JP2005058351A - Artificial muscle - Google Patents

Artificial muscle Download PDF

Info

Publication number
JP2005058351A
JP2005058351A JP2003290473A JP2003290473A JP2005058351A JP 2005058351 A JP2005058351 A JP 2005058351A JP 2003290473 A JP2003290473 A JP 2003290473A JP 2003290473 A JP2003290473 A JP 2003290473A JP 2005058351 A JP2005058351 A JP 2005058351A
Authority
JP
Japan
Prior art keywords
artificial muscle
elements
linear motor
flexibility
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003290473A
Other languages
Japanese (ja)
Inventor
Toru Fujii
藤井  透
Kazuya Okubo
和也 大窪
Yoshiaki Nakade
義昭 中出
Masahiro Fujimoto
雅大 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2003290473A priority Critical patent/JP2005058351A/en
Publication of JP2005058351A publication Critical patent/JP2005058351A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact artificial muscle having a large amount of extension and contraction, excellent responsiveness and operation stability and a high degree of action freedom. <P>SOLUTION: This artificial muscle is composed of a linear motor for which flexibility is imparted to both of its two elements performing relative linear motions. Since the two elements perform the relative linear motion by the drive of the linear motor, expansion and contraction motions equivalent to those of the muscle fiber of an organism are obtained in the entire motor, and further, an extremely large stroke and high responsiveness and operation stability are obtained. Since the flexibility is provided in both of the two elements, the degree of freedom of actions is improved and natural motions close to the action of a human being, or the like, are realized with a single mechanism. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リニアモータを利用した人工筋肉に関するものである。   The present invention relates to an artificial muscle using a linear motor.

人工筋肉には、主に外部からの信号に基づき伸縮運動を行う機構が要求される。その一例として、磁石間の引力あるいは斥力を伸縮運動に利用した人工筋肉が特開平11−215793号公報に開示されている(特許文献1参照)。   Artificial muscles are required to have a mechanism for performing expansion and contraction mainly based on external signals. As an example, Japanese Patent Laid-Open No. 11-215793 discloses an artificial muscle that uses attraction or repulsion between magnets for expansion and contraction (see Patent Document 1).

この人工筋肉は、互いに離間して配置された複数の電磁石と、前記複数の電磁石の間に介装されたシリコンゴム等からなる伸縮パッドとを備えるものであり、上記電磁石に電流を流すことで、電磁石間に引力あるいは斥力を発生させ、上記電磁石および伸縮パッドの配列方向における一方の端部に設けられた支点と、他方の端部に設けられた作用点との間を収縮又は伸長させるものである。   The artificial muscle includes a plurality of electromagnets arranged apart from each other, and an expansion / contraction pad made of silicon rubber or the like interposed between the plurality of electromagnets. , Generating attraction or repulsion between the electromagnets and contracting or extending between the fulcrum provided at one end in the arrangement direction of the electromagnet and the stretchable pad and the action point provided at the other end It is.

しかし、この機構では、筋肉の伸縮量が相対向する磁石間の離間幅に依存するため、伸縮量の増大には限度がある。また、伸縮動作が伸縮パットの弾性変形で行われるため、応答性が懸念され、かつ使用温度や使用期間等の外部要因によってその剛性が変化し、動作安定性が低下するおそれもある。   However, in this mechanism, since the amount of muscle expansion and contraction depends on the distance between the opposing magnets, there is a limit to the increase in the amount of expansion and contraction. Further, since the expansion / contraction operation is performed by elastic deformation of the expansion / contraction pad, there is a concern about responsiveness, and the rigidity may change due to external factors such as a use temperature and a use period, and the operation stability may be lowered.

一方、特開2002−144274号公報には、リニアモータを利用した関節駆動装置が開示されている(特許文献2参照)。この装置はリニアモータからなる駆動部と、ゴムやスプリング等の弾性体からなる変形部とが別体に設けられているので、変形部の他に駆動部の設置スペースも確保する必要があり、スペース効率が悪い。また、この駆動装置は、結局のところ油圧シリンダ等のアクチュエータを用いた関節構造と等価なものに過ぎず、得られる動作はパワーショベルのアームの如き機械的なものに限られる。従って、動作の自由度は低く、これを人工筋肉として使用しても人間らしいスムーズな動作を得ることは難しい。   On the other hand, Japanese Patent Application Laid-Open No. 2002-144274 discloses a joint drive device using a linear motor (see Patent Document 2). Since this device is provided with a drive unit made of a linear motor and a deformed part made of an elastic body such as rubber or a spring, it is necessary to secure an installation space for the drive unit in addition to the deformed part. Space efficiency is poor. In addition, this drive device is ultimately equivalent to a joint structure using an actuator such as a hydraulic cylinder, and the obtained operation is limited to a mechanical device such as an arm of a power shovel. Accordingly, the degree of freedom of movement is low, and even if this is used as an artificial muscle, it is difficult to obtain a human-like smooth movement.

