JP2005057921A - Magnetically driven device - Google Patents

Magnetically driven device Download PDF

Info

Publication number
JP2005057921A
JP2005057921A JP2003287817A JP2003287817A JP2005057921A JP 2005057921 A JP2005057921 A JP 2005057921A JP 2003287817 A JP2003287817 A JP 2003287817A JP 2003287817 A JP2003287817 A JP 2003287817A JP 2005057921 A JP2005057921 A JP 2005057921A
Authority
JP
Japan
Prior art keywords
rotating member
magnet
magnetic
magnets
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003287817A
Other languages
Japanese (ja)
Inventor
Tomoji Umeda
外茂治 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003287817A priority Critical patent/JP2005057921A/en
Publication of JP2005057921A publication Critical patent/JP2005057921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetically driven device that consumes less energy, is highly efficient, and obtains driving force using a simple structure. <P>SOLUTION: The magnetically driven device is provided with at least a pair of rotary members H, in which a plurality of magnets M are disposed at equal intervals along their peripheral edges, at a predetermined interval. A pair of the rotary members H are so constituted that they can be rotated synchronously in the opposite directions so that the magnets M in the same pole disposed on the respective rotary members are opposed to each other. The magnetically driven device is provided with a movable magnetic shield that blocks magnetic force exerted between magnets M on either rotary member H and magnets M on the other rotary member H, and a turning force applying means that applies turning force to the rotary members H by the magnetic force of the magnets M. The movable magnetic shield varies the state of blocking the magnetic force of the closest portions of the rotary members H and the portions in proximity thereto. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁石の磁力及び磁気シールドを利用して駆動力を得る磁気駆動装置に関する。   The present invention relates to a magnetic driving apparatus that obtains a driving force by using a magnetic force of a magnet and a magnetic shield.

モータ等の駆動装置では、環境問題等から省エネルギ化、高効率化が求められている。このため、永久磁石を補助的に用いる駆動装置、例えば、磁石式モータが注目されるようになってきている。尚、磁石式モータは非接触なので、従来の巻線型モータに比べ、低騒音でかつメンテナンス等にかかる手間を省力化することができ、小型軽量化することもできる。磁石式モータは、家庭用家電、エレベータ、電気車両駆動、電気自動車等で用いられる。   Drive devices such as motors are required to save energy and increase efficiency due to environmental problems. For this reason, attention has been focused on drive devices that use permanent magnets in an auxiliary manner, for example, magnetic motors. In addition, since the magnet type motor is non-contact, compared with the conventional winding type motor, it is possible to reduce the noise and labor required for maintenance, and to reduce the size and weight. Magnet motors are used in household appliances, elevators, electric vehicle drives, electric vehicles, and the like.

しかしながら、上述した磁石式モータ等は、一般的に、補助的に永久磁石を用いるものであり、これらの磁力を利用して駆動力を得るものではない。また、他の電気的エネルギ等が必要となるが、これらのエネルギに対する消費エネルギ量やエネルギ効率等には改良の余地がある。
本発明は上記の問題に鑑みてなされたものであり、その目的は、消費エネルギが少なく高効率でかつ簡易な構造で駆動力を得ることができる磁気駆動装置を得る点にある。
However, the above-described magnet type motor or the like generally uses a permanent magnet as an auxiliary, and does not obtain a driving force using these magnetic forces. Further, other electrical energy is required, but there is room for improvement in the amount of energy consumed and energy efficiency for these energies.
The present invention has been made in view of the above problems, and an object of the present invention is to obtain a magnetic driving device that can obtain a driving force with low energy consumption, high efficiency, and a simple structure.

〔特徴構成1〕
この目的を達成するための本発明に係る磁気駆動装置の第一特徴構成は、外周縁に沿って複数の磁石を等間隔に配置した回転部材を、所定の間隔をおいて少なくとも1対備えるとともに、夫々の回転部材に配置した同極の磁石同士が対向するように前記1対の回転部材を互いに反対方向に同期回転可能に構成し、一方の前記回転部材の前記磁石と他方の前記回転部材の前記磁石との間に作用する磁力を遮蔽する可動式磁気シールドと、前記磁石の磁力によって前記回転部材に回転力を付与する回転力付与手段とを備え、前記可動式磁気シールドが、前記回転部材同士の最近接部及びその近傍の磁力の遮蔽状態を変化させる点にある。
[Characteristic configuration 1]
In order to achieve this object, the first characteristic configuration of the magnetic drive device according to the present invention includes at least one pair of rotating members arranged at equal intervals along the outer peripheral edge at a predetermined interval. The pair of rotating members are configured to be capable of synchronous rotation in opposite directions so that the same-polarity magnets disposed on the respective rotating members face each other, and the magnet of one rotating member and the other rotating member A movable magnetic shield that shields the magnetic force acting between the magnet and the rotational force imparting means that imparts a rotational force to the rotating member by the magnetic force of the magnet. It is in the point which changes the shielding state of the magnetic force of the nearest part of members and its vicinity.

ここでの回転部材は、良好な回転状態を得るために、円形の板状部材であることが望ましいが、多角形や歯車状の板状部材であってもよいし、球等の形状であってもよい。尚、回転部材に設置される磁石は、略同一の磁力を有する磁石を用い、回転部材の回転中心からの距離が全て同じに構成すれば、良好な回転状態を得ることができる。更に、磁石の磁力を高効率で取出すために、回転部材の外縁よりその表面だけが露出するように設置してもよい。   The rotating member here is preferably a circular plate-like member in order to obtain a good rotation state, but may be a polygonal or gear-like plate-like member or a shape such as a sphere. May be. In addition, if the magnet installed in a rotation member uses the magnet which has substantially the same magnetic force, and the distance from the rotation center of a rotation member is all comprised the same, a favorable rotation state can be obtained. Furthermore, in order to take out the magnetic force of the magnet with high efficiency, it may be installed so that only the surface of the rotating member is exposed.

