JP2005057649A - Electromagnetic wave converging device made of shape storage polymeric material,its mirror plane ramification and the profile retain method - Google Patents

Electromagnetic wave converging device made of shape storage polymeric material,its mirror plane ramification and the profile retain method Download PDF

Info

Publication number
JP2005057649A
JP2005057649A JP2003288810A JP2003288810A JP2005057649A JP 2005057649 A JP2005057649 A JP 2005057649A JP 2003288810 A JP2003288810 A JP 2003288810A JP 2003288810 A JP2003288810 A JP 2003288810A JP 2005057649 A JP2005057649 A JP 2005057649A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
shape
focusing device
wave focusing
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288810A
Other languages
Japanese (ja)
Other versions
JP3796542B2 (en
Inventor
Morio Shimizu
盛生 清水
Hironori Sawara
宏典 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP2003288810A priority Critical patent/JP3796542B2/en
Publication of JP2005057649A publication Critical patent/JP2005057649A/en
Application granted granted Critical
Publication of JP3796542B2 publication Critical patent/JP3796542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a reflector itself with super light weight and its support/development structure to be super light weight and realizing a development function by low power and a developed mirror surface curve maintenance function and to provide an electromagnetic wave converging device provided with such functions. <P>SOLUTION: In this electromagnetic wave converging device, polymeric materials having a shape storage function are adopted as its materials, and a designated shape is a thin plate in shape with a metal film applied to the surface of the thin plate. The electromagnetic wave focusing device maintains its folded state in a low temperature state and becomes its developed state in a high temperature state. The reflector factor of the surface of the electromagnetic wave converging device and the radiation rate of a rear surface are adjusted by coating to maintain the proper temperature of the electromagnetic wave converging device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電磁波集束装置、特に太陽エネルギー利用のための集光装置、或いは送受信のための通信用電磁波送受信装置として用いられる電磁波集束装置と、その反射鏡の鏡面展開・形状維持方法に関する。   The present invention relates to an electromagnetic wave focusing device, in particular, an electromagnetic wave focusing device used as a condensing device for utilizing solar energy or an electromagnetic wave transmitting / receiving device for communication for transmission / reception, and a mirror surface development / shape maintaining method of the reflecting mirror.

従来の反射鏡は、一般に金属の薄膜又は網を放物面形状に成形した電磁波反射面にCFRP(カーボン繊維強化プラスチック)等の軽量かつ剛性の大きな樹脂を塗布したものが用いられているが、高精度化と軽量化、低価格化を同時に成立させることは困難である。高精度化は一般には重量増を伴い、特に、宇宙用電磁波集束装置に要求される画期的な軽量化を満足しない。また、従来の電磁波集束装置の反射鏡の展開方法の多くは、電動モータ、機構学的な機械装置(歯車、ラッチ、バネなど)を用いているので、軽量化に限界があり、また消費電力も少なくない。   Conventional reflecting mirrors are generally used in which a light-weight and rigid resin such as CFRP (carbon fiber reinforced plastic) is applied to an electromagnetic wave reflecting surface formed of a metal thin film or net in a parabolic shape. It is difficult to achieve high accuracy, light weight, and low price at the same time. Higher accuracy generally involves an increase in weight, and in particular, it does not satisfy the revolutionary weight reduction required for space electromagnetic wave focusing devices. In addition, many of the conventional methods for deploying reflectors of electromagnetic wave focusing devices use electric motors and mechanical devices (gears, latches, springs, etc.), so there are limits to weight reduction and power consumption. Not a few.

宇宙用としては超軽量化および宇宙展開のために気体膨張式反射鏡(支持構造を含む)が主に米国で研究されており、宇宙での鏡面およびその支持構造の展開が超軽量で達成できる長所がある。(非特許文献1、非特許文献2参照)しかし、この方式では十分な精度にて回転放部面形状等の指定形状を形成することが極めて困難である。また気体を封入するために、反射面の前方に透明膜を設置する必要があり、電磁波がこの層を2回通過する。その透明性が十分ではなく、また宇宙空間での放射線などによる透明度の劣化がさけられないために損失が少なくない。また、宇宙用の場合、宇宙デブリが膜に衝突することが想定され、衝突により生成される穴から気体が流出してしまうことにより、圧力低下を生じ、軸対称回転放物面形状の維持が困難となる。同時に、気体流出は反射鏡を搭載する宇宙船の姿勢を乱し続けるので、これを是正するために推進装置(小型ロケット)を連続的に作動させることが必要となり、大量の推進剤が要求されることとなって大きな負担となる。   For space applications, gas expansion reflectors (including support structures) are mainly studied in the United States for ultra-lightweight and space deployment, and the mirror surface and its support structure in space can be achieved with ultra-light weight. There are advantages. (Refer to Non-Patent Document 1 and Non-Patent Document 2) However, it is extremely difficult to form a specified shape such as the rotary part surface shape with sufficient accuracy in this method. Moreover, in order to enclose gas, it is necessary to install a transparent film in front of the reflecting surface, and electromagnetic waves pass through this layer twice. The transparency is not enough, and the loss of transparency is inevitable because the deterioration of transparency due to radiation in outer space cannot be avoided. In the case of space use, it is assumed that space debris collides with the film, and gas flows out from the hole generated by the collision, thereby causing a pressure drop and maintaining an axially symmetric paraboloid shape. It becomes difficult. At the same time, the outflow of gas continues to disturb the attitude of the spacecraft carrying the reflector, so it is necessary to operate the propulsion device (small rocket) continuously to correct this, and a large amount of propellant is required. It becomes a big burden.

