JP2005056642A - Graphite material powder for fuel cell separator, and fuel cell separator - Google Patents

Graphite material powder for fuel cell separator, and fuel cell separator Download PDF

Info

Publication number
JP2005056642A
JP2005056642A JP2003284957A JP2003284957A JP2005056642A JP 2005056642 A JP2005056642 A JP 2005056642A JP 2003284957 A JP2003284957 A JP 2003284957A JP 2003284957 A JP2003284957 A JP 2003284957A JP 2005056642 A JP2005056642 A JP 2005056642A
Authority
JP
Japan
Prior art keywords
fuel cell
graphite powder
cell separator
powder
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284957A
Other languages
Japanese (ja)
Inventor
Yoshinori Takagi
嘉則 高木
Hitomi Hatano
仁美 羽多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2003284957A priority Critical patent/JP2005056642A/en
Publication of JP2005056642A publication Critical patent/JP2005056642A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide graphite material powder for a fuel cell separator which is superior in molding workability, and provide the fuel cell separator which uses the graphite material powder, of which the specific resistance is low, and which is superior in gas blocking ability. <P>SOLUTION: By using the graphite material powder containing graphite powder, monovalent alcohols of which boiling point is 160°C or more, polyvalent alcohols, carboxylic acid or one or two kinds or more of organic compounds among their dehydrated condensation products, the fuel cell separator is manufactured by a molding method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池セパレータの材料として用いられる黒鉛質粉末およびこれを用いた燃料電池セパレータに関するものである。   The present invention relates to a graphite powder used as a material for a fuel cell separator and a fuel cell separator using the same.

燃料電池は、水素と酸素を反応させて電気を発生するため、発電効率が高く、有害ガスや汚染物質の発生量が少ないという優れた特性があり、大規模発電やコージェネレーションシステム、自動車用電源など、幅広い分野における電源装置としてその将来が期待されている。この燃料電池は、水素や酸素を供給する2つのセパレータと2つの電極(燃焼極と空気極)および電解質膜(イオン交換膜)をサンドイッチのように積層して1つの単セルを形成し、この単セルを、セパレータを介して数十から数百個直列につないで燃料電池スタックとしたものが一般的である。   Fuel cells generate electricity by reacting hydrogen and oxygen, so they have excellent characteristics such as high power generation efficiency and low generation of harmful gases and pollutants. Large-scale power generation, cogeneration systems, automotive power supplies The future is expected as a power supply device in a wide range of fields. In this fuel cell, two separators for supplying hydrogen and oxygen, two electrodes (combustion electrode and air electrode), and an electrolyte membrane (ion exchange membrane) are laminated like a sandwich to form one single cell. In general, a single cell is connected to several tens to several hundreds in series via a separator to form a fuel cell stack.

燃料電池は、電解質の種類により、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型などに分類され、それぞれの特性を活かした開発が進められている。これらの燃料電池の中で、固体高分子型燃料電池は、発電温度が80〜100℃と低く、電池本体の小型・軽量化が可能で、立上げが速く、燃料効率、出力密度が高いなどの優れた特性を有しており、そのため、電気自動車の搭載用電源や家庭用、携帯用などの小規模発電装置、可搬用の発電装置として注目されている。   Fuel cells are classified into alkaline types, phosphoric acid types, molten carbonate types, solid electrolyte types, solid polymer types, and the like, depending on the type of electrolyte, and developments utilizing the respective characteristics are being promoted. Among these fuel cells, the polymer electrolyte fuel cell has a low power generation temperature of 80 to 100 ° C., the cell body can be made smaller and lighter, the start-up is quick, the fuel efficiency and the output density are high, etc. Therefore, it attracts attention as a power source for mounting an electric vehicle, a small-scale power generator for home use, a portable power generator, and a portable power generator.

