程と、硝酸や亜硝酸を窒素ガスに還元する脱窒過程の2つの過程から成る。硝化過程は好気性菌である硝化菌により行われ、脱窒過程は嫌気性菌である脱窒菌により行われる。   Biological nitrogen removal using microorganisms consists of two processes: a nitrification process that oxidizes ammonia to nitric acid and nitrous acid, and a denitrification process that reduces nitric acid and nitrous acid to nitrogen gas. The nitrification process is performed by a nitrifying bacterium that is an aerobic bacterium, and the denitrification process is performed by a denitrifying bacterium that is an anaerobic bacterium.

好気性菌は、酸素濃度が高い雰囲気で活性化し、逆に嫌気性菌は酸素濃度が低い雰囲気で活性化する。そのため、通常これら2つの過程がそれぞれ別々の反応槽で行われてきた(特許文献1、特許文献2)。しかしながら、この方式は、各反応槽でのpH調整が必要であり、設置面積が大きくなるという欠点があった。   Aerobic bacteria are activated in an atmosphere with a high oxygen concentration, whereas anaerobic bacteria are activated in an atmosphere with a low oxygen concentration. For this reason, these two processes have usually been carried out in separate reaction vessels (Patent Documents 1 and 2). However, this method has a drawback that pH adjustment is required in each reaction tank, and the installation area becomes large.

また、硝化と脱窒を同一槽内で行なう試みも成されてきた(特許文献3)。しかしながら、この方式は槽内を流動させるため動力が大きくなり、また嫌気部と好気部の分離が必ずしも充分でないため、菌の増殖が抑制されるなどの問題があった。   Attempts have also been made to perform nitrification and denitrification in the same tank (Patent Document 3). However, this method has a problem that the power is increased because it flows in the tank, and the anaerobic part and the aerobic part are not always sufficiently separated, so that the growth of bacteria is suppressed.

ところが、近年日比谷らにより中空糸膜表面に形成させた微生物膜内部の環境を好気部と嫌気部に調整し、中空糸膜表面で硝化と脱窒を同時に行う方法が報告された(非特許文献2)。この方法は、大きな動力を必要とせず、槽内のpH調整の必要も無い単一槽型窒素除去システムである。しかしながら、この方法は、中空糸膜を用い、更に中空糸膜をグラフト反応によりカチオン化するため、装置が高価になる事が懸念される。   However, in recent years, Hibiya et al. Reported a method of adjusting the environment inside the microbial membrane formed on the surface of the hollow fiber membrane to an aerobic part and an anaerobic part, and simultaneously performing nitrification and denitrification on the surface of the hollow fiber membrane (non-patent) Reference 2). This method is a single tank type nitrogen removal system that does not require large power and does not require pH adjustment in the tank. However, since this method uses a hollow fiber membrane and further cationizes the hollow fiber membrane by a graft reaction, there is a concern that the apparatus becomes expensive.

特許第3209342号公報Japanese Patent No. 3209342 特許第3252888号公報Japanese Patent No. 3252888 特開昭62−61699号公報Japanese Patent Laid-Open No. 62-61699 平田ら、Wat.Sci.Tech.34,339-346(1996)Hirata et al., Wat. Sci. Tech. 34, 339-346 (1996) 日比谷ら、Journal of Biotechnology,100,23-32(2003)Hibiya et al., Journal of Biotechnology, 100, 23-32 (2003)

本発明は、排水等の有機性汚染水あるいはアンモニア態窒素汚染水等の浄化に有効な、単一槽型硝化脱窒装置による水中のアンモニア態窒素の除去方法及び装置を提供することを目的とする。   It is an object of the present invention to provide a method and apparatus for removing ammonia nitrogen in water by a single tank type nitrification denitrification apparatus, which is effective for purification of organic polluted water such as waste water or ammonia nitrogen polluted water. To do.

本発明者らは、上記の課題を解決するためにグラフト中空糸膜に代わる手段を鋭意検討を重ねた結果、下記の(1)から(4)の構成を有する窒素除去方法及び窒素除去装置の発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied means to replace the graft hollow fiber membrane, and as a result, the nitrogen removal method and the nitrogen removal apparatus having the following configurations (1) to (4): The invention has been completed.