この他、軽量化に関しては非特許文献3や非特許文献4に集光鏡の超軽量化を目指した高分子膜集光鏡の試作が紹介されている。そして、このような状況において航空宇宙技術研究所では最近、膜材料による太陽集光鏡を含む超軽量電磁波集束装置の研究を実施し、特願2002−302695号「薄膜展開構造物、そのための薄膜展開方法並びに薄膜展開ユニット及び薄膜展開システム」と、特願2003−62584号「太陽熱推進システム、及びそれを用いた使用済み人工衛星の自主廃棄の方法」、特願2002−239694号「超軽量電磁波集束装置及びその製造方法」と2本の直交する線焦点反射鏡による集束に関する特許文献1を先に出願しているところであるが、その延長線上の技術として宇宙空間に構築する電磁波集束装置を如何に軽量でコンパクトな形態で宇宙空間まで運搬し、且つ宇宙空間で容易に構築するかという問題の研究に至ったものである。   In addition, regarding the weight reduction, Non-Patent Document 3 and Non-Patent Document 4 introduce prototypes of polymer film focusing mirrors aimed at reducing the weight of the focusing mirror. In such a situation, the National Institute of Aerospace Technology recently conducted research on an ultralight electromagnetic wave focusing device including a solar focusing mirror made of a film material. Japanese Patent Application No. 2002-302695 “Thin Film Expanded Structure, Thin Film for It Deploying method and thin film unfolding unit and thin film unfolding system ", Japanese Patent Application No. 2003-62584" Solar Thermal Propulsion System, and Method for Voluntary Disposal of Used Artificial Satellites Using It ", Japanese Patent Application No. 2002-239694" Ultralight Electromagnetic Wave " Patent Document 1 relating to focusing by two orthogonal line-focus reflectors and “focusing device and manufacturing method thereof” have already been filed. What is an electromagnetic wave focusing device constructed in space as an extension of the technology? It has led to the study of the problem of whether it is transported to outer space in a lightweight and compact form and can be easily constructed in outer space. .

特開2003−124741号公報 「可変焦点距離電磁波集束装置」 平成15年4月25日公開JP 2003-124741 A “Variable Focal Length Electromagnetic Focusing Device” Published on April 25, 2003 P. E. Frye, J. A. McClanahan, “Solar Thermal Propulsion Transfer Stage for the First Pluto Mission,”AIAA-93-2601, 29th Joint Propulsion Conference & Exhibit, 1993.P. E. Frye, J. A. McClanahan, “Solar Thermal Propulsion Transfer Stage for the First Pluto Mission,” AIAA-93-2601, 29th Joint Propulsion Conference & Exhibit, 1993. David Lichodziejewski, Costas Cassapakis, “Inflatable Power Antenna Technology,” AIAA-99-1074, 1999.David Lichodziejewski, Costas Cassapakis, “Inflatable Power Antenna Technology,” AIAA-99-1074, 1999. 坂下保治,佐原宏典,清水盛生,中村嘉宏、“太陽熱推進系における超軽量集光鏡の試作,”第43回宇宙科学技術連合講演会,2000.Yasuharu Sakashita, Hironori Sahara, Morio Shimizu, Yoshihiro Nakamura, “Prototype of Ultralight Condenser in Solar Thermal Propulsion System,” 43rd Space Science and Technology Union Lecture, 2000. 松井康浩,佐原宏典,清水盛生,中村嘉宏,“超小型衛星用太陽熱推進系〜超軽量太陽集光鏡,”平成13年度宇宙輸送シンポジウム,2002.Yasuhiro Matsui, Hironori Sahara, Morio Shimizu, Yoshihiro Nakamura, “Solar Thermal Propulsion System for Ultra-Small Satellites-Ultralight Solar Condenser,” 2001 Space Transportation Symposium, 2002.

宇宙用電磁波集束装置としては、反射鏡自体の高精度での超軽量化だけが必要なのではなく、宇宙での反射鏡の展開および回転放物面等の指定形状の形状維持の機構についての超軽量化も総重量という点で、打ち上げコストの低減等のために強く要求される重要事項である。特に上記の展開・形状維持には、モータ等の駆動部やラッチ等の機構・機械部品を用いる場合には、重量増だけでなく、宇宙において極めて貴重問題となる必要電力の増加をもたらすことになる。従って、超軽量にて反射鏡自体およびその支持・展開構造の超軽量化、低電力での展開機能の実現、さらに展開後の鏡面形状維持機能を有するという課題を解決することが強く求められている。
本発明が解決しようとする問題点は、これらの要求に応えられる電磁波集束装置の超軽量・低電力の反射鏡の鏡面展開・形状維持方法を得ようとするものである。
As an electromagnetic wave focusing device for space, it is not only necessary to reduce the weight of the reflector itself with high accuracy, but it is also necessary to develop a mechanism for maintaining the shape of the specified shape such as the deployment of the reflector and the paraboloid in space. Weight reduction is also an important matter that is strongly demanded in order to reduce launch costs in terms of total weight. In particular, in the development and maintenance of the shape described above, when a mechanism such as a drive unit such as a motor or a mechanism or mechanical part such as a latch is used, not only an increase in weight but also an increase in necessary power that is a very valuable problem in space is brought about. Become. Therefore, there is a strong demand to solve the problems of ultra-lightweight reflecting mirror itself and its supporting and unfolding structure, ultra-light weight, realization of unfolding function at low power, and mirror surface maintenance function after unfolding. Yes.
The problem to be solved by the present invention is to obtain a mirror surface development and shape maintaining method of an ultralight / low power reflecting mirror of an electromagnetic wave focusing device that can meet these requirements.