特開平11−215793号公報(第4頁、第1図〜第4図)JP-A-11-215793 (page 4, FIGS. 1 to 4)

特開2002−144274号公報(第3頁〜第4頁、第1図)JP 2002-144274 A (page 3 to page 4, FIG. 1)

そこで、本発明は、大きな伸縮量を備え、応答性および動作安定性に優れるとともにコンパクトで動作自由度が高い人工筋肉を提供することを目的とする。   Accordingly, an object of the present invention is to provide an artificial muscle which has a large amount of expansion and contraction, is excellent in responsiveness and motion stability, and is compact and has a high degree of freedom of motion.

上記課題を解決するため、本発明にかかる人工筋肉は、相対直線運動を行う二つの要素の双方に可撓性を持たせたリニアモータからなることを特徴とする(請求項1)。ここで「リニアモータ」とは、対象に直線的な運動をさせる力を与える駆動装置で、基本的には円筒状の回転形モータを直線状に展開した構造のものを意味する。   In order to solve the above-mentioned problem, the artificial muscle according to the present invention is characterized by comprising a linear motor in which both of two elements that perform relative linear motion have flexibility (claim 1). Here, the “linear motor” is a drive device that applies a force for causing a subject to perform a linear motion, and basically has a structure in which a cylindrical rotary motor is linearly developed.

上記構成によれば、リニアモータの駆動により二つの要素が相対直線運動を行うため、モータ全体で見れば生物の筋繊維と同等の伸縮運動が得られる。従って、二つの要素を二部材にそれぞれ固定することにより、両部材間で相対運動が得られる。この場合、リニアモータの特性から、非常に大きなストロークと高い応答性および動作安定性を得ることができ、かつストローク調整も自在となる。また、リニアモータ自体が伸縮可能な筋繊維として機能するので、駆動部と変形部を別構造とする場合に比べ、スペース効率の面でも有利となる。   According to the above configuration, since the two elements perform relative linear motion by driving the linear motor, an expansion / contraction motion equivalent to that of a living muscle fiber can be obtained from the whole motor. Accordingly, by fixing the two elements to the two members, relative motion can be obtained between the two members. In this case, from the characteristics of the linear motor, a very large stroke, high responsiveness and operational stability can be obtained, and stroke adjustment is also possible. In addition, since the linear motor itself functions as a stretchable muscle fiber, it is advantageous in terms of space efficiency as compared with a case where the drive unit and the deformation unit are configured separately.

加えて、二つの要素の双方に可撓性を持たせているので、上記人工筋肉を任意の非直線形状に変形させた状態で設置することができる。この場合、二次元平面上だけでなく三次元空間上にも任意形状で設置することもでき、実現可能な動作の多様化が可能となる。従って、動作の自由度を高めて、単一の機構で人間等の動作に近い自然な運動を実現することができる(請求項1)。   In addition, since both of the two elements are flexible, the artificial muscle can be installed in a state of being deformed into an arbitrary non-linear shape. In this case, it can be installed in an arbitrary shape not only on a two-dimensional plane but also in a three-dimensional space, and a variety of operations that can be realized is possible. Therefore, it is possible to increase the degree of freedom of movement and realize a natural movement close to the movement of a human or the like with a single mechanism (claim 1).

リニアモータの可撓性は、種々の手法によって与えることができる。例えば二つの要素の少なくとも一方の可撓性を、両者の相対移動方向に間欠配置した可撓性材料によって与え、あるいは、少なくとも一方の可撓性を、両者の相対移動方向に連続配置した可撓性材料によって与えることが考えられる(請求項2および3)。前者は界磁手段として永久磁石等の剛体を使用する場合に、後者は巻線(コイル)等の軟体を使用する場合の可撓性付与手法として適合する。可撓性材料としては、樹脂やゴムが代表的である。   The flexibility of the linear motor can be provided by various methods. For example, flexibility of at least one of two elements is provided by a flexible material intermittently arranged in the relative movement direction of the two elements, or flexibility in which at least one flexibility is continuously arranged in the relative movement direction of the two elements. It is conceivable that it is provided by a sex material (claims 2 and 3). The former is suitable as a technique for imparting flexibility when a rigid body such as a permanent magnet is used as the field means, and the latter is used when a soft body such as a coil (coil) is used. Typical examples of the flexible material are resin and rubber.