(1)一方の表面に硝化菌および脱窒菌を含む生物膜が固定された布と、該布の該一方の表面にアンモニア性窒素含有液を供給する手段と、該布の他方の表面に酸素を含む気体を供給する手段とを少なくとも備えてなる、該アンモニア性窒素含有液中のアンモニア性窒素を該生物膜中で硝化および脱窒して除去するための窒素除去装置。
(2)布の目の最大孔径が100μm以下0.3μm以上、布厚みが0.05mm以上3mm以下であることを特徴とする、上記(1)に記載の窒素除去装置。
(3)布が内径0.1mm以上10mm以下の円筒状であることを特徴とする、上記(1)又は(2)に記載の窒素除去装置。
(4)一方の表面に硝化菌および脱窒菌を含む生物膜が固定された布を用い、該布の該一方の表面にアンモニア性窒素含有液を供給し、該布の他方の表面に酸素を含む気体を供給して、該アンモニア性窒素含有液中のアンモニア成分を該生物膜中で硝化および脱窒して除去することを特徴とする窒素除去方法。
(1) A cloth in which a biofilm containing nitrifying bacteria and denitrifying bacteria is fixed on one surface, means for supplying an ammoniacal nitrogen-containing liquid to the one surface of the cloth, and oxygen on the other surface of the cloth A nitrogen removing apparatus for removing ammonia nitrogen in the ammonia nitrogen-containing liquid by nitrification and denitrification in the biofilm.
(2) The nitrogen removing apparatus according to (1) above, wherein the maximum pore diameter of the fabric is 100 μm or less and 0.3 μm or more, and the fabric thickness is 0.05 mm or more and 3 mm or less.
(3) The nitrogen removing apparatus according to (1) or (2) above, wherein the cloth has a cylindrical shape with an inner diameter of 0.1 mm or more and 10 mm or less.
(4) Using a cloth in which a biofilm containing nitrifying bacteria and denitrifying bacteria is fixed on one surface, supplying an ammoniacal nitrogen-containing liquid to the one surface of the cloth, and supplying oxygen to the other surface of the cloth A method for removing nitrogen, comprising supplying a gas containing the ammonia component and removing the ammonia component in the ammoniacal nitrogen-containing liquid by nitrification and denitrification in the biofilm.

本発明によれば、簡便で安価な装置を用いて排水中の有機態窒素及びアンモニア体窒素を効率良く除去することができる。   According to the present invention, organic nitrogen and ammonia nitrogen can be efficiently removed from wastewater using a simple and inexpensive apparatus.

以下、本発明について詳細に記述する。
本発明においては、一方の表面上に硝化菌および脱窒菌を含む生物膜が固定された布を硝化および脱窒の反応場として用いる。アンモニア成分を含む液(以下、「原水」ともいう。)は布の生物膜が固定されている片面側に供給され、布を挟んで反対側には酸素を含む気体が供給され、満たされている。
本発明における布とは、糸又は繊維状の物の集合体を意味し、織物、編物、不織布、組みひも等が含まれる。
The present invention will be described in detail below.
In the present invention, a cloth in which a biofilm containing nitrifying bacteria and denitrifying bacteria is fixed on one surface is used as a reaction field for nitrification and denitrification. A liquid containing an ammonia component (hereinafter also referred to as “raw water”) is supplied to one side of the cloth where the biofilm is fixed, and a gas containing oxygen is supplied and filled on the opposite side of the cloth. Yes.
The cloth in the present invention means an aggregate of yarns or fibrous objects, and includes woven fabrics, knitted fabrics, non-woven fabrics, braids and the like.

布の表面上への硝化菌および脱窒菌を含む生物膜の作製は、例えば、円筒状の組みひもの内表面側に酸素を含む気体を供給して満たし、外表面側には種汚泥を加えたアンモニア成分を含む液を接触させることにより、微生物の増殖に伴って自然に形成させることができる。   The production of biofilms containing nitrifying bacteria and denitrifying bacteria on the surface of the cloth is filled, for example, by supplying a gas containing oxygen to the inner surface side of the cylindrical braid and adding seed sludge to the outer surface side. By contacting the liquid containing the ammonia component, it can be formed naturally with the growth of microorganisms.