上記課題を解決する為、本発明の電磁波集束装置においては、その材料として形状記憶機能を有する高分子材料を採用すると共に、指定する形状は薄板状としてその薄板表面には金属膜を施したものであって、低温状態では折り畳み状態を保ち、高温状態では展開形状となるものとする。
また、電磁波集束装置が軸対称回転放物面形状の反射鏡であるものにおいては、該反射鏡の中央部分に小穴を設けるようにした。
異なる形態として本発明の電磁波集束装置は、軸対称回転放物面形状の反射鏡であって、その材料としてプラスチック材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものとし、その円形枠には形状記憶材料からなる支持構造が取り付けられたものであって、低温状態では折り畳み状態を保ち、高温状態では展開形状となるものとする。
また、本発明の電磁波集束装置は、温度制御機能を備えた小容器内に折り畳み状態で収納するものとし、温度制御機能で加熱されると前記小容器から飛び出して展開形状となるようにした。
In order to solve the above problems, in the electromagnetic wave focusing device of the present invention, a polymer material having a shape memory function is adopted as the material, and the specified shape is a thin plate shape, and a metal film is applied to the thin plate surface. It is assumed that the folded state is maintained in the low temperature state and the unfolded shape is obtained in the high temperature state.
In the case where the electromagnetic wave focusing device is an axisymmetric rotating parabolic reflector, a small hole is provided in the central portion of the reflector.
As a different form, the electromagnetic wave focusing device of the present invention is an axisymmetric rotary parabolic reflector, which employs a plastic material as its material and has a thin plate shape and a metal film applied to the thin plate surface. It is assumed that a support structure made of a shape memory material is attached to the circular frame, and the folded state is maintained in a low temperature state and is expanded in a high temperature state.
In addition, the electromagnetic wave focusing device of the present invention is housed in a small state in a small container having a temperature control function, and when heated by the temperature control function, it jumps out of the small container and becomes an unfolded shape.

本発明の電磁波集束装置は、人工衛星搭載用として低温状態では形状記憶機能を有する高分子材料からなる反射鏡が円平板状形態で、形状記憶機能を備えた材料からなる屈曲・伸展式の支持構造を介して人工衛星本体内に固定収納されたものとし、高温状態では屈曲・伸展式の支持構造が伸展して前記反射鏡を人工衛星本体外に展開させると共に、該反射鏡を軸対称回転放物面形状となるものとする。
本発明の電磁波集束装置においては、その表面の反射率と、裏面の幅射率をコーティングによって調整し、該電磁波集束装置の適正温度を維持させる方法を採用した。
本発明の電磁波集束装置においては、その材料として形状記憶機能を有する高分子材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものであって、宇宙空間までの運搬期間は折り畳み状態を保ち、宇宙空間で高温加熱して展開形状とする電磁波集束装置の展開・形状維持方法を採用した。
The electromagnetic wave focusing device of the present invention is a flexible / extended support made of a material having a shape memory function, in which a reflecting mirror made of a polymer material having a shape memory function is mounted on an artificial satellite in a low temperature state. It is assumed that it is fixedly housed in the satellite body through the structure, and in a high temperature state, the bending / extension-type support structure extends to deploy the reflector outside the satellite body, and the reflector is rotated axisymmetrically. It shall be a parabolic shape.
In the electromagnetic wave focusing device of the present invention, a method of adjusting the reflectance of the front surface and the emissivity of the back surface by coating to maintain an appropriate temperature of the electromagnetic wave focusing device is adopted.
In the electromagnetic wave focusing device of the present invention, a polymer material having a shape memory function is adopted as the material, and the shape is a thin plate shape, and a metal film is applied to the surface of the thin plate, which is transported to outer space. For the period, we adopted a deployment and shape maintenance method for the electromagnetic wave focusing device that keeps the folded state and heats it in outer space to form a deployed shape.

本発明の電磁波集束装置は、その材料として形状記憶機能を有する高分子材料を採用すると共に、指定する形状は薄板状としてその薄板表面には金属膜を施したものであるから、反射鏡自体の重量が軽量化できると共に、構造物の素材がもつ形状記憶機能によって構造物が展開されるので展開機構としての別装備や動力源を必要としない。すなわち、軽量化と低電力化の効果が顕著となる。
また、本発明の電磁波集束装置として軸対称回転放物面形状の反射鏡とし、該反射鏡の中央部分に小穴を設けたものは、展開前の段階では塑性変形を起こすことなく反射鏡を折り畳み形状をとることができる。
本発明の電磁波集束装置は、軸対称回転放物面形状の反射鏡であって、その材料としてプラスチック材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものとし、その円形枠には形状記憶材料からなる支持構造が取り付けられた形態をとることができるものであって、この場合にも反射鏡自体の重量が軽量化できると共に、支持構造物の素材がもつ形状記憶機能によって構造物が展開されるので展開機構としての別装備や動力源を必要としない。
The electromagnetic wave focusing device of the present invention employs a polymer material having a shape memory function as its material, and the specified shape is a thin plate shape and a metal film is applied to the surface of the thin plate. The weight can be reduced and the structure is developed by the shape memory function of the structure material, so that no separate equipment or power source is required as a deployment mechanism. That is, the effect of weight reduction and low power becomes remarkable.
In addition, as the electromagnetic wave focusing device of the present invention, an axisymmetric rotating paraboloidal reflecting mirror having a small hole in the central portion of the reflecting mirror can be folded without causing plastic deformation at the stage before deployment. Can take shape.
The electromagnetic wave focusing device of the present invention is an axisymmetric rotational paraboloid reflecting mirror, and adopts a plastic material as its material, and the shape is a thin plate, and the surface of the thin plate is provided with a metal film, The circular frame can take a form in which a support structure made of a shape memory material is attached. In this case as well, the weight of the reflector itself can be reduced and the shape of the material of the support structure Since the structure is deployed by the memory function, no separate equipment or power source is required as a deployment mechanism.