リニアモータは、一般にその形状面から平面型と円筒型に大別される。本発明では基本的に何れのタイプも使用可能であるが、可撓性確保の容易性、あるいは複数束ねて筋肉束として使用する場合のスペース効率等を考えると、二つの要素のいずれか一方をロッド状、他方をその外側に配置したチューブ状とした円筒型リニアモータを使用するのが好ましい(請求項4)。この他にも、円筒型リニアモータは、その構成材料として樹脂等を使用することにより、何れの要素も押出し加工や引き抜き加工といった公知の連続成形方法により能率よくかつ低コストに製作できるという利点も有する。   In general, linear motors are roughly classified into a planar type and a cylindrical type according to their shape. In the present invention, basically any type can be used. However, considering the ease of ensuring flexibility or the space efficiency when using multiple bundles as muscle bundles, either one of the two elements is used. It is preferable to use a cylindrical linear motor having a rod shape and a tube shape with the other arranged outside thereof. In addition to this, the cylindrical linear motor has the advantage that any element can be manufactured efficiently and at low cost by a known continuous molding method such as extrusion or drawing by using a resin or the like as a constituent material. Have.

この円筒型リニアモータを使用する場合、外側の要素は、例えば可撓性の円筒部材とこれと同軸に配置したコイルとで構成することができる(請求項5)。これは外側の要素をリニアモータの一次側(電源供給側)とするものであり、これにより、電源からの配線が相対スライドする内側の要素と干渉する事態を防止することができる。なお、コイルは、円筒部材の外周に配置する他、内周に配置することもでき、さらには円筒部材の肉部に埋め込む形で配置することもできる。   When this cylindrical linear motor is used, the outer element can be composed of, for example, a flexible cylindrical member and a coil arranged coaxially therewith (Claim 5). In this case, the outer element is used as the primary side (power supply side) of the linear motor, so that it is possible to prevent the wiring from the power source from interfering with the inner element that relatively slides. In addition, the coil can be arranged on the inner circumference as well as on the outer circumference of the cylindrical member, and can also be arranged so as to be embedded in the meat part of the cylindrical member.

また、内側の要素は、例えば複数の磁石と磁石間に介在させた可撓性部材とで構成することができる。なお、ここで「磁石」とは界磁極を有するものを指し、永久磁石のみならず電磁石も「磁石」に含まれる。但し、電磁石を使用する場合は、これへの給電配線が相対スライド運動によって外側の要素と干渉するおそれがあるので、この対策を不要とする意味で永久磁石を使用するのが好ましい。   Further, the inner element can be constituted by, for example, a plurality of magnets and a flexible member interposed between the magnets. Here, “magnet” refers to one having a field pole, and not only permanent magnets but also electromagnets are included in “magnets”. However, when an electromagnet is used, it is preferable to use a permanent magnet in the sense that this measure is unnecessary because there is a possibility that the power supply wiring to the electromagnet may interfere with an outer element due to relative sliding movement.

リニアモータは基本的に非接触駆動であるので、二要素の相対移動時に両者間で接触摩擦が生じることはない。しかしながら、本発明のように人工筋肉として使用する場合、個々のリニアモータの直径寸法を微小サイズ(数十μm〜数mm程度)とすることが求められる場合があり、その場合、成形誤差や熱膨張差等によって二つの要素間で滑り摩擦を生じる可能性がある。また、微小サイズとしない場合でも、人工筋肉を曲げたり、たわませたりした状態で使用すると、特に曲率が大きい箇所で二つの要素が接触する可能性がある。かかる観点から、二つの要素間に固体潤滑被膜を介在させ、両者の接触摩擦を軽減するのが望ましい(請求項7)。固体潤滑被膜としては、二硫化モリブデン等の無機系、PTFE等の有機系を問わず使用することができる。   Since the linear motor is basically non-contact drive, contact friction does not occur between the two elements during relative movement of the two elements. However, when it is used as an artificial muscle as in the present invention, it may be required that the diameter dimension of each linear motor be a very small size (several tens of micrometers to several millimeters). There is a possibility of sliding friction between the two elements due to an expansion difference or the like. Even when the size is not small, if the artificial muscle is used in a bent or bent state, there is a possibility that the two elements come into contact with each other particularly at a portion having a large curvature. From this point of view, it is desirable to interpose a solid lubricating film between the two elements to reduce the contact friction between them. As the solid lubricating coating, any inorganic type such as molybdenum disulfide and organic type such as PTFE can be used.