布を形成する糸或いは繊維の素材は、特には限定されないが、ポリエチレン、ポリプロピレン、ポリエステル、アクリル繊維、ビニロン、ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリウレタン等の合成繊維、アセテート、トリアセテート等の半合成繊維、レーヨン等の再生繊維、羊毛、絹、木綿、麻等の天然繊維などがある。   The material of the yarn or fiber forming the cloth is not particularly limited, but synthetic fibers such as polyethylene, polypropylene, polyester, acrylic fiber, vinylon, polyamide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyurethane, acetate, There are semi-synthetic fibers such as triacetate, regenerated fibers such as rayon, and natural fibers such as wool, silk, cotton, and hemp.

上記繊維素材のうち、羊毛、ポリアミド等、正荷電に帯電し易いものは、生物膜の形成を行なう上で有利であり、特に担体への付着性が悪く生物膜を形成し難いとされている硝化菌の付着性を向上させることが出来るので好ましい。   Among the above-mentioned fiber materials, those that are easily charged to a positive charge, such as wool and polyamide, are advantageous in forming a biofilm, and are particularly difficult to form a biofilm due to poor adhesion to a carrier. This is preferable because adhesion of nitrifying bacteria can be improved.

また、ポリエチレン、ポリプロピレン、ポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、アクリル繊維等の合成繊維を用いる場合、4級アンモニウム塩化合物、4級化ピリジニウム塩化合物、アミノ酸誘導体、エチレンイミン誘導体等の正荷電基を持つ添加剤を添加することにより、繊維表面に正荷電基を存在させ硝化菌の付着性を向上させることができる。   In addition, when using synthetic fibers such as polyethylene, polypropylene, polyester, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and acrylic fibers, quaternary ammonium salt compounds, quaternized pyridinium salt compounds, amino acid derivatives, ethyleneimine derivatives, etc. By adding an additive having a positively charged group, a positively charged group can be present on the fiber surface and the adhesion of nitrifying bacteria can be improved.

さらに、全ての素材において、4級アンモニウム塩基、3級アミノ基、2級アミノ基、4級化ピリジニウム塩基等を有するポリマーをグラフト反応により繊維表面に固定化したり、キャスト法等により繊維表面にコーティングしたりして、繊維表面に正荷電基を存在させることにより硝化菌の付着性を向上させることができる。   Furthermore, in all materials, a polymer having a quaternary ammonium base, a tertiary amino group, a secondary amino group, a quaternized pyridinium base, or the like is immobilized on the fiber surface by a graft reaction or coated on the fiber surface by a casting method or the like. Thus, the adhesion of nitrifying bacteria can be improved by the presence of positively charged groups on the fiber surface.

布を形成する糸或いは繊維の素材として、菌を担持しやすいことが知られているポリ塩化ビニリデン繊維などを用いることは好ましい。   It is preferable to use polyvinylidene chloride fiber, which is known to easily carry bacteria, as a material of the yarn or fiber forming the cloth.

本発明において用いる布の目の最大孔径は大きすぎると良好な生物膜が得られにくく、また、小さすぎると内表面側からの酸素供給が不充分になりやすくなる。従って、布の目の最大孔径は100μm以下であることが好ましく、より好ましくは50μm以下0.3μm以上である。布の目の最大孔径は、後述するASTM:F316−86記載のバブルポイントから換算する方法に従い求められる。   If the maximum pore size of the cloth used in the present invention is too large, it is difficult to obtain a good biofilm, and if it is too small, oxygen supply from the inner surface side tends to be insufficient. Accordingly, the maximum pore diameter of the fabric is preferably 100 μm or less, more preferably 50 μm or less and 0.3 μm or more. The maximum pore diameter of the fabric is determined according to a method of conversion from bubble points described in ASTM: F316-86 described later.

布の厚みは特に限定はされないが、厚すぎると酸素を含む気体充填面から生物膜への酸素の供給の妨げになり、逆に薄すぎると布厚み内で好気性雰囲気と嫌気性雰囲気をバランスさせることが難しくなるため、布厚みは0.05mm以上3mm以下が好ましい。   The thickness of the cloth is not particularly limited, but if it is too thick, it will hinder the supply of oxygen from the gas-filled surface containing oxygen to the biofilm, and if it is too thin, the aerobic and anaerobic atmospheres are balanced within the cloth thickness. Therefore, the cloth thickness is preferably 0.05 mm or more and 3 mm or less.