温度制御機能を備えた小容器内に反射鏡が折り畳み状態で収納されている構成を採用した本発明の電磁波集束装置は、温度制御機能で加熱されると反射鏡が前記小容器から自動的に飛び出して展開形状となるものであるから、展開機構としての別装備や動力源を必要とせず軽量化と低電力化の効果が顕著である。
低温状態では形状記憶機能を有する高分子材料からなる反射鏡が円平板状形態で、形状記憶機能を備えた材料からなる屈曲・伸展式の支持構造を介して人工衛星本体内に固定収納された形態を採った本発明の電磁波集束装置は、運搬時にはコンパクトに収納でき、宇宙空間で加熱することにより、自動的に屈曲・伸展式の支持構造が伸展して前記反射鏡を人工衛星本体外に展開させると共に、該反射鏡を軸対称回転放物面形状とするものであるから、反射鏡自体の重量が軽量化できると共に、構造物の素材がもつ形状記憶機能によって構造物が支持・展開されるので支持・展開機構としての別装備や動力源を必要とせず、軽量化と低電力化の効果が顕著となる。
The electromagnetic wave focusing device according to the present invention adopting a configuration in which the reflecting mirror is housed in a small container having a temperature control function when the reflector is heated by the temperature control function. Since it pops out into a deployed shape, there is no need for a separate equipment or power source as a deployment mechanism, and the effects of weight reduction and low power consumption are remarkable.
In a low temperature state, the reflector made of a polymer material having a shape memory function has a circular plate shape, and is fixedly stored in the satellite body through a bending / extension support structure made of a material having a shape memory function. The electromagnetic wave focusing device of the present invention adopting the form can be stored compactly during transportation, and when heated in outer space, the bending / extension-type support structure automatically extends, and the reflecting mirror is placed outside the satellite body. Since the reflecting mirror has an axisymmetric rotational paraboloid shape, the weight of the reflecting mirror itself can be reduced, and the structure is supported and deployed by the shape memory function of the material of the structure. Therefore, no separate equipment or power source is required as a support / deployment mechanism, and the effects of weight reduction and low power consumption become remarkable.

本発明では、電磁波集束装置の表面の反射率と、裏面の幅射率をコーティングによって調整し、該電磁波集束装置の適正温度を維持させる方法を採用したので、形状記憶材料を用いた電磁波集束装置の折り畳み状態、展開状態、構造物の形状維持のそれぞれの状態における温度状態を合理的に維持することができる。
本発明の電磁波集束装置の展開・形状維持方法は、指定する形状を有する電磁波集束装置の材料として形状記憶機能を有する高分子材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものであるから、宇宙空間までの運搬期間は安定したコンパクトな形態で折り畳み状態を保ち、宇宙空間で高温に加熱することによって自動的に展開形状とすることができる。すなわち、装置の総重量の軽減化によって打ち上げコストの低減をもたらし、展開のために特別の動力源を必要とせず低電力で、さらに展開後の鏡面形状維持機能を有するという課題を解決する。
In the present invention, since the method of adjusting the reflectance of the front surface and the emissivity of the back surface of the electromagnetic wave focusing device by coating and maintaining an appropriate temperature of the electromagnetic wave focusing device is adopted, the electromagnetic wave focusing device using the shape memory material The temperature state in each of the folded state, the unfolded state, and the shape maintenance of the structure can be reasonably maintained.
The method for maintaining and maintaining the shape of the electromagnetic wave focusing device of the present invention employs a polymer material having a shape memory function as the material of the electromagnetic wave focusing device having a specified shape, and the shape is a thin plate, and a metal film is formed on the surface of the thin plate. Therefore, during the transportation period to outer space, the folded state can be maintained in a stable and compact form, and it can be automatically expanded by heating to high temperature in outer space. That is, the reduction of the total weight of the apparatus brings about a reduction in launch costs, solves the problem of having a mirror surface shape maintenance function after deployment without requiring a special power source for deployment and low power.

前述した課題を解決するため、本発明の電磁波集束装置においては、形状記憶機能を有する各種の高分子材料をその鏡面材料に採用することにより、温度制御による展開機能を実現する。これらの形状記憶材料は設定可能なある特定の温度(ガラス遷移温度)を境として、物性が大幅に変化するが、その変化を基礎として、「形状固定性」および「形状回復性」を有する。従って、形状記憶材料の温度制御にて、形状制御が可能であり、これを反射鏡の鏡面に採用することによって展開機能を持たせるとともに、回転放物面形状などの指定する鏡面形状の維持機能を持たせることができる。
また、この鏡面自体に材料に薄膜の高分子形状記憶材料を採用することによって反射鏡の超軽量化をも実現する。さらに、反射鏡の支持構造の材料として形状記憶高分子材料を採用することによって、支持構造の温度制御による可撓性部材の反射鏡の展開機能を実現できる。
In order to solve the above-described problems, in the electromagnetic wave focusing device of the present invention, a deployment function based on temperature control is realized by employing various polymer materials having a shape memory function as the mirror surface material. These shape memory materials change greatly in physical properties at a specific settable temperature (glass transition temperature), and have “shape fixability” and “shape recoverability” on the basis of the change. Therefore, it is possible to control the shape by controlling the temperature of the shape memory material. By adopting this on the mirror surface of the reflecting mirror, it is possible to provide a deployment function and to maintain a specified mirror surface shape such as a rotating paraboloid shape. Can be given.
In addition, by adopting a thin polymer shape memory material as the material for the mirror surface itself, it is possible to reduce the weight of the reflecting mirror. Furthermore, by adopting a shape memory polymer material as the material for the support structure of the reflector, the function of deploying the reflector of the flexible member by controlling the temperature of the support structure can be realized.

