JP2005056660A - High-pressure discharge lamp and its manufacturing method - Google Patents

High-pressure discharge lamp and its manufacturing method Download PDF

Info

Publication number
JP2005056660A
JP2005056660A JP2003285656A JP2003285656A JP2005056660A JP 2005056660 A JP2005056660 A JP 2005056660A JP 2003285656 A JP2003285656 A JP 2003285656A JP 2003285656 A JP2003285656 A JP 2003285656A JP 2005056660 A JP2005056660 A JP 2005056660A
Authority
JP
Japan
Prior art keywords
electrode
introduction body
tubular member
cylindrical member
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285656A
Other languages
Japanese (ja)
Inventor
Hiroshi Enami
博司 榎並
Yoshiharu Nishiura
義晴 西浦
Hironori Tatsumi
博則 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003285656A priority Critical patent/JP2005056660A/en
Publication of JP2005056660A publication Critical patent/JP2005056660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of a crack in a metalized layer by thermal shock in jointing a tubular member to an electrode introduction body; to reduce a sinking amount of a metal halide into a space between the tubular member and the electrode introduction body; and to prevent color temperature from changing in an initial stage, and initial lamp efficiency and initial luminous flux from degrading. <P>SOLUTION: This high-pressure discharge lamp is equipped with: the tubular members 15 jointed to openings 13a of a ceramic vessel 14 through the metalized layers 16; and the electrode introduction bodies 17 each having an electrode part 19 at a tip and jointed to the tubular members 15. A narrowed part 22 is formed between the opening 13a and a joint part 18 with the tubular member 15 jointed to the introduction body 17. The distance D<SB>1</SB>from an end face of the opening 13a to the joint part 18 is 7.0 mm or more; the distance d<SB>1</SB>from a tip of the electrode part 19 to the narrowed part 22 is 16.5 mm or less; and the maximum distance D<SB>2</SB>of a space between the tubular member 15 and the introduction body 17 in the narrowed part 22 is 0.04 mm or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高圧放電ランプ、およびその製造方法に関するものである。   The present invention relates to a high-pressure discharge lamp and a method for manufacturing the same.

一般的に、高圧放電ランプ、特に内部に発光物質として金属ハロゲン化物が封入されたセラミック製の容器を有する発光管を備えたメタルハライドランプ(セラミックメタルハライドランプ)では、先端部に電極部を有する電極導入体を容器内に封着する方法として、容器内に電極導入体を挿入した後、電極導入体と容器との間の隙間に流し込まれたガラスフリットによって封着する方法が用いられている。   In general, in a high pressure discharge lamp, particularly a metal halide lamp (ceramic metal halide lamp) having an arc tube having a ceramic container in which a metal halide is enclosed as a luminescent substance, an electrode having an electrode portion at the tip is introduced. As a method for sealing a body in a container, a method is used in which an electrode introduction body is inserted into the container and then sealed with a glass frit poured into a gap between the electrode introduction body and the container.

このガラスフリットは、特に高温状態において、金属ハロゲン化物と化学的に反応して浸食されやすい。そのため、ガラスフリットの位置を点灯中、高温状態となる放電空間から遠ざけるべく、容器を本管部とこの本管部から外側に向かって延出した細管部とからなる構成とし、かつ細管部の本管部とは反対側の端部のみにガラスフリットが流し込まれている(例えば特許文献1参照)。   This glass frit is susceptible to erosion by chemically reacting with the metal halide, particularly at high temperatures. Therefore, in order to keep the position of the glass frit away from the discharge space that is in a high temperature state during lighting, the container is composed of a main tube portion and a thin tube portion extending outward from the main tube portion, Glass frit is poured only into the end opposite to the main pipe (see, for example, Patent Document 1).

しかし、細管部と電極導入体との間にはわずかな隙間が形成されるため、この隙間に封入物である金属ハロゲン化物(主に液状の金属ハロゲン化物)が沈み込み、放電に寄与する金属ハロゲン化物が減少して、色温度が初期段階で変化したり、初期ランプ効率や初期光束が低下したりするといった問題が残された。   However, since a slight gap is formed between the narrow tube portion and the electrode introduction body, the metal halide (mainly liquid metal halide) that is an enclosure sinks into this gap, and the metal contributes to the discharge. There remains a problem that the halide temperature decreases, the color temperature changes in the initial stage, and the initial lamp efficiency and the initial luminous flux decrease.

なお、ここで言う「沈み込み」とは、金属ハロゲン化物が細管部と電極導入体との間の隙間に入り込んだ後、蒸発して再び本管部内に戻ることはなく、その場所にとどまった状態になることを言う。   The term “sinking” as used herein means that the metal halide does not return to the main pipe portion again after entering the gap between the thin tube portion and the electrode introduction body, but remains in that place. Say to be in a state.

一方、近時、セラミックメタルハライドランプにおいて、気密性と金属ハロゲン化物に対する耐食性とを向上させるため、容器の開口部にモリブデン製の筒状部材を、メタライズ層を介して気密に接合させ、かつこの筒状部材内に電極導入体を挿入し、これら筒状部材の端部と電極導入体とをレーザ等によって溶接して気密に接合するという封着方法が提案されている(例えば特許文献2参照)。   On the other hand, in recent years, in a ceramic metal halide lamp, in order to improve hermeticity and corrosion resistance against metal halides, a molybdenum cylindrical member is hermetically bonded to the opening of the container via a metallized layer, and this cylinder There has been proposed a sealing method in which an electrode introduction body is inserted into a cylindrical member, and the end portions of these cylindrical members and the electrode introduction body are welded with a laser or the like to be airtightly joined (see, for example, Patent Document 2). .

この封着方法では金属ハロゲン化物に対する耐食性が高いことから、筒状部材の長さを短くして筒状部材と電極導入体との間に形成される隙間の体積を減少させ、上記した金属ハロゲン化物の沈み込み量を大幅に減少させることが期待された。
特開昭57−78763号公報 特開2001−100385号公報
Since this sealing method has high corrosion resistance to metal halides, the length of the cylindrical member is shortened to reduce the volume of the gap formed between the cylindrical member and the electrode introduction body. It was expected to significantly reduce the amount of subsidence.
JP 57-78763 A Japanese Patent Laid-Open No. 2001-100385

ところが、長さの短い筒状部材を用い、この筒状部材の端部と電極導入体とをレーザによって溶接すると、その時の熱衝撃によってメタライズ層にクラックが生じ、その結果、リークが起こるという問題が起こった。   However, when a cylindrical member having a short length is used and the end portion of the cylindrical member and the electrode introduction body are welded by laser, a crack is generated in the metallized layer due to the thermal shock at that time, and as a result, leakage occurs. Happened.

よって、筒状部材の長さを長くせざるを得ず、上記した金属ハロゲン化物の沈み込み量を十分に減少させることができないことがわかった。   Therefore, it has been found that the length of the cylindrical member has to be increased, and the amount of sinking of the metal halide cannot be sufficiently reduced.

本発明は、このような問題を解決するためになされたもので、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができるとともに、筒状部材と電極導入体との間の隙間への金属ハロゲン化物の沈み込み量を大幅に減少させることができ、色温度が初期段階で変化したり、初期ランプ効率や初期光束が低下したりするのを防止することができる高圧放電ランプを提供することを目的とする。   The present invention has been made to solve such problems, and can prevent the metallized layer from cracking due to thermal shock when the cylindrical member and the electrode introduction body are joined in an airtight manner. The amount of metal halide sinking into the gap between the cylindrical member and the electrode introduction body can be greatly reduced, the color temperature can change at the initial stage, the initial lamp efficiency and the initial luminous flux can be reduced. An object of the present invention is to provide a high-pressure discharge lamp capable of preventing the

また、本発明は、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができる高圧放電ランプの製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for manufacturing a high-pressure discharge lamp that can prevent cracks in the metallized layer due to thermal shock when the tubular member and the electrode introduction body are hermetically bonded. To do.

本発明の請求項1記載の高圧放電ランプは、内部に発光物質が封入され、かつ開口部を有するセラミック製の容器と、前記開口部にメタライズ層を介して気密に接合され、かつ一部が前記開口部から外部に導出した金属製の筒状部材と、先端部に電極部を有しており、かつ前記電極部が前記容器内に位置するように前記筒状部材内に挿入されて、一部が前記筒状部材と気密に接合された電極導入体とを有する発光管を備え、前記開口部と、前記筒状部材と前記電極導入体とが気密に接合された接合部との間に、前記筒状部材と前記電極導入体との間の隙間が狭くなった狭窄部、または前記筒状部材と前記電極導入体とのそれぞれ一部同士が密着した密着部が形成されており、前記開口部の端面から前記接合部までの距離D1が7.0mm以上であり、前記電極部の先端から前記狭窄部または前記密着部までの距離d1が16.5mm以下であり、前記狭窄部または前記密着部を前記筒状部材の長手方向の軸に対して垂直に切った断面において、前記筒状部材と前記電極導入体との間の隙間の最大距離D2が0.04mm以下である構成を有している。 The high-pressure discharge lamp according to claim 1 of the present invention is sealed in a ceramic container having a light emitting substance enclosed therein and having an opening, and is hermetically bonded to the opening via a metallization layer, and a part thereof. A metallic cylindrical member led out from the opening, and an electrode portion at the tip, and inserted into the cylindrical member so that the electrode portion is located in the container, A luminous tube having a part of the cylindrical member and an electrode introduction body that is airtightly joined to the tubular member, and a portion between the opening and the joint portion where the cylindrical member and the electrode introduction body are airtightly joined. In addition, a narrowed portion in which a gap between the cylindrical member and the electrode introduction body is narrowed, or a close contact portion in which the cylindrical member and the electrode introduction body are in close contact with each other is formed, distance D 1 of the from the end face of the opening to the junction than 7.0mm There, the is at a distance d 1 from the tip of the electrode portion to the narrowed portion or the contact portion is 16.5mm or less, perpendicularly to the stenosis or the contact portion with respect to the longitudinal axis of the tubular member in cut cross section, the maximum distance D 2 of the gap between the tubular member and the electrode introducer has a configuration is less than 0.04 mm.