本発明においては、布の片面に酸素を含む気体が満たされ、反対側に原液が満たされる構造であれば、布の形態は特に限定されない。例えば、シート状の布を箱の中に何層か張り合わせ、布で仕切られた空間を一つおきに酸素を含む気体と原液で満たす構造にしても良いし、袋状にした布の内側に酸素を含む気体を満たし外側を原液で満たす構造にしても良い。   In the present invention, the form of the cloth is not particularly limited as long as one side of the cloth is filled with a gas containing oxygen and the other side is filled with the stock solution. For example, several layers of sheet-like cloth may be laminated in a box, and every other space partitioned by cloth may be filled with oxygen-containing gas and stock solution, or inside the bag-like cloth A structure in which a gas containing oxygen is filled and the outside is filled with a stock solution may be used.

特に、布を円筒状にすると、より小さい容積でより効率的に窒素除去が可能となり好ましい。円筒状の布の内径は、小さすぎると酸素を含む気体を供給する際に圧損が大きくなる恐れがあるため、0.1mm以上が好ましい。また、円筒状の布の内径は大きすぎると体積効率が落ちることが懸念されるため、10mm以下が好ましい。
布表面に供給する酸素を含む気体の組成および酸素濃度は特に限定はされないが、通常の場合、空気を用いることができる。
In particular, it is preferable to make the cloth cylindrical, because nitrogen can be removed more efficiently with a smaller volume. If the inner diameter of the cylindrical cloth is too small, the pressure loss may increase when supplying a gas containing oxygen. Further, if the inner diameter of the cylindrical cloth is too large, there is a concern that the volume efficiency is lowered.
The composition and oxygen concentration of the gas containing oxygen supplied to the cloth surface are not particularly limited, but air can be usually used.

以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。
まず例において用いた測定方法等について説明する。
Examples of the present invention are shown below, but the present invention is not limited thereto.
First, the measurement method used in the example will be described.

[測定方法等]
(最大孔径)
布の目の最大孔径の測定方法は、以下のとおりである。
布をエタノールに2分間浸漬した後、純水で5分間洗浄して完全に水で濡らした状態にする。濡れた状態を保ったまま空気圧をかけられるようにして25℃±1.0℃の水中に入れる。徐々に空気圧を上げていき、気泡が3ヶ所以上から出てくる圧力を記録する。これを3回繰返し平均した値を圧力として、下記式(1)に従い最大孔径を求めた。但し、72mN/mは水の25℃における表面張力である。
最大孔径[μm]=(2860×72[mN/m])/圧力[Pa] (1)
[Measurement methods]
(Maximum hole diameter)
The method for measuring the maximum pore diameter of the fabric is as follows.
The cloth is immersed in ethanol for 2 minutes and then washed with pure water for 5 minutes so that it is completely wetted with water. Place it in water at 25 ° C. ± 1.0 ° C. so that air pressure can be applied while keeping it wet. Gradually increase the air pressure and record the pressure at which the bubbles emerge from more than three locations. The maximum pore size was determined according to the following formula (1) using a value obtained by averaging this three times repeatedly as a pressure. However, 72 mN / m is the surface tension of water at 25 ° C.
Maximum pore diameter [μm] = (2860 × 72 [mN / m]) / pressure [Pa] (1)

(布厚み)
シート状の布の場合、マノメータ等で測定できる。筒状の布の場合は、筒の内径と外径から求められる。
(Cloth thickness)
In the case of a sheet-like cloth, it can be measured with a manometer or the like. In the case of a cylindrical cloth, it is obtained from the inner diameter and outer diameter of the cylinder.

(筒状の布の内径、外径)
筒を変形しないように切断し、筒の切断面を垂直方向から観察し、20倍拡大写真を撮る。円筒の中心を通る外壁間の最長径と、その最長径と直交する中心を通る径の長さを足して2で割ったものを外径とした。このとき、布から出ている繊維の部分は長さに入れない。同様に円筒の内壁間の長さを計り内径とした。
(Inner and outer diameter of cylindrical cloth)
The tube is cut so as not to be deformed, the cut surface of the tube is observed from the vertical direction, and a 20-fold enlarged photograph is taken. The outer diameter was defined by adding the longest diameter between the outer walls passing through the center of the cylinder and the length of the diameter passing through the center perpendicular to the longest diameter and dividing the sum by two. At this time, the portion of the fiber coming out of the cloth is not included in the length. Similarly, the length between the inner walls of the cylinder was measured and used as the inner diameter.