反射鏡の保管時には、反射鏡とその支持・展開機構を形状固定状態にて低温領域にて保管しておく。反射鏡の展開には、電気ヒータ熱源などにて反射鏡や支持・展開機構の形状記憶材料部材温度を高温領域に移行させることで、展開時に要求される形状を得る。宇宙への展開後、低温領域に移行して高い剛性を得る必要があるが、形状記憶材料部材が太陽光線に当たることで、温度低下が十分ではないことがあり得るが、太陽集光鏡などでは太陽光線に当たる面を鏡面仕上げとしてそこにアルミニウムをコーティングするとともに、その裏(側)面には黒色塗料を施すことなどで、その温度を低温領域に下げることが可能である。
展開した形状記憶膜製反射鏡面は、特に太陽指向の場合は、太陽方向に直面する必要があるので、太陽光線による照射面積が最大となり、温度上昇が懸念されるが、この場合も、反射面の反射率を0.8乃至0.92、裏面の輻射率を黒色塗料にて0.9程度に調整することで、理論的には摂氏マイナス100度に近い低温にも達するので、低温領域に留めることは十分に可能である。逆に、裏面を鏡面仕上げとアルミニウム・コーティングにて輻射率を0.05に低減することで、鏡面温度は摂氏120度以上に達しうる。形状記憶材料の高温域・低温域の境界温度(ガラス遷移温度)は摂氏30〜100度に設定できる。従って、上記のアルミニウム・コーティングなどによる低輻射率の超軽量膜状カバー、あるいは超軽量膜状電気ヒータによって反射鏡面の裏面を覆った状態で宇宙空間に展開して、反射鏡面を高温に移行させて形状回復させることで、指定の鏡面形状を得る。その後、このカバーあるいはヒータを取り除くことで反射鏡面を低温領域に移行させて、高剛性の運用状態とすることも可能である。
以上においては、形状記憶高分子材料を採用した場合の解決法を示したが、形状記憶機能を有する材料としては、形状記憶合金があり、これを併用することもできる。
When storing the reflecting mirror, the reflecting mirror and its support / deployment mechanism are stored in a low temperature region with the shape fixed. In deploying the reflecting mirror, the shape required at the time of deployment is obtained by shifting the shape memory material member temperature of the reflecting mirror and the support / deployment mechanism to a high temperature region with an electric heater heat source or the like. After deployment to space, it is necessary to move to a low temperature region and obtain high rigidity, but the temperature drop may not be sufficient due to the shape memory material member hitting the sun, but with solar condensing mirrors etc. It is possible to lower the temperature to a low temperature region by coating the aluminum with a mirror-finished surface that is exposed to sunlight and applying a black paint on the back (side) surface thereof.
The developed shape memory reflecting mirror surface, especially in the case of solar orientation, needs to face the solar direction, so the area irradiated with sunlight is maximized and there is a concern about temperature rise. By adjusting the reflectance of 0.8 to 0.92 and the emissivity of the back surface to about 0.9 with black paint, the temperature reaches a low temperature close to minus 100 degrees Celsius in theory. It is well possible to fasten. Conversely, the mirror surface temperature can reach 120 degrees Celsius or more by reducing the emissivity to 0.05 by mirror finishing and aluminum coating on the back surface. The boundary temperature (glass transition temperature) between the high temperature region and the low temperature region of the shape memory material can be set to 30 to 100 degrees Celsius. Therefore, the ultra-lightweight membrane cover with a low emissivity such as the above-mentioned aluminum coating, or the ultra-lightweight membrane-like electric heater is deployed in outer space with the back surface of the reflector surface covered, and the reflector surface is moved to a high temperature. The specified mirror surface shape is obtained by restoring the shape. Thereafter, by removing this cover or heater, the reflecting mirror surface can be shifted to a low temperature region, and a highly rigid operation state can be obtained.
In the above, a solution when a shape memory polymer material is employed has been shown. However, as a material having a shape memory function, there is a shape memory alloy, which can be used in combination.

本発明の電磁波集束装置の反射鏡の展開・形状維持方法の1例について図面を参照して説明する。図1(A)は本発明の1例として軸対称回転放物面形状反射鏡を示している。図中1は反射鏡1であり、軸2に対し放物面が回転対称で形成されている。3は該反射鏡の外周縁、4は外周部支持構造4として示してあり、この図は展開後の形状である。この反射鏡の軸方向からの投影図形が円形となることを図1(B)に示す。また、展開前の形状を収納のための折りたたみが容易な円形平板にすると、その形状も図1(B)と同様で示される。また、この円形平板もコンパクトな形態であるから、この形態で保管収納することもできる。図中中央部の5は小穴であり、折り畳み時に塑性変形を避ける効果がある。なお、折り畳むときは折り目がつかないように屈曲状態で畳むようにすることが必要である。   One example of the method for developing and maintaining the shape of the reflecting mirror of the electromagnetic wave focusing apparatus of the present invention will be described with reference to the drawings. FIG. 1A shows an axisymmetric rotating parabolic reflector as an example of the present invention. In the figure, reference numeral 1 denotes a reflecting mirror 1, and a paraboloid is formed with rotational symmetry with respect to an axis 2. Reference numeral 3 denotes an outer peripheral edge of the reflecting mirror, and 4 denotes an outer peripheral portion support structure 4. This figure shows a shape after development. FIG. 1B shows that the projected figure from the axial direction of the reflecting mirror is circular. Further, when the shape before deployment is a circular flat plate that can be easily folded for storage, the shape is also shown in FIG. Moreover, since this circular flat plate is also a compact form, it can also be stored and accommodated in this form. In the figure, 5 at the center is a small hole, which has the effect of avoiding plastic deformation when folded. In addition, when folding, it is necessary to make it fold in a bent state so as not to crease.