この構成により、メタライズ層と、筒状部材と電極導入体とが気密に接合された接合部との間の距離を十分に確保することができるので、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができるとともに、金属ハロゲン化物が狭窄部または密着部を越えて筒状部材と電極導入体との間の隙間に沈み込むのを狭窄部または密着部によって阻止することができるので、前記隙間への金属ハロゲン化物の沈み込み量を大幅に減少させることができ、その結果、放電に寄与する金属ハロゲン化物の減少に起因して色温度が初期段階で変化したり、初期ランプ効率や初期光束が低下したりするのを防止することができる。また、狭窄部または密着部の位置を電極部に近づけ、点灯中におけるその部分の温度を高くしているため、筒状部材と電極導入体との間の隙間のうち狭窄部または密着部の位置までの部分に入り込んだ金属ハロゲン化物を、点灯中に蒸発させて再び放電に寄与させることができる。   With this configuration, it is possible to secure a sufficient distance between the metallized layer and the joint portion where the tubular member and the electrode introduction body are airtightly joined, so that the tubular member and the electrode introduction body are hermetically sealed. It is possible to prevent the metallized layer from cracking due to the thermal shock during bonding, and the metal halide sinks into the gap between the cylindrical member and the electrode introduction body beyond the constriction or adhesion portion. Can be prevented by the constricted portion or the close contact portion, so that the amount of sinking of the metal halide into the gap can be greatly reduced, resulting in a decrease in the metal halide contributing to the discharge. It is possible to prevent the color temperature from changing in the initial stage and the initial lamp efficiency and the initial luminous flux from being lowered. In addition, since the position of the constriction part or the close contact part is brought close to the electrode part and the temperature of the part during lighting is increased, the position of the constriction part or the close contact part in the gap between the cylindrical member and the electrode introduction body The metal halide that has entered the portion up to can be evaporated during lighting and contribute to the discharge again.

本発明の請求項2記載の高圧放電ランプは、内部に発光物質が封入され、かつ開口部を有するセラミック製の容器と、前記開口部にメタライズ層を介して気密に接合され、かつ一部が前記開口部から外部に導出した金属製の筒状部材と、先端部に電極部を有しており、かつ前記電極部が前記容器内に位置するように前記筒状部材内に挿入されて、一部が前記筒状部材と気密に接合された電極導入体とを有する発光管を備え、前記筒状部材は前記容器とは反対側の端部以外の部分で前記電極導入体と気密に接合されており、前記電極部の先端から前記筒状部材と前記電極導入体とが気密に接合された接合部までの距離d2が16.5mm以下である構成を有している。 The high-pressure discharge lamp according to claim 2 of the present invention is sealed in a ceramic container having a light-emitting substance enclosed therein and having an opening, and is hermetically bonded to the opening via a metallization layer, and a part thereof. A metallic cylindrical member led out from the opening, and an electrode portion at the tip, and inserted into the cylindrical member so that the electrode portion is located in the container, An arc tube having a part of the tubular member and an electrode introduction body airtightly joined to the tubular member, and the tubular member is airtightly joined to the electrode introduction body at a portion other than the end opposite to the container. The distance d 2 from the tip of the electrode part to the joined part where the cylindrical member and the electrode introduction body are hermetically joined is 16.5 mm or less.

この構成により、第一に、筒状部材と電極導入体とを気密に接合する際の熱を、筒状部材のうち前記接合部に対して容器とは反対側の部分へ拡散させることができる。第二に、筒状部材と電極導入体とを気密に接合する際、筒状部材の端部に例えば真空排気装置を取り付けることができる。その結果、容器の内部の圧力を容器の外部の圧力よりも低くした状態で、筒状部材のうち容器とは反対側の端部以外の部分を加熱、溶融させることができる。その際、筒状部材の溶融部分は容器の内外での圧力差によって瞬時に収縮するため、筒状部材と電極導入体とを短時間で気密に接合することができる。したがって、メタライズ層に伝わる熱量を低減することができ、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができる。また、接合部の位置を電極部に近づけ、点灯中におけるその部分の温度を高くしているため、筒状部材と電極導入体との間の隙間に入り込んだ金属ハロゲン化物を、点灯中に蒸発させて再び放電に寄与させることができるので、放電に寄与する金属ハロゲン化物の減少に起因して色温度が初期段階で変化したり、初期ランプ効率や初期光束が低下したりするのを防止することができる。   With this configuration, first, heat at the time of airtightly joining the tubular member and the electrode introduction body can be diffused to a portion of the tubular member opposite to the container with respect to the joint portion. . Secondly, when the tubular member and the electrode introduction body are joined in an airtight manner, for example, an evacuation device can be attached to the end of the tubular member. As a result, in a state where the pressure inside the container is lower than the pressure outside the container, it is possible to heat and melt the part other than the end on the opposite side of the cylindrical member. At that time, since the melted portion of the cylindrical member contracts instantaneously due to the pressure difference between the inside and outside of the container, the cylindrical member and the electrode introduction body can be joined in an airtight manner in a short time. Therefore, the amount of heat transferred to the metallized layer can be reduced, and cracks can be prevented from being generated in the metallized layer due to thermal shock when the cylindrical member and the electrode introduction body are joined in an airtight manner. In addition, since the position of the joint is close to the electrode part and the temperature of that part is increased during lighting, the metal halide that has entered the gap between the cylindrical member and the electrode introduction body evaporates during lighting. Therefore, it is possible to prevent the color temperature from changing in the initial stage and the initial lamp efficiency and the initial luminous flux from being reduced due to the decrease in the metal halide contributing to the discharge. be able to.

本発明の請求項3記載の高圧放電ランプの製造方法は、内部に発光物質が封入され、かつ開口部を有するセラミック製の容器と、前記開口部にメタライズ層を介して気密に接合され、かつ一部が前記開口部から外部に導出した金属製の筒状部材と、先端部に電極部を有しており、かつ前記電極部が前記容器内に位置するように前記筒状部材内に挿入されて、一部が前記筒状部材と気密に接合された電極導入体とを有する発光管を備え、前記筒状部材は前記容器とは反対側の端部以外の部分で前記電極導入体と気密に接合された高圧放電ランプの製造方法であって、前記開口部に前記筒状部材を、メタライズ層を介して気密に接合した後、前記筒状部材内の圧力を前記筒状部材の外部の圧力よりも低くした状態で、前記筒状部材のうち前記容器とは反対側の端部以外の部分を加熱、溶融して、溶融した前記筒状部材と前記電極導入体とを気密に接合する方法を用いている。   According to a third aspect of the present invention, there is provided a method for manufacturing a high-pressure discharge lamp, wherein a luminescent material is sealed inside and a ceramic container having an opening is hermetically bonded to the opening via a metallization layer, and A metallic cylindrical member partially led out from the opening and an electrode portion at the tip, and inserted into the cylindrical member so that the electrode portion is located in the container And an arc tube having a part of the cylindrical member hermetically joined to the cylindrical member, and the cylindrical member is connected to the electrode introducing body at a portion other than the end opposite to the container. A method for manufacturing an airtightly bonded high pressure discharge lamp, wherein after the cylindrical member is airtightly bonded to the opening via a metallization layer, the pressure inside the cylindrical member is changed to the outside of the cylindrical member. The container among the cylindrical members in a state lower than the pressure of Uses a method for joining portions other than the opposite end heating, to melt, the said tubular member which is melted with the electrode introduced body airtight.

この方法により、筒状部材と電極導入体とを気密に接合する際、溶融した筒状部材は外圧によって収縮するため、極めて短時間で筒状部材と電極導入体とを気密に接合することができ、その結果、生産効率を高めることができ、しかも筒状部材を通じてメタライズ層に伝わる熱量を大幅に減少させることができるので、前記接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができる。また、筒状部材と電極導入体とを気密に接合する際、筒状部材の端部に例えば真空排気封入装置を取り付け、筒状部材の内部の圧力を筒状部材の外部の圧力よりも低くした状態で、筒状部材のうち容器とは反対側の端部以外の部分を加熱、溶融させているため、容器は密閉状態にあり、よって容器内へ不純物が混入することはない。そのため、前記接合のプロセスを特別な設備内で行う必要がないため、設備を簡素化することができるとともに、その設備のメンテナンスにかかる手間を省くことができ、またその費用を削減することができる。   By this method, when the tubular member and the electrode introduction body are joined in an airtight manner, the molten tubular member contracts due to the external pressure, so that the tubular member and the electrode introduction body can be joined in an airtight manner in an extremely short time. As a result, the production efficiency can be increased and the amount of heat transferred to the metallized layer through the cylindrical member can be greatly reduced, so that the metallized layer is prevented from cracking due to the thermal shock during the joining. can do. Further, when the tubular member and the electrode introduction body are joined in an airtight manner, for example, an evacuation sealing device is attached to the end of the tubular member, and the pressure inside the tubular member is lower than the pressure outside the tubular member. In this state, the cylindrical member is heated and melted except for the end opposite to the container, so that the container is in a hermetically sealed state, so that no impurities are mixed into the container. Therefore, since it is not necessary to perform the joining process in a special facility, it is possible to simplify the facility, to save labor for maintenance of the facility, and to reduce the cost. .

さらに、本発明の請求項4記載の高圧放電ランプの製造方法は、前記筒状部材において前記電極導入体との接合予定部から前記容器とは反対側の端までの長さL1が7mm以上である方法を用いている。 Furthermore, in the method for manufacturing a high-pressure discharge lamp according to claim 4 of the present invention, the length L 1 from the joining portion of the cylindrical member to the electrode introduction body to the end opposite to the container is 7 mm or more. Is used.