(バルク水の水質測定)
全有機炭素濃度(TOC)は、TOC自動測定器(島津製作所製TOC−500)を用いて測定した。全窒素濃度(T−N)は、JIS法に従い吸光光度法(島津自記分光光度計UV−2400PC)により測定した。アンモニア体窒素、亜硝酸及び硝酸体窒素はイオンクロマトグラフィー(横川アナリティカルシステムズ(株)製IC7000)を用いて、アンモニウムイオン、亜硝酸イオン、硝酸イオンを測定した。
(Bulk water quality measurement)
The total organic carbon concentration (TOC) was measured using a TOC automatic measuring instrument (TOC-500 manufactured by Shimadzu Corporation). The total nitrogen concentration (TN) was measured by an absorptiometric method (Shimadzu autograph spectrophotometer UV-2400PC) according to the JIS method. Ammonium ion, nitrous acid, and nitrate nitrogen were measured for ammonium ion, nitrite ion, and nitrate ion using ion chromatography (IC7000 manufactured by Yokogawa Analytical Systems Co., Ltd.).

32打の製紐機を用いて、500デシックス/15フィラメントのサラン繊維を組み物に構成することで内径1.2mm外径1.8mmの円筒状の布を得た。この円筒状の布を300mmの長さに切断し、布の目の最大孔径を測定したところ10μm〜12μmであった。直径25mm、長さ250mmの管状容器(反応用容器)に、布の上部は接着剤層を貫通させ、下は接着剤層に埋没させるように装着し、上部から内表面側に純空気ボンベを用いて10kPaの圧力をかけ、種汚泥を加えた基質(硫酸アンモニウム)を含む水溶液を外表面側に充填した。充填した基質溶液中の基質が少なくなると、充填した基質溶液の一部を抜き出し、高濃度基質溶液を加えた。こうして布外表面上に生物膜を形成させた。   A cylindrical fabric having an inner diameter of 1.2 mm and an outer diameter of 1.8 mm was obtained by forming a sacrificial fiber of 500 decix / 15 filaments into a braid using a stringing machine of 32 strokes. This cylindrical cloth was cut into a length of 300 mm, and the maximum pore diameter of the cloth was measured and found to be 10 μm to 12 μm. A tubular container (reaction container) with a diameter of 25 mm and a length of 250 mm is mounted so that the upper part of the cloth penetrates the adhesive layer and the lower part is buried in the adhesive layer, and a pure air cylinder is installed from the upper part to the inner surface side. A pressure of 10 kPa was applied and an aqueous solution containing a substrate (ammonium sulfate) to which seed sludge was added was filled on the outer surface side. When the substrate in the filled substrate solution became small, a part of the filled substrate solution was extracted and a high concentration substrate solution was added. In this way, a biofilm was formed on the outer surface of the cloth.

布外表面上に生物膜の形成を目視で確認した後、内表面側に空気をコンプレッサーにより10kPaの圧力をかけたまま、30℃にて反応器の下部の入口から流量1×10-53/日にてペプトン、肉エキスおよび硫酸アンモニウムを溶解した原水(TOC:4500g/m3、T−N:4000g/m3、NH4 +−N:3000g/m3)を布外表面側に半回分的に供給し、反応器の上部の出口にて出口液(バルク水)の水質を測定した。またこのとき、循環用ポンプにて反応器出口液の一部を反応器下部の入口に2.33m3/日の流量で戻し、反応器内を循環させた。 After visually confirming the formation of the biofilm on the outer surface of the cloth, the flow rate was 1 × 10 −5 m from the lower inlet of the reactor at 30 ° C. while applying 10 kPa of air to the inner surface side with a compressor. 3 / day, raw water (TOC: 4500 g / m 3 , TN: 4000 g / m 3 , NH 4 + -N: 3000 g / m 3 ) in which peptone, meat extract, and ammonium sulfate are dissolved is halfway on the cloth outer surface side. Feeding batchwise, the water quality of the outlet liquid (bulk water) was measured at the outlet at the top of the reactor. At this time, a part of the reactor outlet liquid was returned to the inlet at the lower part of the reactor at a flow rate of 2.33 m 3 / day by a circulation pump and circulated in the reactor.