上述の各リニアモータを一本の筋繊維と見なし、これら複数のリニアモータを束ねて人工筋肉束を構成すれば、より大きな伸縮力を得ることが可能となり、人工筋肉の用途拡大に寄与することができる。この場合、束ねる本数を調整することにより、容易に人工筋肉束の伸縮力を制御することが可能となる(請求項8)。   Considering each of the above linear motors as a single muscle fiber, and bundling these linear motors to form an artificial muscle bundle, it will be possible to obtain a greater stretch force, contributing to the expansion of the use of artificial muscles. Can do. In this case, the stretching force of the artificial muscle bundle can be easily controlled by adjusting the number of bundles.

以上のように、本発明にかかる人工筋肉によれば、高速応答性と大きな伸縮量を備え、コンパクトかつ動作自由度の高い人工筋肉を提供することができる。   As described above, according to the artificial muscle according to the present invention, it is possible to provide a compact artificial muscle having a high speed response and a large amount of expansion and contraction and having a high degree of freedom of movement.

以下、本発明の実施形態例を図1〜図3に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、本発明にかかる人工筋肉1の一例を示すもので、リニアモータとして円筒型リニアモータを使用した場合を例示している。このリニアモータは、外側に配置された長尺チューブ状の第一要素9と、第一要素9の内周に挿入される長尺ロッド状の第二要素10とを主体に構成される。通常のリニアモータでは、いずれか一方の要素が他方に比べて極端に短く形成されるが、本発明においては両要素9、10はほぼ同じ長さに形成される。   FIG. 1 shows an example of an artificial muscle 1 according to the present invention, and illustrates a case where a cylindrical linear motor is used as a linear motor. This linear motor is mainly composed of a long tube-shaped first element 9 arranged on the outside and a long rod-shaped second element 10 inserted into the inner periphery of the first element 9. In a normal linear motor, one of the elements is formed extremely shorter than the other, but in the present invention, both elements 9 and 10 are formed to have substantially the same length.

チューブ状の第一要素9は、樹脂やゴム等の可撓性材料からなる円筒部材2と、その外周の軸方向複数箇所に定ピッチδ1で同軸形成したコイル3とで構成される。各コイル3は連絡配線6で接続され、さらに制御装置7を介して三相交流等の電源8に接続されている。この第一要素9は、例えば、上記可撓性材料を素材とする押出しあるいは引き抜き加工等の連続成形によって円筒部材2を形成し、成形機出口に配したコイル巻付け機で成形後の円筒部材2の外周にコイル3および連絡配線6を配し、さらにこれらを可撓性の熱可塑性樹脂等で円筒部材2に封埋した上で適当な長さに切断することで製作することができる。   The tube-shaped first element 9 includes a cylindrical member 2 made of a flexible material such as resin or rubber, and a coil 3 formed coaxially with a constant pitch δ1 at a plurality of axial positions on the outer periphery thereof. Each coil 3 is connected by a connection wiring 6 and further connected to a power source 8 such as a three-phase alternating current via a control device 7. The first element 9 is formed, for example, by forming a cylindrical member 2 by continuous molding such as extrusion or drawing using the flexible material as a raw material, and forming the cylindrical member by a coil winding machine disposed at the outlet of the molding machine. The coil 3 and the connection wiring 6 are arranged on the outer periphery of the wire 2 and are further embedded in a cylindrical member 2 with a flexible thermoplastic resin and then cut into an appropriate length.

ロッド状の第二要素10は、中実円筒状の複数の永久磁石4と、同じく中実円筒状で樹脂等の可撓性材料からなる可撓性部材5とで構成される。各永久磁石4は、磁極の向きを揃えて軸方向に等ピッチδ2で配列され、隣接する磁石4間に可撓性部材5が介在している。この第二要素10は、例えば可撓性部材5を構成する樹脂材料の押出しあるいは引き抜き加工等で連続形成することができる。磁石4と可撓性部材5は、第二要素10の変形時に作用するせん断力で分離しないよう強固に密着固定させ、望ましくは磁石4および可撓性部材5の全体を可撓性の熱可塑性樹脂等で封埋する等の手段で一体化させる。   The rod-shaped second element 10 includes a plurality of solid cylindrical permanent magnets 4 and a flexible member 5 which is also a solid cylindrical shape and is made of a flexible material such as resin. The permanent magnets 4 are arranged at an equal pitch δ2 in the axial direction with the magnetic poles aligned, and a flexible member 5 is interposed between the adjacent magnets 4. The second element 10 can be continuously formed, for example, by extruding or drawing a resin material constituting the flexible member 5. The magnet 4 and the flexible member 5 are firmly adhered and fixed so as not to be separated by a shearing force acting when the second element 10 is deformed, and preferably the entire magnet 4 and the flexible member 5 are flexible thermoplastic. They are integrated by means such as embedding with resin.