この方法により、筒状部材の端部に取り付けられる例えば真空排気装置のチャック部が接合部を形成する際の熱によって劣化するのを防止することができる。   By this method, it is possible to prevent, for example, a chuck portion of an evacuation apparatus attached to the end portion of the cylindrical member from being deteriorated by heat when forming the joint portion.

本発明の高圧放電ランプは、上記構成を有することにより、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができるとともに、筒状部材と電極導入体との間の隙間への金属ハロゲン化物の沈み込み量を大幅に減少させることができ、色温度が変化したり、初期ランプ効率や初期光束が低下したりするのを防止することができる高圧放電ランプを提供することができるものである。   The high-pressure discharge lamp of the present invention has the above-described configuration, and can prevent cracks in the metallized layer due to thermal shock when the cylindrical member and the electrode introduction body are hermetically bonded. The amount of metal halide sinking into the gap between the member and the electrode introduction body can be greatly reduced, preventing changes in color temperature, initial lamp efficiency, and initial luminous flux. It is possible to provide a high-pressure discharge lamp that can be used.

また、本発明の高圧放電ランプの製造方法は、上記方法を用いることにより、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することができ、また前記接合のプロセスにおいて、生産効率を高めることができるとともに、前記接合のプロセスを特別な設備内で行う必要がないため、設備を簡素化することができ、かつその設備のメンテナンスにかかる手間を省くことができ、またその費用を削減することができる高圧放電ランプの製造方法を提供することができるものである。   Moreover, the manufacturing method of the high-pressure discharge lamp of the present invention can prevent the metallized layer from being cracked by the thermal shock when the cylindrical member and the electrode introduction body are hermetically bonded by using the above method. In addition, it is possible to increase production efficiency in the joining process, and it is not necessary to perform the joining process in a special facility, so that the facility can be simplified and the maintenance of the facility is required. It is possible to provide a method of manufacturing a high-pressure discharge lamp that can save time and cost.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施の形態である一般屋内照明用の定格電力150Wのセラミックメタルハライドランプは、図2に示すように、一端部が閉塞され、かつ他端部にE形の口金1が取り付けられた石英ガラス製または硬質ガラス製の外管2内に、発光管3と、この発光管3のほぼ全体を覆う外管2の破損防止用の石英ガラス製のスリーブ4と、発光管3の外部に導出している後述の外部リード線5に接続されて発光管3を保持するとともに、外管2の他端部側に封止されたステム6に封着されている二本のステム線7と、このステム線7の一つに接続され、かつスリーブ4の両端部に各々巻き付けられてスリーブ4を保持している二つのリング状部材8とが収納されている。   As shown in FIG. 2, the ceramic metal halide lamp with a rated power of 150 W for general indoor lighting according to the first embodiment of the present invention is closed at one end and attached with an E-shaped base 1 at the other end. In the outer tube 2 made of quartz glass or hard glass, the arc tube 3, the sleeve 4 made of quartz glass for preventing damage to the outer tube 2 covering almost the entire arc tube 3, and the arc tube 3 Two stem wires that are connected to an external lead wire 5 that is led out to the outside to hold the arc tube 3 and are sealed to a stem 6 that is sealed to the other end of the outer tube 2 7 and two ring-shaped members 8 that are connected to one of the stem wires 7 and are respectively wound around both ends of the sleeve 4 to hold the sleeve 4 are accommodated.

外管2内には、窒素ガスが封入されている。   Nitrogen gas is sealed in the outer tube 2.

発光管3は、図1または図3に示すように、内径r1が10.7mmの第一筒部9とこの第一筒部9にテーパ部10を介して形成された第二筒部11とを有する本管部12と、各第二筒部11内に挿入され焼きばめられた外径R1が3.4mm、内径r2が1.3mm、長さL1(第二筒部11からの突出長)が6.0mmの細管部13とを有する例えばアルミナからなる透光性セラミック製の容器14を備えている。 As shown in FIG. 1 or 3, the arc tube 3 includes a first tube portion 9 having an inner diameter r 1 of 10.7 mm, and a second tube portion 11 formed on the first tube portion 9 via a taper portion 10. And an outer diameter R 1 inserted into each second cylinder portion 11 and shrink-fitted is 3.4 mm, an inner diameter r 2 is 1.3 mm, and a length L 1 (second cylinder portion). 11 is provided with a container 14 made of translucent ceramic made of alumina, for example, having a narrow tube portion 13 having a projection length of 6.0 mm.

容器14の各構成部分で囲まれた領域は放電空間を形成しており、内部に発光物質としての金属ハロゲン化物、緩衝ガスとしての水銀、および始動補助用としての希ガスがそれぞれ所定量封入されている。また、管壁負荷は24W/cm2である。 A region surrounded by each component of the container 14 forms a discharge space, in which a predetermined amount of a metal halide as a luminescent material, mercury as a buffer gas, and a rare gas as a starting aid are enclosed. ing. The tube wall load is 24 W / cm 2 .

また、容器14の開口部、つまり各細管部13の開口部13aには、その一部が開口部13aから外部に導出している例えばモリブデンやタングステン等の金属製の筒状部材15がメタライズ層16を介して気密に接合されている。この筒状部材15は、その外径が1.2mm、肉厚が0.1mm、細管部13の開口部13aの端面からの突出長Lm、つまり細管部13の開口部13aの端面から筒状部材15と後述する電極導入体17との接合部18までの距離D1が7.0mm以上である。 Further, in the opening portion of the container 14, that is, the opening portion 13a of each narrow tube portion 13, a metal cylindrical member 15 such as molybdenum or tungsten, a part of which is led out from the opening portion 13a, is a metallized layer. 16 is joined airtightly. The cylindrical member 15 has an outer diameter of 1.2 mm, a thickness of 0.1 mm, a protruding length L m from the end surface of the opening 13a of the narrow tube portion 13, that is, a tube from the end surface of the opening 13a of the narrow tube portion 13. A distance D 1 to the joint 18 between the electrode-like member 15 and the electrode introduction body 17 described later is 7.0 mm or more.

なお、突出長Lm(距離D1)は、前記端面から筒状部材15と後述する電極導入体17との接合部18の容器14とは反対側の端までの距離を測っている。 Incidentally, the protruding length L m (distance D 1) is measured the distance to the end opposite to the container 14 of the joint portion 18 of the electrode introducer 17 to be described later and tubular member 15 from the end face.

メタライズ層16は、開気孔を有するモリブデンの金属焼結体からなり、その開気孔中に酸化ディスプロシウム(Dy23)と酸化アルミニウム(Al23)とを主成分とするDy23−Al23系ガラスが含浸されているものであって、その厚さが50μm〜100μmである。また、メタライズ層16は、高い気密性を得るため、長さL2が3mm以上に亘って形成されていることが好ましい。 Metallization layer 16 is made of a metal sintered body of molybdenum having open pores, Dy 2 to its open pore dysprosium oxide in (Dy 2 O 3) and aluminum oxide (Al 2 O 3) and composed mainly of It is impregnated with O 3 —Al 2 O 3 glass and has a thickness of 50 μm to 100 μm. Also, metallization layer 16 in order to obtain a high airtightness, it is preferable that length L 2 is formed for more than 3 mm.

また、発光管3は、図3に示すように、先端部に電極部19を有しており、この電極部19が容器14内に位置するように筒状部材15内に挿入され、その一部が筒状部材15と気密に接合された電極導入体17とを備えている。   Further, as shown in FIG. 3, the arc tube 3 has an electrode portion 19 at the tip portion, and is inserted into the cylindrical member 15 so that the electrode portion 19 is located in the container 14. The portion includes a cylindrical member 15 and an electrode introduction body 17 airtightly joined.

これら電極導入体17は、各々の電極部19が互いに対向するように、それらの長手方向の中心軸がほぼ同一軸上に位置している。電極部19間の距離は10.0mmである。   These electrode introduction bodies 17 have their longitudinal central axes located on substantially the same axis so that the electrode portions 19 face each other. The distance between the electrode parts 19 is 10.0 mm.

また、この電極導入体17は、直径0.5mmのタングステン製の電極棒20と、この電極棒20の一方の端部に巻き付けられ、電極部19を形成しているタングステン製のコイル部21と、電極棒20の両端部を除く部分に巻き付けられた線径0.2mmのモリブンデン製のコイル部21とを有しており、電極棒20の他端部が筒状部材15から外部に導出している。   The electrode introduction body 17 includes a tungsten electrode rod 20 having a diameter of 0.5 mm, and a tungsten coil portion 21 that is wound around one end of the electrode rod 20 to form the electrode portion 19. And a coil part 21 made of molybdenden with a wire diameter of 0.2 mm wound around a portion excluding both ends of the electrode rod 20, and the other end of the electrode rod 20 is led out from the cylindrical member 15 to the outside. ing.

コイル部21は電極棒20には密着しているものの、筒状部材15の内面には密着しておらず、よって筒状部材15とコイル部21との間には、各部材の寸法構成も考慮して、わずかな隙間0.06mm〜0.14mmが形成されている。ただし、電極導入体17が筒状部材15内に偏心して挿入された場合は、コイル部21の一部は筒状部材15の内面に接触(密着)する場合がある。   Although the coil portion 21 is in close contact with the electrode rod 20, it is not in close contact with the inner surface of the cylindrical member 15, and therefore the dimensional configuration of each member is also between the cylindrical member 15 and the coil portion 21. Considering this, a slight gap of 0.06 mm to 0.14 mm is formed. However, when the electrode introduction body 17 is inserted eccentrically into the cylindrical member 15, a part of the coil portion 21 may contact (adhere) the inner surface of the cylindrical member 15.

この電極導入体17のうち、筒状部材15から外部に導出している端部には、図示していないが、ニオブやモリブデン等からなる外部リード線5が接続されている。   Although not shown, an external lead wire 5 made of niobium, molybdenum or the like is connected to an end portion of the electrode introduction body 17 that is led out from the cylindrical member 15 to the outside.