さらに、微小電極を用いて布外表面上に形成されている生物膜中の厚さ方向に対するDOの測定を行った。用いた反応器の概略を図1に示す。
反応器出口での全有機炭素濃度:TOCと、全窒素濃度:T−N、アンモニア態窒素濃度:NH4 +−N及び硝酸、亜硝酸態窒素濃度:NO -−Nの値を表1に示した。
Furthermore, DO was measured with respect to the thickness direction in the biofilm formed on the cloth outer surface using a microelectrode. An outline of the reactor used is shown in FIG.
Table 1 shows the total organic carbon concentration at the outlet of the reactor: TOC, total nitrogen concentration: TN, ammonia nitrogen concentration: NH 4 + -N and nitric acid, nitrite nitrogen concentration: NO x -- N It was shown to.

反応器出口の全有機炭素濃度(TOC)は100日、200日、300日で何れも180g/m3以下で推移しており、反応器へ供給した全有機炭素の96%以上除去されていた。また窒素に関しては、反応器出口の全窒素成分は何れも800g/m3以下で推移しており、反応器に供給した全窒素成分(T−N)の80%以上除去されていた。またアンモニアの硝化反応によって生成する硝酸、亜硝酸態窒素濃度は反応器出口で10g/m3以下で推移していることから、用いた反応器が有効に硝化および脱窒反応を行い、窒素除去リアクタとして有効に働いていることが示された。 The total organic carbon concentration (TOC) at the outlet of the reactor was kept at 180 g / m 3 or less for 100 days, 200 days, and 300 days, and 96% or more of the total organic carbon supplied to the reactor was removed. . Regarding nitrogen, all the nitrogen components at the outlet of the reactor were kept at 800 g / m 3 or less, and 80% or more of the total nitrogen components (TN) supplied to the reactor were removed. In addition, the concentration of nitric acid and nitrite nitrogen produced by the nitrification reaction of ammonia is 10 g / m 3 or less at the reactor outlet, so the reactor used effectively performs nitrification and denitrification to remove nitrogen. It was shown to work effectively as a reactor.

Figure 2005058952
Figure 2005058952

市販の目付け250g/m2、厚さ0.45mm、ポリエステル88%アクリル12%の混紡の織物を購入して、ポリエチレンイミン((株)日本触媒製エポミンSP−110)の10%水溶液に浸漬後、100℃で乾燥した布の目の最大孔径を測定したら、48μmであった。この布を裁断して周辺部をシリコン系の接着剤で留めて底辺5mm長さ250mmの袋を作製し、底辺部に送気用のテフロン(登録商標)チューブを挿入して、実施例1と同様にして実験を行なった。その結果を表2に示す。 After purchasing a commercial fabric with a basis weight of 250 g / m 2 , a thickness of 0.45 mm, and a polyester 88% acrylic 12% blend, it is immersed in a 10% aqueous solution of polyethyleneimine (Epomin SP-110 manufactured by Nippon Shokubai Co., Ltd.) When the maximum pore size of the fabric dried at 100 ° C. was measured, it was 48 μm. This cloth is cut and the periphery is fastened with a silicon-based adhesive to produce a bag having a bottom of 5 mm and a length of 250 mm, and a Teflon (registered trademark) tube for air supply is inserted into the bottom of the bag. The experiment was conducted in the same manner. The results are shown in Table 2.