固体高分子型燃料電池では、電解質として、主にパーフルオロカーボンスルフォン酸(PFSA)イオン交換膜などが用いられる。一方、セパレータは、燃料ガスと酸化性ガスを分離するための境界としての機能と、単位セル間の電気導体としての機能が要求されることから、優れたガス遮断性や高い熱伝導性を有すると共に、比抵抗が低く、作動温度における優れた耐熱性や機械的強度を有することが要求される。そのため、従来、セパレータとしては、人造黒鉛を機械加工したもの、または、チタン、ステンレスなどの金属材料を機械加工したものなどが検討されている。   In a polymer electrolyte fuel cell, a perfluorocarbon sulfonic acid (PFSA) ion exchange membrane or the like is mainly used as an electrolyte. On the other hand, since the separator is required to have a function as a boundary for separating the fuel gas and the oxidizing gas and a function as an electric conductor between the unit cells, the separator has excellent gas barrier properties and high thermal conductivity. In addition, the specific resistance is required to be low and to have excellent heat resistance and mechanical strength at the operating temperature. Therefore, conventionally, as a separator, those obtained by machining artificial graphite or those obtained by machining metal materials such as titanium and stainless steel have been studied.

しかしながら、人造黒鉛を機械加工したセパレータは、比抵抗は低いものの、ガス遮断性が不十分であり、また非常に高価であるという問題がある。また、金属材料を機械加工したセパレータは、金属板が高温で酸化性の雰囲気に曝されるため、長期間の使用により酸化される可能性があり、また、人造黒鉛と同様に高価であるという問題があった。そのため、それぞれの分野で、これらの問題点を解決するための技術開発が行われている。例えば、黒鉛をセパレータに用いる技術では、特許文献1に、人造黒鉛または天然黒鉛の粉末に熱硬化性樹脂を配合して成形した固体高分子型燃料電池セパレータが、また、特許文献2に、メソフェーズ粉と熱硬化性樹脂からなるリン酸型燃料電池用セパレータが開示されている。
特開平10−334927号公報 特公平 6− 92269号公報
However, a separator obtained by machining artificial graphite has a problem that it has a low specific resistance but has insufficient gas barrier properties and is very expensive. In addition, a metal material machined separator is exposed to an oxidizing atmosphere at a high temperature, so that it may be oxidized by long-term use, and is expensive as artificial graphite. There was a problem. For this reason, technology development for solving these problems is being carried out in each field. For example, in a technique using graphite as a separator, Patent Document 1 discloses a polymer electrolyte fuel cell separator formed by blending an artificial graphite or natural graphite powder with a thermosetting resin, and Patent Document 2 discloses a mesophase. A phosphoric acid fuel cell separator comprising powder and a thermosetting resin is disclosed.
JP-A-10-334927 Japanese Patent Publication No. 6-92269

しかしながら、特許文献1に開示されたセパレータは、ガス遮断性や酸化の問題はある程度改善されるものの、比抵抗が高いという問題がある。その理由は、黒鉛粉末と熱硬化性樹脂を混合した配合物は、粘性が高くてセパレータ成形加工時の流動性が低く、成形加工性に劣るので、熱硬化性樹脂の比率を20〜60容量%と高くする必要があるからである。そこで、比抵抗を低減するために、金属粉未を配合しているが、これにより酸化が避けられないという別の問題が発生している。一方、特許文献2に開示された技術は、メソフェーズ粉:5〜70重量%、熱硬化性樹脂:30〜95重量%からなる樹脂分の多い配合物を使用しているため、成形加工時の流動性が高く、成形加工性に問題はないものの比抵抗が高いという問題があり、比抵抗を下げるために成形物の焼成、黒鉛化を行う必要がある。しかし、成形物に熱処理を施すことは、収縮による寸法精度の劣化を引き起こす他、熱処理自体も極めて非効率で高コストとなるという問題がある。   However, the separator disclosed in Patent Document 1 has a problem that the specific resistance is high, although the problems of gas barrier properties and oxidation are improved to some extent. The reason is that the blend of graphite powder and thermosetting resin has high viscosity, low fluidity during separator molding, and poor molding processability, so the ratio of thermosetting resin is 20-60 volumes. This is because it needs to be as high as%. Then, in order to reduce a specific resistance, although metal powder is not mix | blended, another problem that oxidation is inevitable by this has generate | occur | produced. On the other hand, the technique disclosed in Patent Document 2 uses a resin-rich compound consisting of mesophase powder: 5 to 70% by weight and thermosetting resin: 30 to 95% by weight. Although the fluidity is high and there is no problem in molding processability, there is a problem that the specific resistance is high. In order to reduce the specific resistance, it is necessary to perform firing and graphitization of the molded product. However, the heat treatment of the molded product has problems that the dimensional accuracy is deteriorated due to shrinkage and the heat treatment itself is extremely inefficient and expensive.