また、上記した電極導入体17において、電極棒20は一本のタングステン棒からなる場合について説明したが、この電極棒は例えば複数のタングステン棒が接合されたものや、容器14側の端部のみがタングステン棒からなり、残部がそのタングステン棒に接合された例えばモリブデン棒や導電性サーメット棒からなっていてもよい。   Further, in the electrode introduction body 17 described above, the case where the electrode rod 20 is made of a single tungsten rod has been described. However, this electrode rod is, for example, one in which a plurality of tungsten rods are joined or only at the end on the container 14 side. May be made of a tungsten rod, and the remainder may be made of, for example, a molybdenum rod or a conductive cermet rod bonded to the tungsten rod.

細管部13の開口部13aと、筒状部材15と電極導入体17とが気密に接合された接合部18との間に、筒状部材15と電極導入体17との間の隙間が狭くなった狭窄部22が形成されている。   The gap between the tubular member 15 and the electrode introduction body 17 is narrowed between the opening 13a of the thin tube portion 13 and the joint portion 18 where the tubular member 15 and the electrode introduction body 17 are airtightly joined. A narrowed portion 22 is formed.

そして、電極部19の先端から狭窄部22までの距離d1は16.5mm以下である。また、図4に示すように、この狭窄部22を筒状部材15の長手方向の軸に対して垂直に切った断面において、筒状部材15と電極導入体17との間の隙間の最大距離D2が0.04mm以下である(ただし、0mmは含まない)。 The distance d 1 from the tip of the electrode part 19 to the narrowed part 22 is 16.5 mm or less. Further, as shown in FIG. 4, the maximum distance of the gap between the cylindrical member 15 and the electrode introduction body 17 in a cross section obtained by cutting the narrowed portion 22 perpendicularly to the longitudinal axis of the cylindrical member 15. D 2 is less than 0.04 mm (however, not including 0 mm).

なお、上記した狭窄部22に代わって、筒状部材15と電極導入体17との間の隙間がなくなるようにそれらの一部同士が密着した密着部が形成されていてもよい。その際、最大距離D2は0mmとなる。 Instead of the narrowed portion 22 described above, a close contact portion may be formed in which a part of them closely contacts so that there is no gap between the cylindrical member 15 and the electrode introduction body 17. At that time, the maximum distance D 2 is 0 mm.

また、電極棒20に対するコイル部21の巻き方が粗巻きの場合、筒状部材15と電極導入体17との間の隙間の最大距離D2は、実質的に、筒状部材15の内面と電極棒20の外面との間の距離になる。 Further, when the coil portion 21 is wound roughly around the electrode rod 20, the maximum distance D 2 of the gap between the tubular member 15 and the electrode introduction body 17 is substantially equal to the inner surface of the tubular member 15. This is the distance between the outer surface of the electrode rod 20.

次に、このようなセラミックメタルハライドランプの製造方法の一例を説明する。   Next, an example of a method for manufacturing such a ceramic metal halide lamp will be described.

まず、あらかじめ容器14の開口部、つまり細管部13の開口部13aに筒状部材15がメタライズ層16を介して気密に接合されたものと、二つの電極導入体17とをそれぞれ用意する。   First, the cylindrical member 15 is hermetically bonded to the opening of the container 14, that is, the opening 13 a of the thin tube portion 13 through the metallized layer 16, and two electrode introduction bodies 17 are prepared in advance.

一つの電極導入体17を一方の筒状部材15内に挿入し、電極部19が容器14内に位置する状態で保持する。その後、一方の筒状部材15の端部にレーザを当てて溶融し、溶融した筒状部材15と電極導入体17とを接合して、一方の接合部18を形成する。   One electrode introduction body 17 is inserted into one cylindrical member 15 and held in a state where the electrode portion 19 is located in the container 14. After that, the end of one cylindrical member 15 is melted by applying a laser, and the molten cylindrical member 15 and the electrode introduction body 17 are joined to form one joined portion 18.

次に、他方の筒状部材15から容器14内を真空排気した後、他方の筒状部材15から容器14内に発光物質等の封入物を投入する。その後、もう一つの電極導入体17を他方の筒状部材15内に挿入し、電極部19が容器14内に位置する状態で保持する。次いで、他方の筒状部材15の端部にレーザを当てて溶融し、溶融した筒状部材15と電極導入体17とを接合して、他方の接合部18を形成する。   Next, after the inside of the container 14 is evacuated from the other cylindrical member 15, an enclosure such as a luminescent substance is put into the container 14 from the other cylindrical member 15. Thereafter, another electrode introduction body 17 is inserted into the other cylindrical member 15 and held in a state where the electrode portion 19 is located in the container 14. Subsequently, the end of the other cylindrical member 15 is melted by applying a laser, and the molten cylindrical member 15 and the electrode introduction body 17 are joined to form the other joined portion 18.

そして、細管部13の開口部と、筒状部材15と電極導入体17とが気密に接合された接合部18との間の所定の部分に、例えばレーザを当てて縮径させることにより、筒状部材15と電極導入体17との間の隙間が狭くなった狭窄部22を形成する。このとき、筒状部材15の内面の一部と電極導入体17のコイル部21の一部とがそれぞれ接触していてもよく、また筒状部材15と電極導入体17との間の隙間がなくなるように、筒状部材15の内面と電極導入体17のコイル部21とをそれぞれ密着させて密着部を形成してもよい。   Then, for example, by applying a laser to the predetermined portion between the opening of the thin tube portion 13 and the joint portion 18 where the tubular member 15 and the electrode introduction body 17 are airtightly joined, the diameter is reduced. A narrowed portion 22 is formed in which the gap between the electrode member 15 and the electrode introduction body 17 is narrowed. At this time, a part of the inner surface of the cylindrical member 15 and a part of the coil portion 21 of the electrode introduction body 17 may be in contact with each other, and a gap between the cylindrical member 15 and the electrode introduction body 17 is formed. The contact portion may be formed by bringing the inner surface of the cylindrical member 15 and the coil portion 21 of the electrode introduction body 17 into close contact with each other so as to disappear.

なお、狭窄部22または密着部を形成するに当たり、レーザを当てて筒状部材15を縮径させて形成する場合について説明したが、これ以外に、かしめ加工等の機械的加工によって狭窄部22または密着部を形成してもよい。   The case where the narrow member 22 or the close contact portion is formed by applying a laser to reduce the diameter of the cylindrical member 15 has been described. However, in addition to this, the narrow portion 22 or the narrow portion 22 or the close contact portion may be formed by mechanical processing such as caulking. A close contact portion may be formed.

次に、本発明の第1の実施の形態である定格電力150Wのセラミックメタルハライドランプ(以下、「本発明品1」という)における作用効果について確認した。   Next, the effects of the ceramic metal halide lamp (hereinafter referred to as “the product 1 of the present invention”) having a rated power of 150 W, which is the first embodiment of the present invention, were confirmed.

まず、本発明品1において、細管部13の開口部13aの端面から接合部18までの距離D1を12.5mm(実施例1)、7.0mm(実施例2)、および6.5mm(比較例1)と種々変化させたものを5本ずつ作製した。 First, in the product 1 of the present invention, the distance D 1 from the end surface of the opening 13a of the narrow tube portion 13 to the joint portion 18 is 12.5 mm (Example 1), 7.0 mm (Example 2), and 6.5 mm ( Comparative Example 1) and variously changed ones were prepared.

そして、作製した各ランプにおいて筒状部材15と電極導入体17とをレーザによって接合する際に、メタライズ層16にクラックが発生したか否かを確認したところ、表1に示すとおりの結果が得られた。   Then, when the cylindrical member 15 and the electrode introduction body 17 were joined by laser in each of the produced lamps, it was confirmed whether or not a crack was generated in the metallized layer 16, and the results shown in Table 1 were obtained. It was.

なお、各実施例および比較例において、電極部19の先端から狭窄部22までの距離d1を13.0mmとし、狭窄部22を筒状部材15の長手方向の軸に対して垂直に切った断面において、筒状部材15と電極導入体17との間の隙間の最大距離D2を0.02mmとした。 In each example and comparative example, the distance d 1 from the tip of the electrode portion 19 to the narrowed portion 22 was 13.0 mm, and the narrowed portion 22 was cut perpendicular to the longitudinal axis of the cylindrical member 15. in cross section, the maximum distance D 2 of the gap between the tubular member 15 and the electrode transductant 17 was 0.02 mm.

Figure 2005056660
Figure 2005056660

表1から明らかなように、実施例1および実施例2では、筒状部材15と電極導入体17とを加熱、溶融して接合する際に、メタライズ層16にクラックが発生したものは無かった。   As is apparent from Table 1, in Examples 1 and 2, there was no crack in the metallized layer 16 when the tubular member 15 and the electrode introduction body 17 were joined by heating and melting. .

一方、比較例1では、筒状部材15と電極導入体17とを加熱、溶融して接合する際に、メタライズ層16にクラックが発生した。   On the other hand, in Comparative Example 1, cracks occurred in the metallized layer 16 when the tubular member 15 and the electrode introduction body 17 were heated, melted, and joined.

このような結果が得られた理由について検討した。   The reason why such a result was obtained was examined.

実施例1および実施例2の場合では、筒状部材15と電極導入体17とを接合する部分と、メタライズ層16との間の距離が十分に離れているので、筒状部材15と電極導入体17とを加熱、溶融して接合する場合でも、そのときの熱がメタライズ層16に伝わりにくく、その結果、メタライズ層16で起きる熱衝撃が小さかったためであると考えられる。一方、比較例1の場合では、筒状部材15と電極導入体17とを接合する部分と、メタライズ層16との間の距離が短いので、筒状部材15と電極導入体17とを加熱、溶融して接合する際の熱衝撃が大きく、その結果、その熱衝撃によってメタライズ層16にクラックが発生したものと考えられる。   In the case of Example 1 and Example 2, since the distance between the part which joins the cylindrical member 15 and the electrode introducing body 17 and the metallization layer 16 is fully separated, the cylindrical member 15 and the electrode introduction Even when the body 17 is heated and melted and joined, the heat at that time is hardly transmitted to the metallized layer 16, and as a result, the thermal shock generated in the metallized layer 16 is considered to be small. On the other hand, in the case of the comparative example 1, since the distance between the part which joins the cylindrical member 15 and the electrode introducing body 17 and the metallization layer 16 is short, the cylindrical member 15 and the electrode introducing body 17 are heated. The thermal shock at the time of melting and joining is large, and as a result, it is considered that cracks occurred in the metallized layer 16 due to the thermal shock.