電源8から電流を供給すると、第一要素9側に各コイル3の作用で移動磁界が発生する。この移動磁界と第二要素10の界磁極との間に生じる電磁力により相対的な推力が発生し、両要素9、10が軸方向に相対スライドする結果、リニアモータ全体では伸縮運動が行われる。この際、制御装置7は、入力信号に基づき、電圧・電流制御や周波数制御を行って伸縮速度を制御し、さらには第一要素9と第二要素10間の相対位置を検出するセンサ(図示省略)からの位置情報に基づいて両要素9、10の相対位置を管理する。   When a current is supplied from the power supply 8, a moving magnetic field is generated on the first element 9 side by the action of each coil 3. A relative thrust is generated by the electromagnetic force generated between the moving magnetic field and the field pole of the second element 10, and the elements 9 and 10 slide relative to each other in the axial direction. As a result, the linear motor as a whole expands and contracts. . At this time, the control device 7 performs voltage / current control and frequency control based on the input signal to control the expansion / contraction speed, and further detects a relative position between the first element 9 and the second element 10 (illustrated). The relative positions of both elements 9 and 10 are managed based on the position information from (omitted).

以上の構成から、両要素9、10の例えば反対側の端部9a,10aをそれぞれ別部材に取付ければ、両部材を相対運動させることができ、人工筋肉としての利用が可能となる。この場合、リニアモータの特性から、大きな伸縮ストロークおよび高い応答性・動作安定性を得ることができ、かつストローク調整も自在となる。また、リニアモータ自体が筋繊維として機能するので、駆動部と変形部を別構造とする場合に比べ、全体をコンパクト化して設置個所の制約を少なくすることができる。   From the above configuration, if the opposite end portions 9a, 10a of both elements 9, 10 are attached to different members, both members can be moved relative to each other, and can be used as artificial muscles. In this case, from the characteristics of the linear motor, a large expansion / contraction stroke, high responsiveness / operation stability can be obtained, and stroke adjustment is also possible. In addition, since the linear motor itself functions as a muscle fiber, the entire configuration can be made compact and restrictions on the installation location can be reduced as compared with the case where the drive unit and the deforming unit have different structures.

また、リニアモータに可撓性を持たせたことから、任意の非直線形状に変形させた状態で使用することができる。この場合、二次元平面上だけでなく三次元空間上にも任意形状で設置することもでき、実現可能な動作の多様化が可能となる。従って、動作の自由度が高まり、単一の機構で人間等の動作に近い自然な運動を実現することができる。   Further, since the linear motor is flexible, it can be used in a state of being deformed into an arbitrary non-linear shape. In this case, it can be installed in an arbitrary shape not only on a two-dimensional plane but also in a three-dimensional space, and a variety of realizable operations is possible. Accordingly, the degree of freedom of movement is increased, and a natural movement close to the movement of a human or the like can be realized with a single mechanism.

この構成において、人工筋肉としての伸縮力は、コイル3の巻数や磁石4の磁束密度等を変更し、あるいはコイル3や磁石4の配設ピッチδ1、δ2を変更することで調節することができる。また、上記配設ピッチδ1、δ2は必ずしも等ピッチとする必要はなく、これらを軸方向で異なるピッチとすることで、伸縮力と電源電圧(電流)との間に非線形な関係を与えることができる。   In this configuration, the stretching force as the artificial muscle can be adjusted by changing the number of turns of the coil 3, the magnetic flux density of the magnet 4, or by changing the arrangement pitch δ 1 or δ 2 of the coil 3 or magnet 4. . Further, the arrangement pitches δ1 and δ2 are not necessarily equal pitches, and by setting them different in the axial direction, a non-linear relationship can be given between the stretching force and the power supply voltage (current). it can.

また、人工筋肉1を大きく変形させて使用する必要がある場合、リニアモータの可撓性を高める必要があるが、これは第一および第二要素9,10で使用する可撓性材料をより軟質のものに変更したり、あるいはコイル間ピッチδ1や磁石間ピッチδ2を拡大することによって対応することができる。   Further, when the artificial muscle 1 needs to be greatly deformed and used, it is necessary to increase the flexibility of the linear motor. This is because the flexible material used in the first and second elements 9 and 10 is more flexible. This can be dealt with by changing to a soft one or by increasing the inter-coil pitch δ1 and the inter-magnet pitch δ2.