本特徴構成によると、可動式磁気シールドを設置可能な間隔をおいて1対の回転部材を配置し、回転力付与手段により回転部材に対し所定方向への回転力を付与するとともに、回転部材同士の最近接部及びその近傍の磁場の遮蔽状態を可動式磁気シールドを用いて断続的に変化させることにより、1対の回転部材を回転させる。詳細には、回転力付与手段で回転力を付与させつつ、対向する磁石を近接させることと、可動式磁気シールドを駆動させることで、近接した磁石同士に斥力を生じさせて離間させることとを繰り返すことで1対の回転部材を回転させる。   According to this characteristic configuration, a pair of rotating members are arranged at an interval at which a movable magnetic shield can be installed, and a rotational force in a predetermined direction is applied to the rotating members by the rotational force applying means. A pair of rotating members are rotated by intermittently changing the shielding state of the magnetic field in the closest part and the vicinity thereof using a movable magnetic shield. Specifically, while applying the rotational force by the rotational force applying means, bringing the opposing magnets close to each other, and driving the movable magnetic shield to generate a repulsive force between the adjacent magnets to separate them. By repeating, the pair of rotating members are rotated.

したがって、可動式磁気シールドの駆動制御により、回転部材の回転数等を任意に制御することが出来るとともに、1つの可動式磁気シールドで少なくとも1対の回転部材が同時に駆動されるので、高効率な磁気駆動装置を実現することができる。   Therefore, the number of rotations of the rotating member can be arbitrarily controlled by the drive control of the movable magnetic shield, and at least one pair of the rotating members are driven simultaneously by one movable magnetic shield. A magnetic drive device can be realized.

〔特徴構成2〕
同第二特徴構成は、前記回転力付与手段は、強磁性体から成り、かつ、前記回転部材の輪郭に沿った形状に形成され、前記最近接部から遠方程、前記回転部材との間隔が大きくなるように構成する点にある。
[Characteristic configuration 2]
In the second characteristic configuration, the rotational force applying means is made of a ferromagnetic material and is formed in a shape along the outline of the rotating member, and the distance from the rotating member is farther away from the closest part. The point is that it is configured to be large.

本特徴構成によると、回転力付与手段を強磁性体で形成し、この回転力付与手段と回転部材の磁石との引力を利用して、回転部材の回転駆動を補助する。一般的に、強磁性体と磁石とは引き合うので、磁石と回転力付与手段との引力により磁石はより回転力付与手段に近づこうとする。つまり、回転力付与手段を最近接部から遠方程、回転部材との間隔が大きくなるように構成することにより、回転部材の磁石はより回転力付与手段に近づくように最近接部に向かって移動し、これによって回転力を得ることができる。したがって、磁石と可動式磁気シールドとの引力を駆動力として利用することで、より高効率で駆動エネルギを得ることのできる磁気駆動装置を実現することができる。   According to this characteristic configuration, the rotational force applying means is formed of a ferromagnetic material, and rotational driving of the rotating member is assisted by using the attractive force between the rotational force applying means and the magnet of the rotating member. In general, since the ferromagnetic material and the magnet attract each other, the magnet tends to be closer to the rotational force applying means by the attractive force between the magnet and the rotational force applying means. That is, by configuring the rotational force applying means to be farther away from the closest part, the magnet of the rotating member moves toward the closest part so as to be closer to the rotational force applying means. Thus, rotational force can be obtained. Therefore, by using the attractive force between the magnet and the movable magnetic shield as the driving force, it is possible to realize a magnetic driving device that can obtain driving energy with higher efficiency.

〔特徴構成3〕
同第三特徴構成は、前記回転力付与手段及び前記可動式磁気シールドは軟磁性体である点にある。
[Characteristic configuration 3]
The third characteristic configuration is that the rotational force applying means and the movable magnetic shield are soft magnetic bodies.

本特徴構成のごとく、回転力付与手段及び可動式磁気シールドを軟磁性体で構成すれば、軟磁性体は磁化され難いので、回転力付与手段が磁化されて回転部材との間に意図しない引力または斥力を生じさせて回転部材の回転を阻害することがない。また、可動式磁気シールドが磁化されて磁石との間に引力が生じて、当該可動式磁気シールドを駆動させるのに必要な駆動力が増大する不具合をより適切に回避できる。また、特に、回転力付与手段及び可動式磁気シールドを軟磁性体である軟鉄で構成した場合には、一般的に、軟鉄は軟らかく展延性が大きいため任意の形状に加工し易いので、その作成が容易となる。従って、軟磁性体を用いることにより、駆動をより少ない力で容易に行うことができ、かつ、回転力付与手段及び可動式磁気シールドの形成が容易となる。   If the rotational force applying means and the movable magnetic shield are made of a soft magnetic material as in this feature configuration, the soft magnetic material is difficult to be magnetized. Or repulsive force is not produced and rotation of a rotation member is not inhibited. Further, it is possible to more appropriately avoid the problem that the movable magnetic shield is magnetized and an attractive force is generated between the movable magnetic shield and the driving force necessary to drive the movable magnetic shield increases. In particular, when the rotational force imparting means and the movable magnetic shield are made of soft iron, which is a soft magnetic material, the soft iron is generally soft and has high extensibility, so it can be easily processed into an arbitrary shape. Becomes easy. Therefore, by using a soft magnetic material, driving can be easily performed with less force, and formation of a rotational force applying means and a movable magnetic shield is facilitated.