したがって、筒状部材15と電極導入体17とを接合する際の熱衝撃によってメタライズ層16にクラックが生じるのを防止するため、細管部13の開口部の端面から接合部18までの距離D1を7mm以上に規定すべきことがわかった。 Therefore, in order to prevent the metallized layer 16 from being cracked by thermal shock when joining the cylindrical member 15 and the electrode introduction body 17, the distance D 1 from the end face of the opening of the thin tube portion 13 to the joint portion 18. It was found that should be specified to be 7 mm or more.

なお、前記距離D1の上限値は特に規定されるものではないが、ランプのコンパクト性等を考慮すれば、なるべく短い方がよい。 Although the upper limit value of the distance D 1 is not particularly defined, it is preferable that the distance D 1 is as short as possible in consideration of the compactness of the lamp.

次に、本発明品1において、細管部13の開口部の端面から接合部18までの距離D1を12.5mmとし、狭窄部22の位置、つまり電極部19の先端から狭窄部22までの距離d1を13.0mm(実施例1)、16.5mm(実施例3)、17.0mm(比較例2)と種々変化させたものを5本ずつ作製した。 Next, in the product 1 of the present invention, the distance D 1 from the end face of the opening of the narrow tube portion 13 to the joint portion 18 is 12.5 mm, and the position of the narrowed portion 22, that is, the tip of the electrode portion 19 to the narrowed portion 22 Five pieces with various changes of the distance d 1 of 13.0 mm (Example 1), 16.5 mm (Example 3), and 17.0 mm (Comparative Example 2) were prepared.

そして、作製した各ランプにおいて、100時間点灯経過後の色温度ばらつき、初期ランプ効率(lm/W)、および初期光束(lm)について調べたところ、表2に示すとおりの結果が得られた。   Each of the produced lamps was examined for color temperature variation, initial lamp efficiency (lm / W), and initial luminous flux (lm) after 100 hours of lighting, and the results shown in Table 2 were obtained.

なお、「初期光束」とは100時間点灯経過後の光束を示す。また、「初期ランプ効率」とは100時間点灯経過後のランプ効率を示す。   The “initial light beam” indicates a light beam after 100 hours of lighting. “Initial lamp efficiency” indicates the lamp efficiency after 100 hours of lighting.

また、各ランプにおいて、狭窄部22を筒状部材15の長手方向の軸に対して垂直に切った断面において、筒状部材15と電極導入体17との間の隙間の最大距離D2は0.02mmである。 Further, in each lamp, the maximum distance D 2 of the gap between the cylindrical member 15 and the electrode introduction body 17 is 0 in a cross section in which the narrowed portion 22 is cut perpendicular to the longitudinal axis of the cylindrical member 15. 0.02 mm.

さらに、評価基準として、「色温度ばらつき」は3500Kを基準値として±200K以下のものを「良好」、±200Kを越えるものを「不良」とし、初期ランプ効率は90lm/W以上のものを「良好」、90lm/W未満のものを「不良」とし、さらに初期光束は13500lm以上のものを「良好」、13500lm未満のものを「不良」としている。   Further, as an evaluation standard, “color temperature variation” is 3500K as a reference value, ± 200K or less as “good”, those exceeding ± 200K as “bad”, and initial lamp efficiency of 90 lm / W or more as “good”. “Good”, less than 90 lm / W is “bad”, and the initial luminous flux is 13500 lm or more is “good”, and less than 13500 lm is “bad”.

Figure 2005056660
Figure 2005056660

表2から明らかなように、実施例1では、色温度ばらつきが±150K、初期ランプ効率が93.3lm/W、初期光束が14000lmであり、また実施例3では、色温度ばらつきが±200K、初期ランプ効率が90.0lm/W、初期光束が13500lmであり、いずれの実施例においても上記評価基準を満足していた。   As apparent from Table 2, in Example 1, the color temperature variation is ± 150K, the initial lamp efficiency is 93.3 lm / W, the initial luminous flux is 14000 lm, and in Example 3, the color temperature variation is ± 200 K. The initial lamp efficiency was 90.0 lm / W and the initial luminous flux was 13500 lm, and the above evaluation criteria were satisfied in any of the examples.

一方、比較例2では、色温度ばらつきが±220K、初期ランプ効率が89.3lm/W、初期光束が13400lmであり、いずれも上記評価基準を満足していなかった。   On the other hand, in Comparative Example 2, the color temperature variation was ± 220 K, the initial lamp efficiency was 89.3 lm / W, and the initial luminous flux was 13400 lm, and none of the above evaluation criteria was satisfied.

このような結果が得られた理由について検討した。   The reason why such a result was obtained was examined.

実施例1および実施例3では、いずれも金属ハロゲン化物が狭窄部22を越えて筒状部材15と電極導入体17との間の隙間に沈み込むのを狭窄部22自体によって阻止することができ、しかも電極部19の先端から狭窄部22までの距離d1が短く、狭窄部22を点灯中高温となる電極部19に近づけているので、金属ハロゲン化物が筒状部材15と電極導入体17との間の隙間のうち狭窄部22の位置までの部分に入り込んだとしても、その金属ハロゲン化物を点灯中に蒸発させることができ、その結果、筒状部材15と電極導入体17との間の隙間への金属ハロゲン化物の沈み込み量を大幅に減少させることができたためであると考えられる。 In both Example 1 and Example 3, the metal halide can be prevented from sinking into the gap between the tubular member 15 and the electrode introduction body 17 beyond the constriction 22 by the constriction 22 itself. In addition, since the distance d 1 from the tip of the electrode part 19 to the constricted part 22 is short and the constricted part 22 is brought close to the electrode part 19 that becomes high temperature during lighting, the metal halide is in the cylindrical member 15 and the electrode introduction body 17. The metal halide can be evaporated during lighting even if it enters the portion up to the position of the constriction 22 in the gap between the cylindrical member 15 and the electrode introduction body 17. This is probably because the sinking amount of the metal halide into the gaps of the metal can be greatly reduced.

一方、比較例2では、金属ハロゲン化物が狭窄部22を越えて筒状部材15と電極導入体17との間の隙間に侵入しようとするのを阻止することはできるものの、電極部19の先端から狭窄部22までの距離d1が長いので、筒状部材15と電極導入体17との間の隙間のうち狭窄部22の位置までの部分に入り込んだ金属ハロゲン化物の一部が点灯中に蒸発することなく、その場所にとどまったためであると考えられる。 On the other hand, in Comparative Example 2, although it is possible to prevent the metal halide from entering the gap between the cylindrical member 15 and the electrode introduction body 17 beyond the constricted portion 22, the tip of the electrode portion 19 can be prevented. Since the distance d 1 from the narrowed portion 22 to the narrowed portion 22 is long, a part of the metal halide that has entered the portion up to the narrowed portion 22 in the gap between the cylindrical member 15 and the electrode introduction body 17 is turned on. It is thought that it was because it stayed in the place without evaporating.

次に、本発明品1において、細管部13の開口部の端面から接合部18までの距離D1を12.5mmとし、かつ電極部19の先端から狭窄部22までの距離d1を13.0mmとした場合において、狭窄部22を筒状部材15の長手方向の軸に対して垂直に切った断面における筒状部材15と電極導入体17との間の隙間の最大距離D2を0.02mm(実施例1)、0.04mm(実施例4)、0.05mm(比較例3)と種々変化させたものを5本ずつ作製した。 Next, in the product 1 of the present invention, the distance D 1 from the end face of the opening of the thin tube portion 13 to the joint portion 18 is 12.5 mm, and the distance d 1 from the tip of the electrode portion 19 to the constricted portion 22 is 13. In the case of 0 mm, the maximum distance D 2 of the gap between the cylindrical member 15 and the electrode introduction body 17 in a cross section obtained by cutting the narrowed portion 22 perpendicularly to the longitudinal axis of the cylindrical member 15 is set to 0. Five pieces with various changes of 02 mm (Example 1), 0.04 mm (Example 4), and 0.05 mm (Comparative Example 3) were produced.

そして、作製した各ランプにおいて、100時間点灯経過後の色温度ばらつき、初期ランプ効率(lm/W)、および初期光束(lm)について調べたところ、表3に示すとおりの結果が得られた。   Each of the produced lamps was examined for color temperature variation, initial lamp efficiency (lm / W), and initial luminous flux (lm) after 100 hours of lighting, and the results shown in Table 3 were obtained.

Figure 2005056660
Figure 2005056660

表3から明らかなように、実施例1では、色温度ばらつきが±150K、初期ランプ効率が93.3lm/W、初期光束が14000lmであり、また実施例4では、色温度ばらつきが±200K、初期ランプ効率が90.0lm/W、初期光束が13500lmであり、いずれの実施例においても上記評価基準を満足していた。   As apparent from Table 3, in Example 1, the color temperature variation is ± 150K, the initial lamp efficiency is 93.3 lm / W, the initial luminous flux is 14000 lm, and in Example 4, the color temperature variation is ± 200 K. The initial lamp efficiency was 90.0 lm / W and the initial luminous flux was 13500 lm, and the above evaluation criteria were satisfied in any of the examples.

一方、比較例3では、色温度ばらつきが±250K、初期ランプ効率が88.0lm/W、初期光束が13200lmであり、いずれも上記評価基準を満足していなかった。   On the other hand, in Comparative Example 3, the color temperature variation was ± 250 K, the initial lamp efficiency was 88.0 lm / W, and the initial luminous flux was 13200 lm, and none of the above evaluation criteria was satisfied.