本発明の目的は、成形加工性に優れると共に、比抵抗が低く、ガス遮断性に優れた燃料電池セパレータを得ることができる燃料電池セパレータ用の黒鉛質粉末と、その黒鉛質粉末から得られる燃料電池セパレータを提供することにある。   An object of the present invention is to provide a fuel cell separator having excellent molding processability, a low specific resistance and an excellent gas barrier property, and a fuel obtained from the graphite powder for a fuel cell separator. The object is to provide a battery separator.

発明者らは、従来技術が抱える上記問題点を解決するために、燃料電池セパレータの材料として各種の黒鉛粉末を用い、これに結合剤(バインダー)である熱硬化性樹脂を混合した混合物をセパレータに成形加工し、成形加工性およびセパレータの特性について鋭意検討を行った。その結果、ある種の有機化合物を含有した黒鉛質粉末をセパレータの材料に用いた場合には、熱硬化性樹脂との混合物の流動性が向上し、成形加工性が大幅に改善されることを見出した。また、その粉末を用いて成形されたセパレータは、ガス遮断性に優れ、比抵抗も低いという性能も満たすことを確認し、本発明を完成するに至った。   In order to solve the above-described problems of the prior art, the inventors used various graphite powders as a material for a fuel cell separator, and mixed a mixture obtained by mixing a thermosetting resin as a binder (binder) with the separator. And then intensively investigated the moldability and separator characteristics. As a result, when graphite powder containing a certain organic compound is used as the separator material, the fluidity of the mixture with the thermosetting resin is improved, and the molding processability is greatly improved. I found it. In addition, it was confirmed that the separator formed using the powder satisfied the performance of excellent gas barrier properties and low specific resistance, and the present invention was completed.

上記知見に基き開発された本発明は、黒鉛粉末と有機化合物を含有するものであって、前記有機化合物が、一価アルコール類、多価アルコール類、カルボン酸類、あるいはこれらの脱水縮合物のうちの1種又は2種以上であることを特徴とする燃料電池セパレータ用黒鉛質粉末である。   The present invention developed based on the above knowledge contains graphite powder and an organic compound, and the organic compound is a monohydric alcohol, a polyhydric alcohol, a carboxylic acid, or a dehydration condensate thereof. A graphite powder for a fuel cell separator, characterized by being one or more of the above.

本発明の前記有機化合物は、沸点が160℃以上であることが好ましい。   The organic compound of the present invention preferably has a boiling point of 160 ° C. or higher.

本発明においては、前記有機化合物を、前記黒鉛粉末100質量部に対して0.1〜10質量部含有することが好ましい。   In the present invention, the organic compound is preferably contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the graphite powder.

また、本発明は、上記に記載の黒鉛質粉末と結合剤との混合物を、モールド成形法により成形してなることを特徴とする燃料電池セパレータである。   The present invention also provides a fuel cell separator obtained by molding a mixture of the above-described graphite powder and a binder by a molding method.

上記構成を有する本発明によれば、適正な有機化合物を含有することにより、結合剤との混合物の流動性が高く、成形加工性に優れる黒鉛質粉末が得られる。したがって、混合する結合剤の配合量を少なくできる他、この黒鉛質粉末を用いて得られる燃料電池セパレータは、嵩密度が高く、比抵抗が低く、ガス遮断性にも優れるという特性を有する。また、本発明によれば、セパレータ成形後の黒鉛化等の熱処理が不要であるため、簡易な設備で、優れた性能を有する燃料電池セパレータを生産性よく提供することができる。   According to the present invention having the above-described configuration, a graphite powder having a high fluidity of a mixture with a binder and excellent moldability can be obtained by containing an appropriate organic compound. Therefore, the amount of the binder to be mixed can be reduced, and the fuel cell separator obtained by using this graphite powder has characteristics of high bulk density, low specific resistance, and excellent gas barrier properties. In addition, according to the present invention, since a heat treatment such as graphitization after forming the separator is unnecessary, a fuel cell separator having excellent performance can be provided with high productivity with simple equipment.