リニアモータの二つの要素9、10は基本的に非接触となるが、大きく変形させた部分等では両要素9、10が接触して接触摩擦を生じる場合がある。その際の接触摩擦を減じるため、第一要素9の内周面と第二要素10の外周面との間には、PTFE等の固体潤滑被膜を介在させるのが望ましい。この被膜は、第一要素9の内周面および第二要素10の外周面の双方に形成する他、何れか一方の面に形成するだけでもよい。   The two elements 9 and 10 of the linear motor are basically in non-contact, but there are cases in which both elements 9 and 10 come into contact with each other at a greatly deformed portion or the like to cause contact friction. In order to reduce the contact friction at that time, it is desirable to interpose a solid lubricating film such as PTFE between the inner peripheral surface of the first element 9 and the outer peripheral surface of the second element 10. This film may be formed on both the inner peripheral surface of the first element 9 and the outer peripheral surface of the second element 10, or may be formed only on one of the surfaces.

図2は、この人口筋肉1の実際の使用例を示すもので、特に筋力が低下した者に対するアシスト装置12として使用したものである。このアシスト装置12は、上記人工筋肉1を使用者の関節(図示例では脚関節)を跨いで配置したもので、第一要素9の基端は固定部材14aを介して大腿部13aに装着され、第二要素9の先端は固定部材14bを介して脛部13bに装着されている。使用者のスイッチ操作あるいは適宜のセンサの検出値に基づいて制御装置7に入力信号を与え、リニアモータを駆動することにより、脚13を関節部で屈伸させて例えば使用者が椅子等から立ち上がる際、あるいは歩行する際のアシスト効果を得ることができる。この人工筋肉は、その可撓性から三次元的に変形させて脚13の形状にフィットさせることができるので、使用者の違和感も最小限に抑えることができる。この場合、制御装置7に予め使用者の筋力データを記憶させ、このデータに基づいて最適なアシスト力を算出し、算出値に合わせてリニアモータを駆動することもできる。   FIG. 2 shows an actual usage example of the artificial muscle 1, which is used as an assist device 12 for a person whose muscle strength has decreased. The assist device 12 is a device in which the artificial muscle 1 is disposed across a user's joint (a leg joint in the illustrated example), and the proximal end of the first element 9 is attached to the thigh 13a via a fixing member 14a. The tip of the second element 9 is attached to the shin part 13b via the fixing member 14b. When an input signal is given to the control device 7 based on a user's switch operation or a detection value of an appropriate sensor and a linear motor is driven, the leg 13 is bent and stretched at a joint portion, for example, when the user stands up from a chair or the like Alternatively, it is possible to obtain an assist effect when walking. Since this artificial muscle can be deformed three-dimensionally due to its flexibility to fit the shape of the leg 13, the user's uncomfortable feeling can be minimized. In this case, it is also possible to store the user's muscle strength data in the control device 7 in advance, calculate the optimum assist force based on this data, and drive the linear motor in accordance with the calculated value.

この他、義肢や義足等の義装具に上記人工筋肉を組み込むことにより、これら義装具に使用者の意思に応じた動きを与えることもできる。この人工筋肉は、人体に使用するほか、ペット等の動物にも使用することができ、さらにはロボットやマネキン人形における可動部の駆動源としても使用することもできる。   In addition, by incorporating the artificial muscle into a prosthetic device such as a prosthetic limb or a prosthetic foot, it is possible to give the prosthetic device a movement according to the intention of the user. This artificial muscle can be used not only for the human body, but also for animals such as pets, and can also be used as a drive source for movable parts in robots and mannequins.

図2では、人工筋肉1を直接脚13に取付けているが、この人工筋肉1は、衣服越しに取付けてもよく、あるいは衣服に縫い込むことによって取付けることもできる。   In FIG. 2, the artificial muscle 1 is directly attached to the leg 13, but the artificial muscle 1 may be attached through clothes or by sewing into clothes.