このような結果が得られた理由について検討した。   The reason why such a result was obtained was examined.

実施例1および実施例4では、いずれも狭窄部22を筒状部材15の長手方向の軸に対して垂直に切った断面における空隙部の最小面積Sが十分に小さいので、金属ハロゲン化物が狭窄部22を通過して筒状部材15と電極導入体17との間の隙間に侵入しようとするのを十分に阻止することができたためであると考えられる。   In each of Example 1 and Example 4, the minimum area S of the void portion in the cross section obtained by cutting the constricted portion 22 perpendicularly to the longitudinal axis of the cylindrical member 15 is sufficiently small, so that the metal halide is constricted. This is considered to be because it was possible to sufficiently prevent the portion 22 from passing through the gap between the tubular member 15 and the electrode introduction body 17.

一方、比較例3では、狭窄部はあるものの、狭窄部を筒状部材15の長手方向の軸に対して垂直に切った断面における空隙部の最小面積Sが大きく、金属ハロゲン化物が狭窄部を通過して筒状部材15と電極導入体17との間の隙間に侵入したためであると考えられる。   On the other hand, in Comparative Example 3, although there is a narrowed portion, the minimum area S of the void portion in the cross section obtained by cutting the narrowed portion perpendicular to the longitudinal axis of the cylindrical member 15 is large, and the metal halide has the narrowed portion. It is thought that this is because it has passed and entered the gap between the cylindrical member 15 and the electrode introduction body 17.

したがって、金属ハロゲン化物が筒状部材15と電極導入体17との間の隙間に沈み込むのを防止するため、電極部19の先端から狭窄部22までの距離d1を16.5mm以下にし、かつ狭窄部22を筒状部材15の長手方向の軸に対して垂直に切った断面における筒状部材15と電極導入体17との間の隙間の最大距離D2が0.04mm以下に規定すべきことがわかった。 Therefore, in order to prevent the metal halide from sinking into the gap between the cylindrical member 15 and the electrode introduction body 17, the distance d 1 from the tip of the electrode portion 19 to the narrowed portion 22 is set to 16.5 mm or less, In addition, the maximum distance D 2 of the gap between the cylindrical member 15 and the electrode introduction body 17 in a cross section obtained by cutting the narrowed portion 22 perpendicularly to the longitudinal axis of the cylindrical member 15 is defined to be 0.04 mm or less. I knew it should be.

なお、前記距離d1は短ければ短いほどよく、また前記最大距離D2は小さければ小さいほどよい。また、前記距離d1の下限値は容器14の寸法等によって適宜決定される。 The distance d 1 is preferably as short as possible, and the maximum distance D 2 is as small as possible. The lower limit value of the distance d 1 is appropriately determined depending on the dimensions of the container 14 and the like.

以上のとおり本発明の第1の実施の形態であるセラミックメタルハライドランプにかかる構成によれば、メタライズ層16と、筒状部材15と電極導入体17とが気密に接合された接合部18との間の距離を十分に確保することができるので、筒状部材15と電極導入体17とを気密に接合する際の熱衝撃によってメタライズ層16にクラックが生じるのを防止することができるとともに、金属ハロゲン化物が狭窄部22を越えて筒状部材15と電極導入体17との間の隙間に沈み込むのを狭窄部22によって阻止することができるので、前記隙間への金属ハロゲン化物の沈み込み量を大幅に減少させることができ、その結果、放電に寄与する金属ハロゲン化物の減少に起因して色温度が変化したり、初期ランプ効率や初期光束が低下したりするのを防止することができる。また、狭窄部22の位置を電極部19に近づけ、点灯中におけるその部分の温度を高くしているため、筒状部材15と電極導入体17との間の隙間のうち狭窄部22の位置までの部分に入り込んだ金属ハロゲン化物を、点灯中に蒸発させて再び放電に寄与させることができる。   As described above, according to the configuration of the ceramic metal halide lamp according to the first embodiment of the present invention, the metallized layer 16 and the joint portion 18 in which the tubular member 15 and the electrode introduction body 17 are airtightly joined. Since a sufficient distance can be secured between the metallized layer 16 and the metallized layer 16 due to thermal shock when the cylindrical member 15 and the electrode introduction body 17 are hermetically bonded, Since the narrow portion 22 can prevent the halide from sinking into the gap between the cylindrical member 15 and the electrode introduction body 17 beyond the narrow portion 22, the sinking amount of the metal halide into the gap is prevented. As a result, the color temperature changes due to the decrease in metal halide contributing to the discharge, the initial lamp efficiency and the initial luminous flux decrease. That it can be prevented. Further, since the position of the constricted portion 22 is brought close to the electrode portion 19 and the temperature of the portion during lighting is increased, the gap between the cylindrical member 15 and the electrode introduction body 17 is reached to the position of the constricted portion 22. The metal halide that has entered this portion can be evaporated during lighting and contribute to the discharge again.

なお、上記第1の実施の形態では、細管部13の開口部13aと、筒状部材15と電極導入体17とが気密に接合された接合部18との間に、筒状部材15と電極導入体17との間の隙間が狭くなった狭窄部22を形成した場合について説明したが、この狭窄部22に代えて筒状部材15と電極導入体17とのそれぞれ一部同士が密着した密着部を形成した場合でも上記と同様の効果を得ることができる。   In the first embodiment, the tubular member 15 and the electrode are provided between the opening 13a of the thin tube portion 13 and the joint 18 in which the tubular member 15 and the electrode introduction body 17 are airtightly joined. Although the case where the narrowed portion 22 having a narrow gap with the introduction body 17 is formed has been described, the cylindrical member 15 and the electrode introduction body 17 are in close contact with each other in place of the narrowed portion 22. Even when the portion is formed, the same effect as described above can be obtained.

次に、本発明の第2の実施の形態である一般屋内照明用の定格電力150Wのセラミックメタルハライドランプは、図5に示すように、狭窄部22を有さず、筒状部材15と電極導入体17との接合部の位置が異なる、つまり筒状部材15が容器14とは反対側の端部以外の部分で電極導入体17と気密に接合されており、電極部19の先端から筒状部材15と電極導入体17とが気密に接合された接合部23までの距離d2が16.5mm以下、例えば13.0mmである点を除いて本発明の第1の実施の形態である一般屋内照明用の定格電力150Wのセラミックメタルハライドランプと同じ構成を有する。 Next, the ceramic metal halide lamp with a rated power of 150 W for general indoor lighting according to the second embodiment of the present invention does not have the narrowed portion 22 as shown in FIG. The position of the joint portion with the body 17 is different, that is, the tubular member 15 is airtightly joined to the electrode introduction body 17 at a portion other than the end portion on the side opposite to the container 14, and is tubular from the tip of the electrode portion 19. The first embodiment of the present invention is general except that the distance d 2 to the joint 23 where the member 15 and the electrode introduction body 17 are hermetically joined is 16.5 mm or less, for example, 13.0 mm. It has the same configuration as a ceramic metal halide lamp with a rated power of 150 W for indoor lighting.

なお、前記距離d2は短ければ短いほどよく、その下限値は容器14の寸法等によって適宜決定される。 The distance d 2 is preferably as short as possible, and the lower limit is appropriately determined depending on the dimensions of the container 14 and the like.

細管部13の開口部13aの端面から接合部23までの長さL3は4.5mmである。また、細管部13の開口部13aの端面からの筒状部材15の突出長Lmは15.0mmである。 The length L 3 from the end face of the opening 13a of the thin tube portion 13 to the joint portion 23 is 4.5 mm. Further, the protruding length L m of the tubular member 15 from the end face of the opening 13a of the tube portion 13 is 15.0 mm.

次に、本発明の第2の実施の形態であるセラミックメタルハライドランプの製造方法の一例を示す。   Next, an example of the manufacturing method of the ceramic metal halide lamp which is the 2nd Embodiment of this invention is shown.

まず、あらかじめ容器14の開口部、つまり細管部13の開口部13aに筒状部材15がメタライズ層16を介して気密に接合されたものと、二つの電極導入体17とをそれぞれ用意する。   First, the cylindrical member 15 is hermetically bonded to the opening of the container 14, that is, the opening 13 a of the thin tube portion 13 through the metallized layer 16, and two electrode introduction bodies 17 are prepared in advance.

一つの電極導入体17を一方の筒状部材15内に挿入し、電極部19が容器14内に位置する状態で保持する。このとき、他方の筒状部材15の端部は閉塞しておき、一方の筒状部材15の開口部から容器14内を真空排気しておく。その後、大気圧のアルゴン雰囲気中において、筒状部材15において細管部13の開口部13aの端面から4.5mmの位置にレーザを当てて溶融するとともに、筒状部材15の内外の圧力差を利用して溶融した筒状部材15を収縮させて筒状部材15と電極導入体17と接合して、一方の接合部23を形成する。   One electrode introduction body 17 is inserted into one cylindrical member 15 and held in a state where the electrode portion 19 is located in the container 14. At this time, the end of the other cylindrical member 15 is closed, and the inside of the container 14 is evacuated from the opening of the one cylindrical member 15. Thereafter, in the argon atmosphere at atmospheric pressure, the cylindrical member 15 is melted by applying a laser at a position 4.5 mm from the end face of the opening 13a of the thin tube portion 13 and uses the pressure difference between the inside and outside of the cylindrical member 15. Then, the melted tubular member 15 is contracted and joined to the tubular member 15 and the electrode introduction body 17 to form one joining portion 23.