実施例2も実施例1と同様に反応器出口の全有機炭素濃度(TOC)は180g/m3以下で推移し、反応器へ供給した全有機炭素の96%以上除去されていた。また窒素に関しては、反応器出口の全窒素成分(T−N)は800g/m3以下で推移し、反応器に供給した全窒素成分(T−N)の80%以上除去されていた。またアンモニアの硝化反応によって生成する硝酸、亜硝酸態窒素濃度(NO -−N)は反応器出口で10g/m3以下で推移したことから、用いた反応器が有効に硝化および脱窒反応を行い、窒素除去リアクタとして有効に働いていることが示された。 In Example 2, as in Example 1, the total organic carbon concentration (TOC) at the reactor outlet was 180 g / m 3 or less, and 96% or more of the total organic carbon supplied to the reactor was removed. Regarding nitrogen, the total nitrogen component (TN) at the outlet of the reactor changed at 800 g / m 3 or less, and 80% or more of the total nitrogen component (TN) supplied to the reactor was removed. In addition, the concentration of nitric acid and nitrite nitrogen (NO x -- N) produced by the nitrification reaction of ammonia remained at 10 g / m 3 or less at the reactor outlet, so the reactor used effectively nitrifies and denitrifies. It was shown that it works effectively as a nitrogen removal reactor.

Figure 2005058952
以上より、本発明によるメンブレンバイオリアクタによる窒素除去システムは、有効に稼働することがわかる。
Figure 2005058952
From the above, it can be seen that the nitrogen removal system using the membrane bioreactor according to the present invention operates effectively.

本発明は、排水等の有機性汚染水あるいはアンモニア態窒素汚染水等の浄化に有効な、単一槽型硝化脱窒メンブレンバイオリアクタによる水中のアンモニア態窒素の除去システムを安価に提供することができるので、その利用性は高い。   The present invention can provide an inexpensive system for removing ammonia nitrogen in water by a single tank nitrification denitrification membrane bioreactor that is effective for purifying organic polluted water such as wastewater or ammonia nitrogen polluted water. Because it is possible, its usability is high.

実施例1で用いた窒素除去装置(メンブレンバイオリアクタ)の概略図である。1 is a schematic view of a nitrogen removing device (membrane bioreactor) used in Example 1. FIG.

符号の説明Explanation of symbols

1 組紐
2 排水入口
3 排水出口
4 中空部
5 消化菌
6 脱窒菌
1 Braid 2 Drainage inlet 3 Drainage outlet 4 Hollow part 5 Digestive bacteria 6 Denitrifying bacteria

Claims (4)

一方の表面に硝化菌および脱窒菌を含む生物膜が固定された布と、該布の該一方の表面にアンモニア性窒素含有液を供給する手段と、該布の他方の表面に酸素を含む気体を供給する手段とを少なくとも備えてなる、該アンモニア性窒素含有液中のアンモニア性窒素を該生物膜中で硝化および脱窒して除去するための窒素除去装置。   A cloth having a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on one surface, means for supplying an ammoniacal nitrogen-containing liquid to the one surface of the cloth, and a gas containing oxygen on the other surface of the cloth A nitrogen removing apparatus for removing ammonia nitrogen in the ammonia nitrogen-containing liquid by nitrification and denitrification in the biofilm. 布の目の最大孔径が100μm以下0.3μm以上、布厚みが0.05mm以上3mm以下であることを特徴とする、請求項1に記載の窒素除去装置。   2. The nitrogen removing apparatus according to claim 1, wherein the maximum pore diameter of the fabric is 100 μm or less and 0.3 μm or more, and the fabric thickness is 0.05 mm or more and 3 mm or less. 布が内径0.1mm以上10mm以下の円筒状であることを特徴とする、請求項1又は2に記載の窒素除去装置。   The nitrogen removing apparatus according to claim 1 or 2, wherein the cloth has a cylindrical shape with an inner diameter of 0.1 mm or more and 10 mm or less. 一方の表面に硝化菌および脱窒菌を含む生物膜が固定された布を用い、該布の該一方の表面にアンモニア性窒素含有液を供給し、該布の他方の表面に酸素を含む気体を供給して、該アンモニア性窒素含有液中のアンモニア成分を該生物膜中で硝化および脱窒して除去することを特徴とする窒素除去方法。   Using a cloth with a biofilm containing nitrifying bacteria and denitrifying bacteria fixed on one surface, supplying an ammoniacal nitrogen-containing liquid to the one surface of the cloth, and supplying a gas containing oxygen to the other surface of the cloth A method for removing nitrogen, comprising supplying and removing an ammonia component in the ammoniacal nitrogen-containing liquid by nitrification and denitrification in the biofilm.
JP2003294821A 2003-08-19 2003-08-19 Nitrogen removing apparatus Withdrawn JP2005058952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294821A JP2005058952A (en) 2003-08-19 2003-08-19 Nitrogen removing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294821A JP2005058952A (en) 2003-08-19 2003-08-19 Nitrogen removing apparatus