この円平板形状の反射鏡を小容積に収納する1方法として、円平板の中心に小穴5を設けることを提示する。このことによって、この円平板を図1(C)に示すような二つ折り、図1(D)に示すような4つ折り、さらに多重にたたむことができる。小穴5の存在により円平板の中心付近に塑性変形を生じること無く畳むことが可能となる。勿論、上記の折りたたみにおいては、図1(C)、図1(D)の折り線6の折り目が、かなり大きな曲率半径を持つようにすることで、塑性変形を生じさせないようにする。また、この折りたたみには2つ折りまたは4つ折り以降では、折り線6から丸めることで、最終形状を円錐にする方法もある。また、丸めるかわりに、扇子を折りたたむ方式と同様の方式で折りたたむ方法も採用できる。ただし、その際にも折り目を付けないようにすることが必要である。尚、この中心の小穴5は電磁波集束に役立たないが、軸対称回転放物面形状の反射鏡では、焦点に設置された電磁波集束装置の送受信部の陰となるところであるから、この小穴5を設けることによって集束効率の低下を招くことはない。   As one method for accommodating the disk-shaped reflector in a small volume, it is proposed to provide a small hole 5 at the center of the disk. As a result, the circular plate can be folded in two as shown in FIG. 1C, folded in four as shown in FIG. Due to the presence of the small holes 5, it is possible to fold without causing plastic deformation near the center of the circular plate. Of course, in the folding described above, the fold line 6 shown in FIGS. 1C and 1D has a considerably large radius of curvature so as not to cause plastic deformation. Further, in this folding, there is also a method in which the final shape is made into a cone by rounding off from the folding line 6 after the second folding or the fourth folding. Further, instead of rounding, a method of folding the fan in the same manner as the method of folding the fan can be adopted. However, it is necessary not to make a crease at that time. The small hole 5 at the center is not useful for electromagnetic wave focusing. However, in the case of an axisymmetric rotating parabolic reflector, the small hole 5 is behind the transmission / reception unit of the electromagnetic wave focusing device installed at the focal point. The provision does not cause a decrease in focusing efficiency.

上記のようにして小容積にたたんだ集光反射鏡8を図2(A)に示すように、人工衛星本体7内の温度制御機能付き小容器9に収納して、形状記憶材料の低温領域の温度条件にて保管する。この小容器9は例えば膜状電気ヒータ材料にて製作することで、特別な加熱手段を設置する必要が無く超軽量化が可能である。反射鏡の人工衛星外への展開時には、小容器9の温度制御にて高温領域に入って、反射鏡を指定の形状に図2(B)に示すように展開することになる。展開時に集光鏡8が確実に小容器9から飛び出して展開するように、小容器9の側面をテーパー状とし、折り畳み収納されている集光鏡は円錐状に巻いておくなどするとよい。その後、太陽光に照射される条件でも、反射鏡の表面、裏面の反射率と輻射率の適切な設定によって、反射鏡の温度を低温領域に入れることは十分に可能である。   As shown in FIG. 2 (A), the condenser reflector 8 folded in a small volume as described above is housed in a small container 9 with a temperature control function in the artificial satellite body 7, and the shape memory material is cooled at a low temperature. Store at the temperature conditions of the area. The small container 9 is made of, for example, a film-like electric heater material, so that it is not necessary to install a special heating means and can be reduced in weight. When the reflecting mirror is deployed outside the artificial satellite, the temperature of the small container 9 is entered to enter a high temperature region, and the reflecting mirror is deployed in a designated shape as shown in FIG. It is preferable that the side surface of the small container 9 is tapered so that the condensing mirror 8 is folded in a conical shape so that the condensing mirror 8 is surely jumped out of the small container 9 and unfolded. After that, even under the condition of irradiating with sunlight, it is possible to put the temperature of the reflecting mirror in a low temperature region by appropriately setting the reflectance and radiation rate of the front and back surfaces of the reflecting mirror.

また、図2(C)に示すように、低温領域での保管時の円平板反射鏡の形状としては、平面を選択することもできる。その場合、それが占める容積は、決して大きくない。従って、円形平板のままで、人工衛星本体7内に小容積にて適切に収納できれば、その状態で低温領域にて保管しておき、展開時にはヒータなどによる温度制御にて高温領域に移行させて指定の鏡面形状を得る。それをそのまま宇宙空間に曝露することで低温領域に入るので、図2(D)のように回転放物面などの指定する鏡面形状に達することができる。   Further, as shown in FIG. 2C, a plane can be selected as the shape of the circular plate reflecting mirror during storage in a low temperature region. In that case, the volume it occupies is never large. Therefore, if the circular flat plate can be properly stored in the satellite body 7 with a small volume, it can be stored in the low temperature region in that state and transferred to the high temperature region by temperature control with a heater or the like during deployment. Get the specified specular shape. Since it enters into a low temperature region by exposing it to outer space as it is, it can reach a specular shape such as a rotating paraboloid as shown in FIG.