〔特徴構成4〕
同第四特徴構成は、前記回転力付与手段を、回転可能に構成し、かつ、前記回転力付与手段の回転軸と垂直方向の断面積が最大となる断面の輪郭形状を螺線状に形成すると共に、当該螺線状の輪郭形状を有する部分に前記可動式磁気シールドを設けてある点にある。
[Characteristic configuration 4]
In the fourth characteristic configuration, the rotational force applying means is configured to be rotatable, and the contour shape of the cross section that maximizes the cross-sectional area in the direction perpendicular to the rotational axis of the rotational force applying means is formed in a spiral shape. In addition, the movable magnetic shield is provided in a portion having the spiral outline.

本特徴構成によれば、例えば、1対の回転部材の間で回転力付与手段が回転可能に構成する。そして、具体的には、回転力付与手段のうち回転部材同士の最近接部に配置する部分について、断面を螺線状に構成する。この回転力付与手段を回転させると当該回転力付与手段の外縁部は、前記1対の回転部材に対して出入りするが、ここでは、この螺旋状の輪郭が広がって1対の回転部材の最近接部に可動式磁気シールドが進入する方向に回転させる。磁石が最近接部に達した直後にシールドが解除され、シールド解除の際に磁石同士の間に働く斥力により回転力が付与され、回転部材は回転を持続する。よって、可動式磁気シールドを回転させることで、シールドの設定、解除を繰返し連続的に行い、回転部材を回転させることができる。   According to this characteristic configuration, for example, the rotational force applying means is configured to be rotatable between a pair of rotating members. Specifically, the section of the rotational force applying means that is disposed at the closest portion between the rotating members is formed in a spiral shape. When the rotational force applying means is rotated, the outer edge portion of the rotational force applying means moves in and out of the pair of rotating members. Rotate in the direction in which the movable magnetic shield enters the contact. Immediately after the magnet reaches the closest part, the shield is released. When the shield is released, a rotational force is applied by a repulsive force acting between the magnets, and the rotating member continues to rotate. Therefore, by rotating the movable magnetic shield, the shield can be set and released repeatedly and continuously, and the rotating member can be rotated.

〔特徴手段1〕
この目的を達成するための本発明に係る磁気駆動方法の第一特徴手段は、外周縁に沿って複数の磁石を等間隔に配置した回転部材を、所定の間隔をおいて少なくとも1対備えるとともに、夫々の回転部材に配置した同極の磁石同士が対向するように前記1対の回転部材を互いに反対方向に同期回転可能に構成し、かつ、一方の前記回転部材の前記磁石と他方の前記回転部材の前記磁石との間に作用する磁力を遮蔽する可動式磁気シールドを有し、前記磁石に磁力を作用させる回転力付与手段によって前記回転部材に回転力を付与し、同極の前記磁石同士が互いに最近接する位置に達した直後に、前記可動式磁気シールドを駆動させることで同極の前記磁石同士に斥力を作用させて前記回転部材を回転駆動し、前記可動式磁気シールドを駆動させることで、前記磁石の引力と斥力とを互いに交互に作用させて前記回転部材の回転を維持する点にある。
[Feature 1]
In order to achieve this object, the first characteristic means of the magnetic drive method according to the present invention comprises at least one pair of rotating members having a plurality of magnets arranged at equal intervals along the outer peripheral edge. The pair of rotating members are configured to be capable of synchronous rotation in opposite directions so that the same-polarity magnets arranged on the respective rotating members face each other, and the magnet of one of the rotating members and the other of the rotating member A magnet having a movable magnetic shield for shielding a magnetic force acting between the rotating member and the magnet, and applying a rotating force to the rotating member by a rotating force applying means for applying a magnetic force to the magnet. Immediately after reaching the position where they are closest to each other, the movable magnetic shield is driven to cause repulsive force to act on the magnets having the same polarity to rotate the rotating member, thereby driving the movable magnetic shield. In Rukoto, it is maintaining the rotation of said rotary member is caused to act alternately to each other and attractive and repulsive forces of the magnet.

即ち、本発明に係る磁気駆動方法の上記第一特徴手段によれば、可動式磁気シールドを駆動することで、回転部材夫々に作用する引力と斥力とを制御する。したがって、回転力付与手段を適切に駆動することにより、構造が簡易でありながら駆動力を得ることができる磁気駆動方法を実現することができる。   That is, according to the first characteristic means of the magnetic driving method according to the present invention, the attractive force and the repulsive force acting on each rotating member are controlled by driving the movable magnetic shield. Therefore, by appropriately driving the rotational force applying means, it is possible to realize a magnetic driving method capable of obtaining a driving force with a simple structure.

本発明に係る磁気駆動装置(以下、適宜「本発明装置」と略称する)の実施例について、図面に基づいて説明する。   Embodiments of a magnetic drive device according to the present invention (hereinafter, appropriately abbreviated as “device of the present invention”) will be described with reference to the drawings.