Publications (1)

Publication Number Publication Date
JP2005058952A true JP2005058952A (en) 2005-03-10

Family

ID=34371237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294821A Withdrawn JP2005058952A (en) 2003-08-19 2003-08-19 Nitrogen removing apparatus

Country Status (1)

Country Link
JP (1) JP2005058952A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007569A (en) * 2005-06-30 2007-01-18 Ebara Corp Apparatus for treating estrogen
JP2007537041A (en) * 2004-05-14 2007-12-20 ノースウエスタン ユニバーシティ Method and system for complete nitrogen removal
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
CN103159331A (en) * 2013-04-10 2013-06-19 重庆大学 Method and device for simultaneously carrying out wastewater treatment and power generation by using photocatalysis associated microbial fuel cell technology
CN114684916A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Sewage nitrogen and phosphorus removal method
CN116332344A (en) * 2023-05-29 2023-06-27 北京科净源科技股份有限公司 Micro-electrolysis-sulfur autotrophic denitrification sintering-free filler and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537041A (en) * 2004-05-14 2007-12-20 ノースウエスタン ユニバーシティ Method and system for complete nitrogen removal
JP2007007569A (en) * 2005-06-30 2007-01-18 Ebara Corp Apparatus for treating estrogen
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
CN103159331A (en) * 2013-04-10 2013-06-19 重庆大学 Method and device for simultaneously carrying out wastewater treatment and power generation by using photocatalysis associated microbial fuel cell technology
CN114684916A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Sewage nitrogen and phosphorus removal method
CN114684916B (en) * 2020-12-30 2023-07-04 中国石油化工股份有限公司 Sewage denitrification and dephosphorization method
CN116332344A (en) * 2023-05-29 2023-06-27 北京科净源科技股份有限公司 Micro-electrolysis-sulfur autotrophic denitrification sintering-free filler and preparation method and application thereof
CN116332344B (en) * 2023-05-29 2023-08-29 北京科净源科技股份有限公司 Micro-electrolysis-sulfur autotrophic denitrification sintering-free filler and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7556961B2 (en) Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
JP4519836B2 (en) Ammonia-containing wastewater treatment method
JP4997460B2 (en) Wastewater treatment system
Chu et al. Treatment of domestic wastewater by using a microaerobic membrane bioreactor
JP2000005795A (en) Water treatment device having denitrogen performance
CN104652131B (en) A kind of bio-active carbon fibre, the complex ecological film filler assembly including it and preparation method thereof
JP2012179517A (en) Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
CN108147535A (en) A kind of aerobic synchronous nitration and denitrification biofilm processing is by polluted by nitrogen water body
JP2005058952A (en) Nitrogen removing apparatus
Shin et al. A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification
JP5523800B2 (en) Organic wastewater treatment method and treatment equipment
JP2021133349A (en) Waste water treatment apparatus and waste water treatment method
KR20150031553A (en) Plants For Advanced Treatment Of Wastewater For Improving Phosphorous Removal Efficiency And Method For Treating Wastewater Using Thereof
CN217516736U (en) Complete EHBR process sewage treatment plant
Cinar et al. A review on dynamic membrane bioreactors: comparison of membrane bioreactors and different support materials, transmembrane pressure
JP4993109B2 (en) Cultivation method and apparatus, and wastewater treatment method and apparatus
CN114275897A (en) Denitrification system and starting method thereof
CN203545786U (en) Ammonia-nitrogen containing wastewater treatment equipment
JP5010785B2 (en) Bioreactor and water treatment method
JP2019166441A (en) Biological treatment apparatus
JP6414394B2 (en) Method for treating ammonia nitrogen-containing water
CN108751409A (en) A kind of multi-stage porous biological fiber filler and its preparation method and application
JPS6366599B2 (en)
Shin et al. Feasibility study on the removal of nitrous compounds with a hollow-fiber membrane biofilm reactor
Xie et al. Treatment of high salinity wastewater using an intermittently aerated membrane bioreactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107