また、反射鏡の鏡面材料だけでなく、その支持構造にも形状記憶材料を採用して、その温度を膜面と同様に制御することにて、展開に資することができる。例えば、図1にて反射鏡外周部3に極めて細い円形枠状の支持構造4を取り付けた場合、この材料が形状記憶材料であれば、図1(D)や図2(A)での折りたたんだ状態から折りたたみを解く展開作動において、温度制御にて、展開が可能となる。また必要な場合、小穴5にも形状記憶材料による円形枠構造を取り付けることができる。   Further, not only the mirror surface material of the reflecting mirror but also the shape of the support structure can be adopted, and its temperature can be controlled in the same manner as the film surface to contribute to the development. For example, when a very thin circular frame-like support structure 4 is attached to the outer peripheral part 3 of the reflector in FIG. 1, if this material is a shape memory material, it is folded in FIGS. 1D and 2A. In the unfolding operation of unfolding from the dead state, the unfolding is possible by temperature control. If necessary, a circular frame structure made of a shape memory material can also be attached to the small holes 5.

また、図2において、反射鏡の保管時には、図2(C)の屈曲・伸展式の支持・展開構造10を折りたたんで、反射鏡11を人工衛星本体7内に保管している。展開時には温度制御によって支持・展開構造10は伸展して円形平板状に変形された反射鏡11を人工衛星外に押し出すと共に反射鏡形状に形状復帰させる。その結果、図2(D)の反射鏡1のように指定する形状となる。この場合の支持構造4は極めて細いので、反射鏡外周部3に含めて表示している。この実施例において、その展開手順の設定のために、必ずしも鏡面材料と支持構造材料とを同一材料とする必要はなく、また鏡面材料の遷移温度と支持構造の遷移温度とを同一にする必要も無い。反射鏡や支持構造や展開機構には、各種の形状記憶材料をその特性に従って適材適所に採用できるので、設計の自由度は大きい。   In FIG. 2, when the reflecting mirror is stored, the bending / extending support / deployment structure 10 of FIG. 2C is folded and the reflecting mirror 11 is stored in the artificial satellite body 7. At the time of deployment, the support / deployment structure 10 is extended by temperature control, and the reflecting mirror 11 deformed into a circular flat plate shape is pushed out of the satellite and returned to the shape of the reflecting mirror. As a result, the shape is designated as in the reflecting mirror 1 of FIG. Since the support structure 4 in this case is extremely thin, it is included in the outer periphery 3 of the reflecting mirror. In this embodiment, the mirror material and the support structure material do not necessarily have to be the same material in order to set the deployment procedure, and the transition temperature of the mirror material and the support structure need to be the same. No. Since various shape memory materials can be adopted in the right place according to the characteristics of the reflector, the support structure and the deployment mechanism, the degree of freedom in design is great.

本発明はロケットで宇宙空間にまで運搬し、宇宙空間において展開構造物とする電磁波集束装置、特に太陽エネルギー利用のための集光装置、或いは送受信のための通信用電磁波送受信装置を想定して開発したものであるが、本発明はこれに限らず地上設置用の電磁波集束装置としても用いることができる。   The present invention is developed on the assumption of an electromagnetic wave focusing device that is transported to outer space by a rocket and used as a deployment structure in outer space, particularly a concentrating device for using solar energy, or an electromagnetic wave transmitting / receiving device for communication for transmission / reception. However, the present invention is not limited to this, and can also be used as an electromagnetic wave focusing device for ground installation.

本発明における反射鏡を折り畳むなどコンパクトな形態とする説明図である。It is explanatory drawing made into compact forms, such as folding the reflective mirror in this invention. 本発明の電磁波集束装置を人工衛星本体に積み込んだ収納形態と展開形態とを説明する図である。It is a figure explaining the accommodation form and deployment form which loaded the electromagnetic wave focusing apparatus of this invention in the artificial satellite main body.

符号の説明Explanation of symbols

1 回転放物面反射鏡
2 回転軸
3 回転放物面反射鏡外周
4 円形枠状支持構造
5 反射鏡中心の小穴
6 円平板反射鏡の折り目線
7 人工衛星本体(この場合は立方体形状)
8 折りたたんだ反射鏡
9 温度制御機能付き小円筒容器
10 反射鏡の屈曲・伸展式支持・展開構造
11 人工衛星の中の折りたたまない状態での円平板反射鏡
1 Rotating parabolic reflector
2 Rotating shaft
3 Rotating parabolic reflector outer periphery 4 Circular frame-shaped support structure 5 Small hole in the center of the reflector 6 Folding line of the circular plate reflector 7 Satellite body (in this case, cubic shape)
8 Folding reflector 9 Small cylindrical container with temperature control function 10 Bending / extension-type support / deployment structure of reflecting mirror 11 Disc flat reflector in an unfolded state in an artificial satellite

Claims (7)