本発明に係る磁気駆動装置1の第一実施例について、図1乃至図2を基に説明する。本発明装置は、複数の同一の磁石Mがその外周端部に配置された2枚の板状回転部材Hと、回転力付与手段及び磁気シールドが一体構成された本体部Gとからなる。ここで、図1は板状回転部材Hの面方向の断面図であり、図2は図1の本体部Gの端部GLを含むY軸に垂直な面の断面図である。
本発明に係る磁気駆動装置1は、磁石Mによる引力を作用させる回転力付与手段によって板状回転部材Hに回転力を付与し、同極の磁石同士が互いに最近接する位置に達した直後に、磁気シールドを駆動させることで同極の磁石M同士に斥力を作用させて板状回転部材Hを回転駆動し、さらに、磁気シールドを駆動させることで、磁石Mの引力と斥力とを互いに交互に作用させて板状回転部材Hの回転を維持する。
A first embodiment of a magnetic drive device 1 according to the present invention will be described with reference to FIGS. The device of the present invention comprises two plate-like rotating members H in which a plurality of identical magnets M are arranged at the outer peripheral end, and a main body G in which a rotational force applying means and a magnetic shield are integrally formed. Here, FIG. 1 is a cross-sectional view in the surface direction of the plate-like rotating member H, and FIG. 2 is a cross-sectional view of a surface perpendicular to the Y axis including the end portion GL of the main body portion G in FIG.
The magnetic drive device 1 according to the present invention applies a rotational force to the plate-like rotary member H by the rotational force applying means that applies an attractive force by the magnet M, and immediately after the magnets having the same polarity reach the closest position to each other, Driving the magnetic shield causes repulsive force to act on the magnets M of the same polarity to rotate the plate-like rotating member H, and further driving the magnetic shield causes the attractive force and repulsive force of the magnet M to alternate with each other. The rotation of the plate-like rotating member H is maintained by acting.

本実施例の板状回転部材Hは、図1に示すように、例えば、半径125mmの円形の板状回転部材であり、2枚の板状回転部材Hが互いに同期して回転するように構成されている。板状回転部材Hは、本体部Gの端部GLを間に介し、互いに接触しないように同一平面上に設置する。2枚の板状回転部材Hは、互いの回転中心を結ぶ軸、即ち図のY軸上で最も近接する。   As shown in FIG. 1, the plate-like rotating member H of the present embodiment is a circular plate-like rotating member having a radius of 125 mm, for example, and is configured such that the two plate-like rotating members H rotate in synchronization with each other. Has been. The plate-like rotating member H is installed on the same plane so as not to contact each other with the end portion GL of the main body portion G interposed therebetween. The two plate-like rotating members H are closest to each other on an axis connecting the rotation centers of each other, that is, the Y axis in the figure.

板状回転部材Hに配置された磁石Mは、希土類磁石、フェライト磁石等の永久磁石であり、図1及び図2に示すように、順に磁石M1から磁石M16の16個の磁石Mが等間隔に配置されている。この磁石Mは、例えば、直径10mm高さ5mmの円柱であり、その底面、即ち磁極表面が板状回転部材Hより露出するように板状回転部材Hに埋設されている。また、全ての磁石MはN極を外側に向けて設置されている。   The magnets M arranged on the plate-like rotary member H are permanent magnets such as rare earth magnets and ferrite magnets, and as shown in FIGS. Is arranged. The magnet M is, for example, a cylinder having a diameter of 10 mm and a height of 5 mm, and is embedded in the plate-like rotating member H so that its bottom surface, that is, the magnetic pole surface is exposed from the plate-like rotating member H. All the magnets M are installed with the north pole facing outward.

本体部Gは、端部GLを含む断面の形状が、図2に示すように、略対数螺線状に形成され、端部GLより時計回りに次第に回転中心と外郭との距離が短くなるように構成されており、端部GLを含む板状回転部材Hの間に進入する部位が磁気シールドを構成している。また、本体部GはY軸と平行な回転軸周りに回転可能に構成されている。図2の円Pは板状回転部材Hの最近接部を示しており、本体部Gの回転時に図1のY軸を通過する位置である。本体部Gの回転軸と外郭との最短距離は円Pの半径より短く、最長距離は円Pの半径より長くなるように構成されている。   As shown in FIG. 2, the cross-sectional shape including the end portion GL is formed in a substantially logarithmic spiral shape so that the distance between the rotation center and the outline gradually decreases in the clockwise direction from the end portion GL. The part which enters between the plate-shaped rotating members H including the end GL constitutes a magnetic shield. The main body G is configured to be rotatable around a rotation axis parallel to the Y axis. A circle P in FIG. 2 shows the closest part of the plate-like rotating member H, and is a position that passes through the Y axis in FIG. The shortest distance between the rotation axis of the main body G and the outline is shorter than the radius of the circle P, and the longest distance is longer than the radius of the circle P.

図1及び図2に示すように、本体部Gは、端部GLが2枚の板状回転部材Hの最近接部、図1のY軸を超えて伸長するように構成される。これは、磁石Mの位置が回転方向にY軸を超えた状態で斥力が発生すれば、その方向に分力が働き、確実に回転を維持することができることによるものであり、端部GLのY軸を超えて伸長する長さは、磁石MがY軸を超えた位置に到達できる程度にする。   As shown in FIGS. 1 and 2, the main body G is configured such that the end GL extends beyond the closest part of the two plate-like rotating members H and the Y axis in FIG. 1. This is because if a repulsive force is generated in a state where the position of the magnet M exceeds the Y axis in the rotation direction, a component force acts in that direction, and rotation can be reliably maintained. The length that extends beyond the Y axis is such that the magnet M can reach a position beyond the Y axis.