次に、もう一つの電極導入体17を他方の筒状部材15内に挿入し、電極部19が容器14内に位置する状態で保持する。さらに、他方の筒状部材15の端部に真空排気封入装置(図示せず)を取り付け、容器14内を真空排気した後、他方の筒状部材15から容器14内に発光物質等の封入物を投入する。このとき、始動補助用の希ガスとしてアルゴンガスを投入し、容器14内の圧力が13kPa程度になるようにする。次いで、大気圧のアルゴン雰囲気中において、筒状部材15における細管部13の開口部13aの端面から4.5mmの位置にレーザを当てて溶融するとともに、筒状部材15の内外の圧力差を利用して溶融した筒状部材15を収縮させて筒状部材15と電極導入体17とを接合し、他方の接合部23を形成する。   Next, another electrode introduction body 17 is inserted into the other cylindrical member 15 and held in a state where the electrode portion 19 is located in the container 14. Further, a vacuum exhaust sealing device (not shown) is attached to the end portion of the other cylindrical member 15, and after the inside of the container 14 is evacuated, an inclusion such as a luminescent substance is put into the container 14 from the other cylindrical member 15. Is input. At this time, argon gas is introduced as a starting assisting rare gas so that the pressure in the container 14 is about 13 kPa. Next, in an argon atmosphere at atmospheric pressure, the cylindrical member 15 is melted by applying a laser at a position 4.5 mm from the end face of the opening 13a of the narrow tube portion 13 and uses the pressure difference between the inside and outside of the tubular member 15. The tubular member 15 thus melted is contracted to join the tubular member 15 and the electrode introduction body 17 to form the other joining portion 23.

筒状部材15にレーザを当てて接合部23を形成する際、アルゴン雰囲気中で行うのは各部材が酸化するのを防止するためである。   When the joining part 23 is formed by applying a laser to the cylindrical member 15, it is performed in an argon atmosphere to prevent each member from being oxidized.

筒状部材15の端部に取り付けられている真空排気封入装置のチャック部(図示せず)が接合部23を形成する際の熱によって劣化するのを防止するため、筒状部材15において電極導入体17との接合予定部から容器14とは反対側の端までの長さL4が7mm以上であることが好ましい。 In order to prevent the chuck portion (not shown) of the vacuum exhaust sealing device attached to the end of the cylindrical member 15 from being deteriorated by heat when forming the joint portion 23, an electrode is introduced in the cylindrical member 15. It is preferable that the length L 4 from the part to be joined to the body 17 to the end opposite to the container 14 is 7 mm or more.

以上の本発明の第2の実施の形態であるセラミックメタルハライドランプにかかる構成によれば、筒状部材15と電極導入体17とを気密に接合する際の熱を、筒状部材15のうち接合部23に対して容器14とは反対側の部分へ拡散させることができる。また、筒状部材15と電極導入体17とを気密に接合する際、筒状部材15の端部に真空排気装置を取り付けることができるので、容器14の内部の圧力を容器14の外部の圧力よりも低くした状態で、筒状部材15のうち容器14とは反対側の端部以外の部分を加熱、溶融させることができ、その際、筒状部材15の溶融部分は容器14の内外での圧力差によって瞬時に収縮させることができるため、筒状部材15と電極導入体17とを極めて短時間で気密に接合することができる。これらの結果、メタライズ層16に伝わる熱量を低減することができ、筒状部材15と電極導入体17とを気密に接合する際の熱衝撃によってメタライズ層16にクラックが生じるのを防止することができる。また、接合部23の位置を電極部19に近づけ、点灯中におけるその部分の温度を高くしているため、筒状部材15と電極導入体17との間の隙間に入り込んだ金属ハロゲン化物を、点灯中に蒸発させて再び放電に寄与させることができるので、放電に寄与する金属ハロゲン化物の減少に起因して色温度が変化したり、初期ランプ効率や初期光束が低下したりするのを防止することができる。   According to the above configuration of the ceramic metal halide lamp according to the second embodiment of the present invention, the heat generated when the cylindrical member 15 and the electrode introduction body 17 are hermetically bonded is bonded to the cylindrical member 15. The portion 23 can be diffused to a portion opposite to the container 14. In addition, when the tubular member 15 and the electrode introduction body 17 are joined in an airtight manner, an evacuation device can be attached to the end of the tubular member 15, so that the pressure inside the container 14 is changed to the pressure outside the container 14. In the state where it is lowered, the portion of the cylindrical member 15 other than the end opposite to the container 14 can be heated and melted. In this case, the molten portion of the cylindrical member 15 is inside and outside the container 14. Therefore, the tubular member 15 and the electrode introduction body 17 can be joined in an airtight manner in a very short time. As a result, the amount of heat transmitted to the metallized layer 16 can be reduced, and the metallized layer 16 can be prevented from cracking due to thermal shock when the cylindrical member 15 and the electrode introduction body 17 are joined in an airtight manner. it can. In addition, since the position of the joint portion 23 is brought close to the electrode portion 19 and the temperature of the portion during lighting is increased, the metal halide that has entered the gap between the cylindrical member 15 and the electrode introduction body 17 is removed. Since it can be evaporated during lighting and contribute to the discharge again, it is possible to prevent the color temperature from changing and the initial lamp efficiency and the initial luminous flux from being reduced due to the decrease in metal halide contributing to the discharge. can do.

また、本発明の第2の実施の形態であるセラミックメタルハライドランプの製造方法によれば、筒状部材15と電極導入体17とを気密に接合する際、溶融した筒状部材15は外圧によって収縮するため、極めて短時間で筒状部材15と電極導入体17とを気密に接合することができ、その結果、生産効率を高めることができ、しかも筒状部材15を通じてメタライズ層16に伝わる熱量を大幅に減少させることができるので、前記接合する際の熱衝撃によってメタライズ層16にクラックが生じるのを防止することができる。また、筒状部材15と電極導入体17とを気密に接合する際、筒状部材15の端部に真空排気封入装置を取り付け、筒状部材15の内部の圧力を筒状部材15の外部の圧力よりも低くした状態で、筒状部材15のうち容器14とは反対側の端部以外の部分を加熱、溶融させているため、容器14内へ不純物が混入することはない。そのため、前記接合のプロセスを特別な設備内で行う必要がないため、設備を簡素化することができるとともに、その設備のメンテナンスにかかる手間を省くことができ、またその費用を削減することができる。   Further, according to the method for manufacturing a ceramic metal halide lamp according to the second embodiment of the present invention, when the tubular member 15 and the electrode introduction body 17 are joined in an airtight manner, the molten tubular member 15 is contracted by an external pressure. Therefore, the cylindrical member 15 and the electrode introduction body 17 can be hermetically joined in an extremely short time, and as a result, the production efficiency can be increased, and the amount of heat transferred to the metallized layer 16 through the cylindrical member 15 can be increased. Since it can be greatly reduced, it is possible to prevent the metallized layer 16 from being cracked by the thermal shock during the joining. In addition, when the cylindrical member 15 and the electrode introduction body 17 are joined in an airtight manner, a vacuum exhaust sealing device is attached to the end of the cylindrical member 15, and the pressure inside the cylindrical member 15 is adjusted to the outside of the cylindrical member 15. Since the portion of the cylindrical member 15 other than the end opposite to the container 14 is heated and melted in a state lower than the pressure, impurities are not mixed into the container 14. Therefore, since it is not necessary to perform the joining process in a special facility, it is possible to simplify the facility, to save labor for maintenance of the facility, and to reduce the cost. .

なお、上記各実施の形態では、第一筒部9、二つのテーパ部10および二つの第二筒部11からなる本管部12と二つの細管部13とを有する容器14を例示して説明したが、本発明は、容器の形状や寸法に限定されるものではなく、例えば本管部が球状の容器や、細管部13を有しない容器等、少なくとも一つの開口部を有する容器を備えた高圧放電ランプにも適用することができる。しかし、その作用効果は、細管部13を有する容器を備えた高圧放電ランプに適用することにより、顕著に現れる。   In each of the above-described embodiments, the container 14 having the main tube portion 12 and the two thin tube portions 13 including the first tube portion 9, the two tapered portions 10, and the two second tube portions 11 is described as an example. However, the present invention is not limited to the shape and dimensions of the container, and includes a container having at least one opening, such as a container having a spherical main tube part or a container not having the thin tube part 13. The present invention can also be applied to a high pressure discharge lamp. However, the effect is remarkably exhibited when applied to a high-pressure discharge lamp provided with a container having a thin tube portion 13.

また、上記各実施の形態では、定格電力150Wのセラミックメタルハライドランプに適用した場合について説明したが、本発明はこれに限らず例えば定格電力20W〜400Wのセラミックメタルハライドランプ、あるいは高圧ナトリウムランプ等の高圧放電ランプにも適用することができる。   In each of the above embodiments, the case where the present invention is applied to a ceramic metal halide lamp with a rated power of 150 W has been described. However, the present invention is not limited to this, and a high pressure such as a ceramic metal halide lamp with a rated power of 20 W to 400 W or a high pressure sodium lamp is used. It can also be applied to a discharge lamp.

本発明の高圧放電ランプは、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止し、筒状部材と電極導入体との間の隙間への金属ハロゲン化物の沈み込み量を大幅に減少させ、また色温度が初期段階で変化したり、初期ランプ効率や初期光束が低下したりするのを防止することが必要な放電ランプ等の用途にも適用することができる。   The high-pressure discharge lamp of the present invention prevents the metallized layer from cracking due to thermal shock when the cylindrical member and the electrode introduction body are joined in an airtight manner, and to the gap between the cylindrical member and the electrode introduction body. For applications such as discharge lamps that significantly reduce the sinking amount of metal halides and prevent the color temperature from changing at the initial stage and preventing the initial lamp efficiency and initial luminous flux from decreasing. Can also be applied.

また、本発明の高圧放電ランプの製造方法は、筒状部材と電極導入体とを気密に接合する際の熱衝撃によってメタライズ層にクラックが生じるのを防止することが必要な放電ランプの製造方法等の用途にも適用することができる。   In addition, the method for manufacturing a high-pressure discharge lamp according to the present invention is a method for manufacturing a discharge lamp in which it is necessary to prevent the metallized layer from cracking due to thermal shock when the cylindrical member and the electrode introduction body are joined in an airtight manner. It can also be applied to other uses.