指定する形状を有する電磁波集束装置は、その材料として形状記憶機能を有する高分子材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものであって、低温状態では折り畳み状態を保ち、高温状態では展開形状となることを特徴とする電磁波集束装置。 The electromagnetic wave focusing device having a specified shape employs a polymer material having a shape memory function as its material, and the shape is a thin plate with a metal film applied to the surface of the thin plate. An electromagnetic wave focusing device which maintains a state and becomes a developed shape in a high temperature state. 電磁波集束装置は軸対称回転放物面形状の反射鏡であって、該反射鏡の中央部分に小穴を設け、塑性変形を起こすことなく折り畳み形状をとることができることを特徴とする請求項1に記載の電磁波集束装置。 The electromagnetic wave focusing device is an axisymmetric rotating paraboloid-shaped reflecting mirror, wherein a small hole is provided in a central portion of the reflecting mirror, and a folding shape can be taken without causing plastic deformation. The electromagnetic wave focusing apparatus as described. 電磁波集束装置は軸対称回転放物面形状の反射鏡であって、その材料としてプラスチック材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものとし、その円形枠には形状記憶材料からなる支持構造が取り付けられたものであって、低温状態では折り畳み状態を保ち、高温状態では展開形状となることを特徴とする電磁波集束装置。 The electromagnetic wave focusing device is an axisymmetric rotating paraboloidal reflector, which uses a plastic material as its material, and is shaped like a thin plate with a metal film on the surface of the thin plate. Is an electromagnetic wave focusing device to which a support structure made of a shape memory material is attached, which maintains a folded state in a low temperature state and has a developed shape in a high temperature state. 温度制御機能を備えた小容器内に折り畳み状態で収納されており、温度制御機能で加熱されると前記小容器から飛び出して展開形状となることを特徴とする請求項1乃至3のいずれかに記載の電磁波集束装置。 The container according to any one of claims 1 to 3, wherein the container is stored in a folded state in a small container having a temperature control function, and jumps out of the small container when heated by the temperature control function. The electromagnetic wave focusing apparatus as described. 低温状態では形状記憶機能を有する高分子材料からなる反射鏡が円平板状形態で、形状記憶機能を備えた材料からなる屈曲・伸展式の支持構造を介して人工衛星本体内に固定収納されたものであって、高温状態では屈曲・伸展式の支持構造が伸展して前記反射鏡を人工衛星本体外に展開させると共に、該反射鏡を軸対称回転放物面形状とすることを特徴とする電磁波集束装置。 In a low temperature state, the reflector made of a polymer material having a shape memory function has a circular plate shape, and is fixedly stored in the satellite body through a bending / extension support structure made of a material having a shape memory function. In a high temperature state, the bending / extension-type support structure extends to expand the reflecting mirror outside the satellite body, and the reflecting mirror has an axisymmetric rotational paraboloid shape. Electromagnetic focusing device. 請求項2乃至5のいずれかに記載された電磁波集束装置の表面の反射率と、裏面の幅射率をコーティングによって調整し、該電磁波集束装置の適正温度を維持させる方法。 A method for adjusting the reflectance of the front surface and the emissivity of the back surface of the electromagnetic wave focusing device according to any one of claims 2 to 5 by coating to maintain an appropriate temperature of the electromagnetic wave focusing device. 指定する形状を有する電磁波集束装置は、その材料として形状記憶機能を有する高分子材料を採用すると共に、形状は薄板状としてその薄板表面には金属膜を施したものであって、宇宙空間までの運搬期間は折り畳み状態を保ち、宇宙空間で高温加熱して展開形状とする電磁波集束装置の展開・形状維持方法。 The electromagnetic wave focusing device having a specified shape adopts a polymer material having a shape memory function as its material, and the shape is a thin plate with a metal film applied to the surface of the thin plate. A method for deploying and maintaining the shape of the electromagnetic wave focusing device that keeps the folded state during transportation and heats it in outer space to form a deployed shape.
JP2003288810A 2003-08-07 2003-08-07 Electromagnetic wave focusing device using shape memory polymer material and its mirror surface development and shape maintenance method Expired - Lifetime JP3796542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288810A JP3796542B2 (en) 2003-08-07 2003-08-07 Electromagnetic wave focusing device using shape memory polymer material and its mirror surface development and shape maintenance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288810A JP3796542B2 (en) 2003-08-07 2003-08-07 Electromagnetic wave focusing device using shape memory polymer material and its mirror surface development and shape maintenance method

Publications (2)

Publication Number Publication Date
JP2005057649A true JP2005057649A (en) 2005-03-03
JP3796542B2 JP3796542B2 (en) 2006-07-12

Family

ID=34367357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288810A Expired - Lifetime JP3796542B2 (en) 2003-08-07 2003-08-07 Electromagnetic wave focusing device using shape memory polymer material and its mirror surface development and shape maintenance method

Country Status (1)

Country Link
JP (1) JP3796542B2 (en)

Also Published As

Publication number Publication date
JP3796542B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
CN110536789B (en) Additive manufacturing system for in-orbit manufacturing of structures
JP4308478B2 (en) Deployable spacecraft radiator
US5660644A (en) Photovoltaic concentrator system
Zirbel et al. Hanaflex: a large solar array for space applications
JP4061652B2 (en) Attitude control method for satellites in elliptical orbit using solar radiation energy
Lin et al. Shape memory rigidizable inflatable (RI) structures for large space systems applications
JP2000031729A (en) Expandable inexpensive reflector
WO2000034124A1 (en) Method and apparatus for improved solar concentrator arrays
WO2019204322A1 (en) Thermally-enhanced and deployable structures
US20190315501A1 (en) Thermally-enhanced and deployable structures
WO2003004356A2 (en) Space craft and methods for space travel
Veldman et al. Inflatable structures in aerospace engineering-an overview
Arenberg et al. OASIS architecture: key features
CN106061843B (en) Spacecraft structure
JP3796542B2 (en) Electromagnetic wave focusing device using shape memory polymer material and its mirror surface development and shape maintenance method
Cherniavsky et al. Large deployable space antennas based on usage of polygonal pantograph
Campbell et al. Development of a novel, passively deployed roll-out solar array
JP2005156749A (en) Electromagnetic wave converging device
US20210143773A1 (en) Low Specific Mass Space Power System
Carreras et al. Deployable near-net-shaped membrane optics
JiaFu et al. Surface shape control of integrated paraboloid space reflector consisting of sub-reflectors exploiting modulated solar pressure
Archer et al. Antenna technology for QUASAT application
Chmielewski et al. ARISE antenna
JP3944571B2 (en) Thin film unfolding structure, thin film unfolding method therefor, thin film unfolding unit and thin film unfolding system
JP2005072913A (en) Method for accurately forming reflection mirror shape into designated shape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051007

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Ref document number: 3796542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term