本実施例の本体部Gは強磁性体、特に軟磁性体である軟鉄から成り、磁石Mと引き合う。更に、本実施例の本体部Gは、回転力付与手段を構成すべく、板状回転部材Hの形状に合わせて、板状回転部材Hとの間隔が端部GLより遠ざかる程大きくなるように形成する。尚、本体部Gの大きさは任意に設定可能であるが、板状回転部材Hに対し回転力を良好に付すことができる大きさであればよい。また、端部GLの厚みは、磁石Mの板状回転部材H間に働く斥力を遮蔽するのに必要な厚さを設定する。ここで、本実施例の端部GLの厚みL1は1.5mm、端部GLと板状回転部材Hとの間の間隔L2は0.3mm、板状回転部材Hと本体部Gとの間の間隔の最大幅L3は10mmである。   The main body G of this embodiment is made of a ferromagnetic material, particularly soft iron, which is a soft magnetic material, and attracts the magnet M. Furthermore, the main body G of the present embodiment is configured so as to form a rotational force applying means so that the distance from the plate-like rotating member H becomes farther away from the end portion GL in accordance with the shape of the plate-like rotating member H. Form. Although the size of the main body G can be arbitrarily set, it may be any size as long as the rotational force can be favorably applied to the plate-like rotating member H. Further, the thickness of the end portion GL is set to a thickness necessary for shielding the repulsive force acting between the plate-like rotating members H of the magnet M. Here, the thickness L1 of the end portion GL of the present embodiment is 1.5 mm, the interval L2 between the end portion GL and the plate-like rotating member H is 0.3 mm, and the space between the plate-like rotating member H and the main body portion G is The maximum width L3 of the interval is 10 mm.

本実施例では16個の磁石Mを設置したがこれに限られない。板状回転部材Hの大きさ、磁石M間の斥力及び本体部Gとの引力等を考慮して適切な数の磁石Mを設置する。   In this embodiment, 16 magnets M are installed, but the present invention is not limited to this. Considering the size of the plate-like rotating member H, the repulsive force between the magnets M, the attractive force with the main body G, and the like, an appropriate number of magnets M are installed.

〔回転動作〕
次に、本体部G及び板状回転部材Hの動作について図1乃至図2を基に説明する。ここで、説明のために、現在最近接部近傍のAの位置にある磁石Mを磁石M1とする。この磁石M1は本体部Gの回転にともなってAの位置から反時計周りにBの位置まで移動する。図2の白円はM1の移動の軌跡を表している。
(Rotation operation)
Next, operations of the main body G and the plate-like rotating member H will be described with reference to FIGS. Here, for the sake of explanation, it is assumed that the magnet M at the position A in the vicinity of the closest part is the magnet M1. The magnet M1 moves from the position A to the position B counterclockwise as the main body G rotates. The white circle in FIG. 2 represents the movement locus of M1.

本実施形態では、図1に示すように、磁石M1から磁石M6と本体部Gとの間に作用する引力により、磁石M1から磁石M6はより本体部Gに近づくように最近接部に向かって移動し、磁石M1が本体部Gの外郭近傍、即ち最近接部近傍に移動する。これにより、板状回転部材Hに回転力が付与される。   In the present embodiment, as shown in FIG. 1, the magnet M <b> 1 to the magnet M <b> 6 move closer to the closest portion so that the magnet M <b> 1 is closer to the main body G due to the attractive force acting between the magnet M <b> 1 to the magnet M <b> 6 and the main body G. The magnet M1 moves to the vicinity of the outline of the main body G, that is, the vicinity of the closest part. Thereby, a rotational force is applied to the plate-like rotating member H.

図2に示すように、本体部Gを時計回りに回転させると、その端部GLが図2のX軸に近づき、磁石M1は遠方より最近接部に向かって移動する。更に本体部Gを回転させると、本体部Gの端部GLがX軸に沿って2枚の板状回転部材Hの間に進入し、2枚の板状回転部材Hの間に斥力が生じるのを防止する。磁石M1は、本体部Gとの引力によりその進入とともに移動し、板状回転部材Hを図1に示す矢印の方向に、即ち、上方の板状回転部材Hを反時計回りに、下方の板状回転部材Hを時計回りに回転させる。更に本体部Gが時計回りに回転すると、その端部GLが2枚の板状回転部材Hの間を通過するときに遮蔽量が最大となる。このとき、磁石M1は、本体部Gとの引力により、最近接部よりも本体部Gの回転軸から遠ざかるBの位置にくる。端部GLが最近接部を通過すると、シールドが解除され、2枚の板状回転部材Hの磁石M1の間に斥力が作用し、磁石M1は互いに同期して離間する方向に移動する。これにより、板状回転部材Hの回転状態が維持される。   As shown in FIG. 2, when the main body G is rotated clockwise, the end GL approaches the X axis in FIG. 2, and the magnet M1 moves toward the nearest part from a distance. When the main body G is further rotated, the end GL of the main body G enters between the two plate-like rotating members H along the X axis, and a repulsive force is generated between the two plate-like rotating members H. To prevent. The magnet M1 moves as it enters due to the attractive force with the main body G, and moves the plate-like rotary member H in the direction of the arrow shown in FIG. 1, ie, the upper plate-like rotary member H counterclockwise, and the lower plate The rotating member H is rotated clockwise. Further, when the main body G rotates clockwise, the shielding amount becomes maximum when the end GL passes between the two plate-like rotating members H. At this time, the magnet M <b> 1 comes to a position B that is farther away from the rotation axis of the main body part G than the closest part due to the attractive force with the main body part G. When the end portion GL passes through the closest portion, the shield is released, a repulsive force acts between the magnets M1 of the two plate-like rotating members H, and the magnets M1 move in a direction away from each other in synchronization. Thereby, the rotation state of the plate-like rotation member H is maintained.