本発明の第1の実施の形態であるセラミックメタルハライドランプの発光管の正面断面図Front sectional view of the arc tube of the ceramic metal halide lamp according to the first embodiment of the present invention 同じくセラミックメタルハライドランプの一部切欠正面図Similarly, a partially cutaway front view of a ceramic metal halide lamp 同じくセラミックメタルハライドランプの要部拡大断面図Similarly, an enlarged sectional view of the main part of a ceramic metal halide lamp 図3のA−A線の断面図Sectional view of the AA line of FIG. 本発明の第2の実施の形態であるセラミックメタルハライドランプの要部拡大断面図The principal part expanded sectional view of the ceramic metal halide lamp which is the 2nd Embodiment of this invention

符号の説明Explanation of symbols

1 口金
2 外管
3 発光管
4 スリーブ
5 外部リード線
6 ステム
7 ステム線
8 リング状部材
9 第一筒部
10 テーパ部
11 第二筒部
12 本管部
13 細管部
13a 開口部
14 容器
15 筒状部材
16 メタライズ層
17 電極導入体
18,23 接合部
19 電極部
20 電極棒
21 コイル部
22 狭窄部
DESCRIPTION OF SYMBOLS 1 Base 2 Outer tube 3 Light emission tube 4 Sleeve 5 External lead wire 6 Stem 7 Stem wire 8 Ring-shaped member 9 1st cylinder part 10 Tapered part 11 2nd cylinder part 12 Main pipe part 13 Narrow tube part 13a Opening part 14 Container 15 Tube Shaped member 16 Metallized layer 17 Electrode introduction body 18, 23 Joint portion 19 Electrode portion 20 Electrode rod 21 Coil portion 22 Narrowed portion

Claims (4)

内部に発光物質が封入され、かつ開口部を有するセラミック製の容器と、前記開口部にメタライズ層を介して気密に接合され、かつ一部が前記開口部から外部に導出した金属製の筒状部材と、先端部に電極部を有しており、かつ前記電極部が前記容器内に位置するように前記筒状部材内に挿入されて、一部が前記筒状部材と気密に接合された電極導入体とを有する発光管を備え、
前記開口部と、前記筒状部材と前記電極導入体とが気密に接合された接合部との間に、前記筒状部材と前記電極導入体との間の隙間が狭くなった狭窄部、または前記筒状部材と前記電極導入体とのそれぞれ一部同士が密着した密着部が形成されており、
前記開口部の端面から前記接合部までの距離D1が7.0mm以上であり、
前記電極部の先端から前記狭窄部または前記密着部までの距離d1が16.5mm以下であり、
前記狭窄部または前記密着部を前記筒状部材の長手方向の軸に対して垂直に切った断面において、前記筒状部材と前記電極導入体との間の隙間の最大距離D2が0.04mm以下であることを特徴とする高圧放電ランプ。
A ceramic container in which a luminescent material is enclosed and having an opening, and a metal cylinder that is hermetically bonded to the opening via a metallization layer and a part of which is led out from the opening A member and an electrode portion at a tip portion, and the electrode portion is inserted into the tubular member so as to be located in the container, and a part thereof is airtightly joined to the tubular member. An arc tube having an electrode introduction body,
A narrowed portion in which a gap between the tubular member and the electrode introduction body is narrowed between the opening and a joint portion where the tubular member and the electrode introduction body are airtightly joined, or A close contact portion is formed in which the cylindrical member and the electrode introduction body are in close contact with each other,
The distance D 1 from the end face of the opening to the joint is 7.0 mm or more,
The distance d 1 from the tip of the electrode part to the narrowed part or the close contact part is 16.5 mm or less,
In section cut perpendicular to the stenosis or the contact portion with respect to the longitudinal axis of the tubular member, the maximum distance D 2 of the gap between the tubular member and the electrode introducer is 0.04mm A high-pressure discharge lamp characterized by:
内部に発光物質が封入され、かつ開口部を有するセラミック製の容器と、前記開口部にメタライズ層を介して気密に接合され、かつ一部が前記開口部から外部に導出した金属製の筒状部材と、先端部に電極部を有しており、かつ前記電極部が前記容器内に位置するように前記筒状部材内に挿入されて、一部が前記筒状部材と気密に接合された電極導入体とを有する発光管を備え、
前記筒状部材は前記容器とは反対側の端部以外の部分で前記電極導入体と気密に接合されており、
前記電極部の先端から前記筒状部材と前記電極導入体とが気密に接合された接合部までの距離d2が16.5mm以下であることを特徴とする高圧放電ランプ。
A ceramic container in which a luminescent material is enclosed and having an opening, and a metal cylinder that is hermetically bonded to the opening via a metallization layer and a part of which is led out from the opening A member and an electrode portion at a tip portion, and the electrode portion is inserted into the tubular member so as to be located in the container, and a part thereof is airtightly joined to the tubular member. An arc tube having an electrode introduction body,
The cylindrical member is airtightly joined to the electrode introduction body at a portion other than the end opposite to the container,
A high-pressure discharge lamp, wherein a distance d 2 from a tip of the electrode part to a joint part where the tubular member and the electrode introduction body are airtightly joined is 16.5 mm or less.
内部に発光物質が封入され、かつ開口部を有するセラミック製の容器と、前記開口部にメタライズ層を介して気密に接合され、かつ一部が前記開口部から外部に導出した金属製の筒状部材と、先端部に電極部を有しており、かつ前記電極部が前記容器内に位置するように前記筒状部材内に挿入されて、一部が前記筒状部材と気密に接合された電極導入体とを有する発光管を備え、前記筒状部材は前記容器とは反対側の端部以外の部分で前記電極導入体と気密に接合された高圧放電ランプの製造方法であって、
前記開口部に前記筒状部材を、メタライズ層を介して気密に接合した後、前記筒状部材内の圧力を前記筒状部材の外部の圧力よりも低くした状態で、前記筒状部材のうち前記容器とは反対側の端部以外の部分を加熱、溶融して、溶融した前記筒状部材と前記電極導入体とを気密に接合することを特徴とする高圧放電ランプの製造方法。
A ceramic container in which a luminescent material is enclosed and having an opening, and a metal cylinder that is hermetically bonded to the opening via a metallization layer and a part of which is led out from the opening A member and an electrode portion at a tip portion, and the electrode portion is inserted into the tubular member so as to be located in the container, and a part thereof is airtightly joined to the tubular member. An arc tube having an electrode introduction body, wherein the cylindrical member is a method for producing a high pressure discharge lamp hermetically bonded to the electrode introduction body at a portion other than the end opposite to the container,
After the cylindrical member is hermetically bonded to the opening through the metallization layer, the pressure in the cylindrical member is lower than the pressure outside the cylindrical member, A method for manufacturing a high-pressure discharge lamp, comprising heating and melting a portion other than the end opposite to the container, and hermetically joining the molten tubular member and the electrode introduction body.
前記筒状部材において前記電極導入体との接合予定部から前記容器とは反対側の端までの長さL1が7mm以上であることを特徴とする請求項3記載の高圧放電ランプの製造方法。 Method for manufacturing a high pressure discharge lamp according to claim 3, wherein the the said container from joint scheduled portion with the electrode introducer in said tubular member length L 1 to the opposite end is 7mm or more .
JP2003285656A 2003-08-04 2003-08-04 High-pressure discharge lamp and its manufacturing method Pending JP2005056660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285656A JP2005056660A (en) 2003-08-04 2003-08-04 High-pressure discharge lamp and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285656A JP2005056660A (en) 2003-08-04 2003-08-04 High-pressure discharge lamp and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005056660A true JP2005056660A (en) 2005-03-03

Family

ID=34365223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285656A Pending JP2005056660A (en) 2003-08-04 2003-08-04 High-pressure discharge lamp and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005056660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040468A (en) * 2008-08-08 2010-02-18 Ushio Inc Short arc discharge lamp, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040468A (en) * 2008-08-08 2010-02-18 Ushio Inc Short arc discharge lamp, and method of manufacturing the same
JP4600541B2 (en) * 2008-08-08 2010-12-15 ウシオ電機株式会社 Short arc discharge lamp and manufacturing method thereof
KR101044496B1 (en) * 2008-08-08 2011-06-27 우시오덴키 가부시키가이샤 Short-arc typed discharge lamp and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3019968B2 (en) High pressure discharge lamp and manufacturing method thereof
US6882109B2 (en) Electric discharge lamp
JP3450751B2 (en) Joint, high-pressure discharge lamp and method for manufacturing the same
JP2008505442A (en) System and method for designing projector lamps
KR19990007361A (en) Ceramic sealing devices, lamps with such sealing devices, and methods of making such devices
US7615929B2 (en) Ceramic lamps and methods of making same
US6635993B1 (en) Joined bodies, high-pressure discharge lamps and a method for manufacturing the same
JP4454527B2 (en) Arc tube and high pressure discharge lamp
JP2006283077A (en) Compound object
JPH1031978A (en) High-pressure discharge lamp and its manufacture
JP4775461B2 (en) Excimer lamp and excimer lamp manufacturing method
JP3776636B2 (en) High pressure discharge lamp
JP2005056660A (en) High-pressure discharge lamp and its manufacturing method
JP3929255B2 (en) Joint and high-pressure discharge lamp
US20020033670A1 (en) Joined body and a high pressure discharge lamp
JP2005123016A (en) Alloy for lead member of electric bulb, and electrode structure of electric bulb using the same
US20090079346A1 (en) High intensity discharge lamp having composite leg
US8310157B2 (en) Lamp having metal conductor bonded to ceramic leg member
JP2003346723A (en) Discharge lamp and manufacturing method of the same
JP2000294196A (en) High-pressure discharge lamp
JP4521870B2 (en) Functionally graded material for sealing and tube
JPH1050255A (en) Discharge lamp and manufacture of cathode assembly for discharge lamp
JPH08148118A (en) High-pressure metallic vapor discharge lamp
JPH10334852A (en) Metal halide lamp
JP2010287555A (en) High-pressure discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A02