以上、本発明の実施形態の一例を示したが、例えば図3に示すように、図1に示す人工筋肉1を一本の筋繊維とみなし、それらを束ねたものを人工筋肉束1aとして用いることもできる。この場合、個々の人工筋肉1で発生する伸縮力の合力が人工筋肉束1a全体の伸縮力となるので、束ねる本数を加減することにより、容易に必要な伸縮力を得ることが可能となる。   As described above, an example of the embodiment of the present invention has been described. For example, as shown in FIG. 3, the artificial muscle 1 shown in FIG. 1 is regarded as one muscle fiber, and a bundle of them is used as the artificial muscle bundle 1a. You can also. In this case, the resultant force of the stretching force generated in each artificial muscle 1 becomes the stretching force of the whole artificial muscle bundle 1a. Therefore, the necessary stretching force can be easily obtained by adjusting the number of bundles.

以上の説明では、人口筋肉1としてリニア同期モータを使用する場合を例示したが、この他にも二次側の第二要素10を可撓性の導体で形成することにより、第一要素9の移動磁界で第二要素10に電流を誘導し、この誘導電流と移動磁界との間で推力を発生するリニア誘導モータも使用できる。この他、DCリニアモータなど他のリニアモータも使用可能である。リニアモータの形態も図示した円筒型に限らず、平面型を使用することもできる。   In the above description, a case where a linear synchronous motor is used as the artificial muscle 1 is illustrated, but in addition to this, by forming the second element 10 on the secondary side with a flexible conductor, A linear induction motor that induces a current in the second element 10 with a moving magnetic field and generates a thrust between the induced current and the moving magnetic field can also be used. In addition, other linear motors such as a DC linear motor can be used. The form of the linear motor is not limited to the illustrated cylindrical type, and a planar type can also be used.

本発明にかかる人工筋肉1の断面図である。It is sectional drawing of the artificial muscle 1 concerning this invention. 人間の脚関節に取付けられたアシスト装置12の正面図である。It is a front view of the assist apparatus 12 attached to a human leg joint. 人工筋肉1を束ねて形成された人工筋肉束1aの斜視図である。1 is a perspective view of an artificial muscle bundle 1a formed by bundling artificial muscles 1. FIG.

符号の説明Explanation of symbols

1 人工筋肉
1a 人工筋肉束
2 円筒部材
3 コイル
4 磁石
5 可撓性部材
7 制御装置
9 第一要素
10 第二要素
12 アシスト装置
13 脚
DESCRIPTION OF SYMBOLS 1 Artificial muscle 1a Artificial muscle bundle 2 Cylindrical member 3 Coil 4 Magnet 5 Flexible member 7 Control apparatus 9 1st element 10 2nd element 12 Assist apparatus 13 Leg

Claims (8)

相対直線運動を行う二つの要素の双方に可撓性を持たせたリニアモータからなる人工筋肉。 An artificial muscle consisting of a linear motor with both of the two elements that perform relative linear motions having flexibility. 二つの要素の少なくとも一方の可撓性が、両者の相対移動方向に間欠配置した可撓性材料によって与えられる請求項1に記載の人工筋肉。 The artificial muscle according to claim 1, wherein the flexibility of at least one of the two elements is provided by a flexible material intermittently arranged in the relative movement direction of the two elements. 二つの要素の少なくとも一方の可撓性が、両者の相対移動方向に連続配置した可撓性材料によって与えられる請求項1に記載の人工筋肉。 The artificial muscle according to claim 1, wherein the flexibility of at least one of the two elements is provided by a flexible material continuously arranged in the relative movement direction of the two elements. リニアモータが、二つの要素の何れか一方をロッド状、他方をその外周に配置したチューブ状とした円筒型リニアモータである請求項1に記載の人工筋肉。 2. The artificial muscle according to claim 1, wherein the linear motor is a cylindrical linear motor in which one of the two elements is formed in a rod shape and the other is disposed on the outer periphery thereof. 外側の要素が、可撓性の円筒部材およびこれと同軸に配置したコイルを有する請求項4に記載の人工筋肉。 The artificial muscle according to claim 4, wherein the outer element has a flexible cylindrical member and a coil arranged coaxially therewith. 内側の要素が、複数の磁石および磁石間に介在させた可撓性部材を有する請求項4または5に記載の人工筋肉。 The artificial muscle according to claim 4 or 5, wherein the inner element has a plurality of magnets and a flexible member interposed between the magnets. 二つの要素間に固体潤滑被膜を介在させた請求項1または4に記載の人工筋肉。 The artificial muscle according to claim 1 or 4, wherein a solid lubricating film is interposed between the two elements. 請求項1〜7の何れかに記載したリニアモータを複数束ねて構成した人工筋肉束。



An artificial muscle bundle configured by bundling a plurality of linear motors according to any one of claims 1 to 7.