尚、本実施例では、本体部Gの1回転によって板状回転部材Hは磁石M1つ分、本実施例では1/16回転する。板状回転部材Hの回転数は、本体部Gの回転数を板状回転部材Hに設置された磁石Mの数で除算して求められる。   In this embodiment, the plate-like rotating member H rotates by 1/16 of the magnet M by one rotation of the main body G, in this embodiment. The rotational speed of the plate-like rotating member H is obtained by dividing the rotational speed of the main body G by the number of magnets M installed on the plate-like rotating member H.

本発明にかかる磁気駆動装置1の第二実施例について、図3を基に説明する。図3は、本体部Gの端部GLを含むY軸に垂直な面の断面図であり、第一実施例では端部GLは1つのみ形成されていたが、本実施例では2つの端部GLが形成されている。このように構成した場合には、本体部Gの1回転によって板状回転部材Hは磁石M2つ分回転する。   A second embodiment of the magnetic drive device 1 according to the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view of a surface perpendicular to the Y axis including the end portion GL of the main body G. In the first embodiment, only one end portion GL is formed. Part GL is formed. When configured in this way, the plate-like rotating member H is rotated by two magnets M by one rotation of the main body G.

尚、形成する端部GLの数は、上述した第一実施例及び第二実施例に限られず任意の数作製可能であり、板状回転部材Hの回転量は、本体部Gの回転数を板状回転部材Hに設置された磁石Mの数で除算した値に端部GLの数を積算して求められる。   The number of end portions GL to be formed is not limited to the first embodiment and the second embodiment described above, and any number can be manufactured. The amount of rotation of the plate-like rotating member H is the number of rotations of the main body portion G. It is obtained by adding the number of end portions GL to the value divided by the number of magnets M installed on the plate-like rotating member H.

本発明にかかる磁気駆動装置1の第三実施例について、図4を基に説明する。本実施例では、1の本体部Gに対し、複数の板状回転部材Hの組が本体部Gを取り囲むように配置されている。このような構成にすることにより、本体部Gの同じ回転で複数の板状回転部材Hの組を同時に駆動することができる。つまり、設置した板状回転部材Hの数に比例してより多くの駆動力を得ることができる。   A third embodiment of the magnetic drive device 1 according to the present invention will be described with reference to FIG. In the present embodiment, a set of a plurality of plate-like rotating members H is arranged so as to surround the main body G with respect to one main body G. With such a configuration, a set of a plurality of plate-like rotating members H can be simultaneously driven by the same rotation of the main body G. That is, more driving force can be obtained in proportion to the number of installed plate-like rotating members H.

本発明にかかる磁気駆動装置1の第四実施例について、図5を基に説明する。本実施例では、1の本体部Gに対し、対応する板状回転部材Hの回転中心を同軸上に構成した複数の板状回転部材Hの組が設置されている。この実施例では、本体部Gは円形ではなく、略柱状に形成されている。また、2枚の板状回転部材Hの最近接部近傍の遮蔽状態を変更可能にするために、端部GLは、凹凸部の連続した形状、例えば、図5に示すように、長方形状の複数の同一の切欠き部が等間隔に複数設けられている形状に形成されている。この本体部Gを板状回転部材Hの軸芯方向にスライド動作させると、2枚の板状回転部材Hの間に斥力が断続的に作用し、板状回転部材Hを回転駆動することができる。尚、切欠き部の形状は長方形に限らず、台形等であってもよい。このように構成することにより、上述した第三実施例と同様に、1の本体部Gの動作で複数の板状回転部材Hの組を同時に駆動して、板状回転部材Hの数に比例した駆動力を得ることができるのである。   A fourth embodiment of the magnetic drive device 1 according to the present invention will be described with reference to FIG. In the present embodiment, a set of a plurality of plate-like rotating members H in which the rotation center of the corresponding plate-like rotating member H is configured coaxially with respect to one main body G is installed. In this embodiment, the main body G is not circular but is formed in a substantially columnar shape. Further, in order to be able to change the shielding state in the vicinity of the closest part of the two plate-like rotating members H, the end portion GL has a continuous shape of uneven portions, for example, a rectangular shape as shown in FIG. A plurality of identical notches are formed in a shape in which a plurality are provided at equal intervals. When the main body G is slid in the axial direction of the plate-like rotating member H, a repulsive force acts intermittently between the two plate-like rotating members H, and the plate-like rotating member H can be rotated. it can. The shape of the notch is not limited to a rectangle, but may be a trapezoid or the like. By configuring in this way, similarly to the third embodiment described above, a set of a plurality of plate-like rotating members H is simultaneously driven by the operation of one main body G, and is proportional to the number of plate-like rotating members H. The driving force can be obtained.