本発明において、燃料電池セパレータに用いる材料としての黒鉛粉末は、とくに制限はないが、天然黒鉛粉末、人造黒鉛粉末、メソフェーズカーボンの黒鉛化粉末、あるいはこれらの混合粉末などを用いることができる。天然黒鉛粉末は、天然に産出する黒鉛の粉末で、人造黒鉛粉末よりも黒鉛化が進んだ鱗片状の粉末である。天然黒鉛の産地としては、オーストリア、スイス、中国などがあるが、本発明においては、天然黒鉛の産地はとくに限定されるものではない。また、人造黒鉛粉末は、例えばコークス類を2500〜4000℃で加熱処理して得られる黒鉛の粉末であり、粉砕前は塊状であるが、粉砕または切削等により鱗片状の粉末となる。本発明においては、人造黒鉛の製造方法にはとくに制限はない。また、メソフェーズカーボンの黒鉛化物は、石炭系のピッチあるいは石油系のピッチを熱処理して生成したバルク状の炭素化物、またはバルク状になる前のピッチマトリックス中に生成する光学的異方性の小球体を抽出・ろ過または遠心分離により回収した球状炭素化物を、炭化、黒鉛化、粉砕・分級処理等して得られたものである。メソフェーズカーボンの黒鉛化物の製造方法にとくに制限はなく、粉砕・分級処理は、炭化の前後、黒鉛化の前後のいずれで行ってもよい。   In the present invention, the graphite powder as a material used for the fuel cell separator is not particularly limited, and natural graphite powder, artificial graphite powder, mesophase carbon graphitized powder, or a mixed powder thereof can be used. Natural graphite powder is a naturally occurring graphite powder and is a scaly powder that is more graphitized than artificial graphite powder. There are Austria, Switzerland, China, and the like as production areas of natural graphite, but the production area of natural graphite is not particularly limited in the present invention. The artificial graphite powder is, for example, graphite powder obtained by heat-treating coke at 2500 to 4000 ° C., and is a lump before pulverization, but becomes a scaly powder by pulverization or cutting. In the present invention, the method for producing artificial graphite is not particularly limited. Also, mesophase carbon graphitized material is a small amount of optical anisotropy generated in a bulk carbonized product produced by heat treatment of coal-based pitch or petroleum-based pitch, or in a pitch matrix before becoming bulky. A spherical carbonized material obtained by extracting, filtering, or centrifuging spheres is obtained by carbonization, graphitization, pulverization / classification, or the like. There is no particular limitation on the method for producing mesophase carbon graphitized material, and the pulverization / classification treatment may be performed before or after carbonization or before or after graphitization.

本発明の黒鉛質粉末は、上記の黒鉛粉末と、以下に説明する有機化合物を含有する。有機化合物を含有する理由は、燃料電池セパレータを成形する際に、結合剤として添加する熱硬化性樹脂との混和性が向上し、その結果、本発明の黒鉛質粉末と結合剤とを混合した混合物の流動性が向上する。その結果、成形加工性が改善され、結合剤の混合量が少なくても容易に成形できるようになるからである。さらに、成形体内部の気孔の発生が抑えられて嵩密度が上がる結果、黒鉛粉末同士の接触頻度が上がって電気伝導性が向上し、低い比抵抗が得られる。   The graphite powder of the present invention contains the above graphite powder and an organic compound described below. The reason for containing the organic compound is that when the fuel cell separator is molded, the miscibility with the thermosetting resin added as a binder is improved, and as a result, the graphite powder of the present invention and the binder are mixed. The fluidity of the mixture is improved. As a result, molding processability is improved, and molding can be easily performed even if the amount of the binder is small. Further, the generation of pores inside the molded body is suppressed and the bulk density is increased. As a result, the contact frequency between graphite powders is increased, the electrical conductivity is improved, and a low specific resistance is obtained.