JP2003290473A 2003-08-08 2003-08-08 Artificial muscle Withdrawn JP2005058351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290473A JP2005058351A (en) 2003-08-08 2003-08-08 Artificial muscle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290473A JP2005058351A (en) 2003-08-08 2003-08-08 Artificial muscle

Publications (1)

Publication Number Publication Date
JP2005058351A true JP2005058351A (en) 2005-03-10

Family

ID=34368494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290473A Withdrawn JP2005058351A (en) 2003-08-08 2003-08-08 Artificial muscle

Country Status (1)

Country Link
JP (1) JP2005058351A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089634A (en) * 2005-09-27 2007-04-12 Casio Comput Co Ltd Muscular strength assisting device
JP2012235928A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Walking support device
CN103598930A (en) * 2013-11-30 2014-02-26 陆华峰 Artificial muscle for generating hydraulic pressure with magnetofluid
JP2016521212A (en) * 2013-03-15 2016-07-21 エスアールアイ インターナショナルSRI International Exoskeleton suit
JP2017174651A (en) * 2016-03-24 2017-09-28 株式会社デンソー Heating apparatus
JP2019513990A (en) * 2016-04-08 2019-05-30 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Coordinate positioning machine
WO2020248236A1 (en) * 2019-06-10 2020-12-17 广州丰谱信息技术有限公司 Multi-directional controllable movement device with integration of push-pull units driven by electro-permanent magnets

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089634A (en) * 2005-09-27 2007-04-12 Casio Comput Co Ltd Muscular strength assisting device
JP4645392B2 (en) * 2005-09-27 2011-03-09 カシオ計算機株式会社 Strength assist device
JP2012235928A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Walking support device
JP2016521212A (en) * 2013-03-15 2016-07-21 エスアールアイ インターナショナルSRI International Exoskeleton suit
US9950422B2 (en) 2013-03-15 2018-04-24 Sri International Twisted string actuators for an exosuit system
US10105839B2 (en) 2013-03-15 2018-10-23 Sri International Electrolaminate clutches for an exosuit system
US10906168B2 (en) 2013-03-15 2021-02-02 Sri International Electrolaminate clutches for an exosuit system
CN103598930A (en) * 2013-11-30 2014-02-26 陆华峰 Artificial muscle for generating hydraulic pressure with magnetofluid
JP2017174651A (en) * 2016-03-24 2017-09-28 株式会社デンソー Heating apparatus
JP2019513990A (en) * 2016-04-08 2019-05-30 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Coordinate positioning machine
US11300396B2 (en) 2016-04-08 2022-04-12 Renishaw Plc Coordinate positioning machine
WO2020248236A1 (en) * 2019-06-10 2020-12-17 广州丰谱信息技术有限公司 Multi-directional controllable movement device with integration of push-pull units driven by electro-permanent magnets

Similar Documents

Publication Publication Date Title
JP5267907B2 (en) Actuator using magnetic force, driving device using the same, and sensor
JP5823410B2 (en) Electric toothbrush with actuator on brush head
US10247173B2 (en) Elastic motor-spring actuator
Phan et al. HFAM: soft hydraulic filament artificial muscles for flexible robotic applications
Song et al. Bioinspired segment robot with earthworm-like plane locomotion
JP2005058351A (en) Artificial muscle
Walters et al. Digital fabrication of “smart” structures and mechanisms-creative applications in art and design
CN202952264U (en) Bionic telescopic tissue chain
JPWO2007136090A1 (en) Medical manipulator and medical manipulator apparatus using the same
Wu et al. Biorobotic systems design and development using TCP muscles
JPWO2018083763A1 (en) Variable stiffness actuator
CN106859946B (en) Electric massage device
Pham et al. A soft robot to navigate the lumens of the body using undulatory locomotion generated by a rotating magnetic dipole field
Mansour et al. Design of a novel multi-modal tactile display device for biomedical applications
JP2008125301A (en) Actuator
Helps et al. Easy undressing with soft robotics
JP2007296612A (en) Electromagnetic actuator and electromagnetic actuator device
KR100249419B1 (en) The motion module of the multi-freedom degree using the human muscle characteristic
JP2021164300A (en) Linear motor and motor-driven appliance
Zhang et al. Driving flip origami motions with thermal-responsive shape memory alloy
JP2010227257A (en) Actuator and massage machine
US20080036308A1 (en) Magnetically Driven Reciprocating System And Method
KR19990065578A (en) Artificial muscle module of electromagnetism type
JP4960320B2 (en) Actuator
Hamdan et al. Demonstration of Springlets: Expressive, Flexible and Silent On-Skin Tactile Interfaces

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107