本発明にかかる磁気駆動装置1の第五実施例について、図6乃至図7を基に説明する。本実施例では、図6乃至図7に示すように、円盤の上下面に本体部Gが形成されている。この本体部Gは、円盤の面より回転力付与手段と端部GLとが順に構成され、更に、重量を減少させて駆動力を低減するために本体部Gと円盤との間が中空になるように構成されている。更に、本実施例では、端部GLは上下面で計4ヶ所に形成されている。板状回転部材Hは、円盤の上下面の本体部G夫々に対し複数組設置されている。   A fifth embodiment of the magnetic drive device 1 according to the present invention will be described with reference to FIGS. In the present embodiment, as shown in FIGS. 6 to 7, body portions G are formed on the upper and lower surfaces of the disk. In the main body G, a rotational force applying means and an end GL are formed in this order from the surface of the disk, and the space between the main body G and the disk becomes hollow in order to reduce the driving force by reducing the weight. It is configured as follows. Furthermore, in this embodiment, the end portions GL are formed at a total of four locations on the upper and lower surfaces. A plurality of plate-like rotating members H are installed for each of the main body portions G on the upper and lower surfaces of the disk.

この円盤を回転させると、円盤の上下面夫々に形成した本体部Gがともに回転し、この回転にともなって複数の板状回転部材Hの組が同期回転する。板状回転部材Hは、本体部Gの回転数、及び、本体部Gに形成された端部GLの数に比例した回転数を得る。したがって、本実施例において板状回転部材Hより得られる全体の駆動力は、板状回転部材Hの数に比例するので、1の本体部Gの回転駆動で効率よく駆動力を得ることができるのである。尚、本実施例では端部GLは上下面で計4ヶ所に形成したが、これに限るものではなく、任意の数形成可能である。   When this disk is rotated, the main body portions G formed on the upper and lower surfaces of the disk are rotated together, and a set of a plurality of plate-like rotating members H is rotated synchronously with this rotation. The plate-like rotating member H obtains the number of rotations proportional to the number of rotations of the main body part G and the number of end portions GL formed on the main body part G. Therefore, since the entire driving force obtained from the plate-like rotating member H in this embodiment is proportional to the number of the plate-like rotating members H, the driving force can be efficiently obtained by rotating the main body G. It is. In this embodiment, the end portions GL are formed at a total of four locations on the top and bottom surfaces, but the present invention is not limited to this, and any number can be formed.

尚、第一実施例から第五実施例では、一対の回転部材として、底面の形状が円形の板状回転部材Hを用いたがこれに限るものではない。良好な回転を得られるのであれば、板状部材ではなく、球や凹レンズ等の形状であってもよい。
また、本発明にかかる磁気駆動装置1は、半径外方向に同一の磁極を向けて配置されているが、これに限るものではない。板状回転部材Hを同期回転させたときに、同極の磁石同士が対向するように配置されていればよく、その配置方法は任意である。例えば、磁石Mを半径外方向に交互に異なる磁極を向けて配置し、周囲にコイルを配置すれば発電装置として利用することもできる。
更に、板状回転部材Hに模様を施せば、装飾品等として利用することもできる。
In the first embodiment to the fifth embodiment, the plate-shaped rotating member H having a circular bottom surface is used as the pair of rotating members, but the present invention is not limited to this. A shape such as a sphere or a concave lens may be used instead of a plate-like member as long as good rotation can be obtained.
Moreover, although the magnetic drive device 1 concerning this invention is arrange | positioned with the same magnetic pole facing the radial outward direction, it is not restricted to this. As long as the plate-like rotating member H is synchronously rotated, the magnets having the same polarity may be arranged so as to face each other, and the arrangement method is arbitrary. For example, the magnet M can be used as a power generator by disposing the magnet M alternately with different magnetic poles in the radially outward direction and arranging a coil around it.
Furthermore, if a pattern is given to the plate-like rotating member H, it can also be used as a decorative article.

本発明にかかる磁気駆動装置の断面図Sectional drawing of the magnetic drive device concerning this invention 本発明にかかる磁気シールドの断面図Sectional drawing of the magnetic shield concerning this invention 本発明にかかる磁気シールドの断面図Sectional drawing of the magnetic shield concerning this invention 本発明にかかる磁気駆動装置の一実施例を示す斜視図The perspective view which shows one Example of the magnetic drive device concerning this invention 本発明にかかる磁気駆動装置の一実施例を示す斜視図The perspective view which shows one Example of the magnetic drive device concerning this invention 本発明にかかる磁気駆動装置の一実施例を示す斜視図The perspective view which shows one Example of the magnetic drive device concerning this invention 本発明にかかる磁気駆動装置の一実施例を示す正面図The front view which shows one Example of the magnetic drive device concerning this invention

符号の説明Explanation of symbols

1 磁気駆動装置
M 磁石
H 板状回転部材
G 本体部
GL 端部
DESCRIPTION OF SYMBOLS 1 Magnetic drive device M Magnet H Plate-shaped rotation member G Main-body part GL End part

Claims (5)

外周縁に沿って複数の磁石を等間隔に配置した回転部材を、所定の間隔をおいて少なくとも1対備えるとともに、夫々の回転部材に配置した同極の磁石同士が対向するように前記1対の回転部材を互いに反対方向に同期回転可能に構成し、一方の前記回転部材の前記磁石と他方の前記回転部材の前記磁石との間に作用する磁力を遮蔽する可動式磁気シールドと、前記磁石の磁力によって前記回転部材に回転力を付与する回転力付与手段とを備え、
前記可動式磁気シールドが、前記回転部材同士の最近接部及びその近傍の磁力の遮蔽状態を変化させる磁気駆動装置。
The rotating member having a plurality of magnets arranged at equal intervals along the outer peripheral edge is provided with at least one pair at a predetermined interval, and the pair of magnets arranged on each rotating member are opposed to each other. And a movable magnetic shield configured to shield a magnetic force acting between the magnet of one of the rotating members and the magnet of the other rotating member. A rotational force applying means for applying a rotational force to the rotating member by the magnetic force of
The magnetic drive device in which the movable magnetic shield changes the shielding state of the magnetic force at the closest part of the rotating members and in the vicinity thereof.
前記回転力付与手段は、強磁性体から成り、かつ、前記回転部材の輪郭に沿った形状に形成され、前記最近接部から遠方程、前記回転部材との間隔が大きくなるように構成する請求項1に記載の磁気駆動装置。   The rotational force applying means is made of a ferromagnetic material and is formed in a shape along the contour of the rotating member, and is configured such that the distance from the rotating member increases as the distance from the closest portion increases. Item 2. The magnetic drive device according to Item 1. 前記回転力付与手段及び前記可動式磁気シールドは軟磁性体である請求項1または請求項2に記載の磁気駆動装置。   The magnetic drive device according to claim 1, wherein the rotational force applying means and the movable magnetic shield are soft magnetic materials. 前記回転力付与手段を、回転可能に構成し、かつ、前記回転力付与手段の回転軸と垂直方向の断面積が最大となる断面の輪郭形状を螺線状に形成すると共に、当該螺線状の輪郭形状を有する部分に前記可動式磁気シールドを設けてある請求項1から請求項3の何れか一項に記載の磁気駆動装置。   The rotational force applying means is configured to be rotatable, and a cross-sectional contour shape that maximizes the cross-sectional area in the direction perpendicular to the rotational axis of the rotational force applying means is formed in a spiral shape. The magnetic drive device according to any one of claims 1 to 3, wherein the movable magnetic shield is provided in a portion having the following contour shape. 外周縁に沿って複数の磁石を等間隔に配置した回転部材を、所定の間隔をおいて少なくとも1対備えるとともに、夫々の回転部材に配置した同極の磁石同士が対向するように前記1対の回転部材を互いに反対方向に同期回転可能に構成し、かつ、一方の前記回転部材の前記磁石と他方の前記回転部材の前記磁石との間に作用する磁力を遮蔽する可動式磁気シールドを有し、
前記磁石による引力を作用させる回転力付与手段によって前記回転部材に回転力を付与し、
同極の前記磁石同士が互いに最近接する位置に達した直後に、前記可動式磁気シールドを駆動させることで同極の前記磁石同士に斥力を作用させて前記回転部材を回転駆動し、
前記可動式磁気シールドを駆動させることで、前記磁石の引力と斥力とを互いに交互に作用させて前記回転部材の回転を維持する磁気駆動方法。
The rotating member having a plurality of magnets arranged at equal intervals along the outer peripheral edge is provided with at least one pair at a predetermined interval, and the pair of magnets arranged on each rotating member are opposed to each other. And a movable magnetic shield that shields the magnetic force acting between the magnet of one of the rotating members and the magnet of the other rotating member. And
Applying a rotational force to the rotating member by a rotational force applying means for applying an attractive force by the magnet;
Immediately after reaching the position where the magnets of the same polarity are closest to each other, the movable member is driven to rotate the rotating member by applying a repulsive force to the magnets of the same polarity by driving the movable magnetic shield.
A magnetic drive method for maintaining the rotation of the rotating member by driving the movable magnetic shield to cause the magnet's attractive force and repulsive force to act alternately.
JP2003287817A 2003-08-06 2003-08-06 Magnetically driven device Pending JP2005057921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287817A JP2005057921A (en) 2003-08-06 2003-08-06 Magnetically driven device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287817A JP2005057921A (en) 2003-08-06 2003-08-06 Magnetically driven device

Publications (1)

Publication Number Publication Date
JP2005057921A true JP2005057921A (en) 2005-03-03

Family

ID=34366694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287817A Pending JP2005057921A (en) 2003-08-06 2003-08-06 Magnetically driven device

Country Status (1)

Country Link
JP (1) JP2005057921A (en)

Similar Documents

Publication Publication Date Title
US20080224550A1 (en) Magnetic Motor
CN113192718B (en) Method and apparatus for generating a magnetic field
JP2005524376A (en) Rotating electric motor having at least two axial gaps separating the stator and rotor segments
EP1509989A1 (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
US20070222309A1 (en) High efficiency magnet motor
US6897595B1 (en) Axial flux motor with active flux shaping
JP2019525722A (en) Coaxial electromagnetic device
CN103219816A (en) Pole-changing control permanent magnet synchronous motor
JP2006246605A (en) Magnetic force rotating device
JP2010161878A (en) Trapezoidal magnet skew structure of cylindrical linear motor with core
EP1810391B1 (en) Rotor-stator structure for electrodynamic machines
JP2005057921A (en) Magnetically driven device
JP5763198B2 (en) Magnetic drive blower or generator
KR102113437B1 (en) Multipolar generator or motor
WO2016082293A1 (en) Brushless direct current motor utilizing magnet magnetic force
JP6774669B1 (en) Generator
JP2006006032A5 (en)
JP3897043B2 (en) Magnetic rotating device
JPH10243625A (en) Rotator using permanent magnet
JPS58224553A (en) Magnetic force rotary machine
TWM548927U (en) Double magnetically assisted electric device
JP2003116290A (en) Load reducer
WO2016187737A1 (en) Method and device for generating magnet magnetic force and reducing attraction and repulsion in brushless dc motor
JP5228536B2 (en) Brushless electric machine
JP2000023450A (en) Electric motor in which magnet is rotated by another power