ここで、黒鉛質粉末に含有させる有機化合物は、一価アルコール類、多価アルコール類、カルボン酸類、あるいはこれらの脱水縮合物のうちの1種または2種以上である。これらの有機化合物は、親水性または親油性の官能基を有するので、結合剤として添加する熱硬化性樹脂との濡れ性が良好となり、混和性が向上する。従って、本発明の黒鉛質粉末の結合剤との混和性を向上させるために、これらの有機化合物を含有させなければならない。上記有機化合物の中でも、炭素数5以上の一価アルコール類、炭素数2以上の多価アルコール類、炭素数2以上のカルボン酸類、あるいはこれらの脱水縮合物を好適に用いることができる。具体的には、一価アルコール類としては、ペンチルアルコール、へキシルアルコール、セチルアルコール、ステアリルアルコール等、多価アルコール類としては、グリコール、グリセリン、ポリビニルアルコール等、また、カルボン酸類としては、酢酸、酪酸、アクリル酸あるいはステアリン酸、オレイン酸などの高級脂肪酸類等を挙げることができる。また、これらの脱水縮合物としては、上記化合物のエステル、例えばアセチル化物、アセタール化物等がある。特に、ポリビニルアルコールあるいはポリビニルアルコールをアセタール化したブチラール樹脂は、結着力が強く、黒鉛粉末との混和性が良好であるため、好適に用いることができる。   Here, the organic compound contained in the graphite powder is one or more of monohydric alcohols, polyhydric alcohols, carboxylic acids, or dehydration condensates thereof. Since these organic compounds have a hydrophilic or lipophilic functional group, the wettability with the thermosetting resin added as a binder is improved, and the miscibility is improved. Therefore, in order to improve the miscibility with the binder of the graphite powder of the present invention, these organic compounds must be contained. Among the above organic compounds, monohydric alcohols having 5 or more carbon atoms, polyhydric alcohols having 2 or more carbon atoms, carboxylic acids having 2 or more carbon atoms, or dehydration condensates thereof can be suitably used. Specifically, as monohydric alcohols, pentyl alcohol, hexyl alcohol, cetyl alcohol, stearyl alcohol, etc., as polyhydric alcohols, glycol, glycerin, polyvinyl alcohol, etc., as carboxylic acids, acetic acid, Examples include higher fatty acids such as butyric acid, acrylic acid, stearic acid, and oleic acid. Examples of these dehydration condensates include esters of the above compounds, such as acetylates and acetals. In particular, polyvinyl alcohol or a butyral resin obtained by acetalizing polyvinyl alcohol can be suitably used because of its strong binding force and good miscibility with graphite powder.

なお、黒鉛粉末と有機化合物を含有する黒鉛質粉末は、その後、結合剤と混合した混合物とされ、プレス成形等のモールド成形法により成形されるが、この際、混合物の流動性を向上するために、70〜160℃程度に加熱して、混合あるいは予備成形するのが一般的である。そのため、含有させる有機化合物の沸点が低い場合には、有機化合物が揮発してしまい上記の効果を失う可能性がある。そこで、含有させる有機化合物は、加工温度に合わせて選択することが好ましい。沸点が160℃以上の有機化合物であれば好適に用いることができる。   In addition, the graphite powder containing the graphite powder and the organic compound is then made into a mixture mixed with a binder and molded by a molding method such as press molding. In this case, in order to improve the fluidity of the mixture In addition, it is generally heated to about 70 to 160 ° C. and mixed or preformed. Therefore, when the boiling point of the organic compound to be contained is low, the organic compound volatilizes and the above effect may be lost. Therefore, the organic compound to be contained is preferably selected according to the processing temperature. Any organic compound having a boiling point of 160 ° C. or higher can be suitably used.

次に、本発明に係る燃料電池セパレータを製造する方法について説明する。
燃料電池セパレータ用の材料としては、上述した天然黒鉛粉末、人造黒鉛粉末、メソフェーズカーボンなどの黒鉛粉末と、上記有機化合物を含有する黒鉛質粉末を用いる。有機化合物の含有量は、天然黒鉛粉末、人造黒鉛粉末、メソフェーズカーボンの黒鉛化粉末あるいはこれらの混合粉末100質量部に対して0.1〜10質量部が好ましい。0.1質量部未満では、結合剤との混和性の向上効果が不十分であり、一方、10質量部を超えると、黒鉛粉末同士の接触頻度の低下により電気伝導性が阻害されるので好ましくない。さらに好ましい有機化合物の含有量は、0.2〜5質量部である。
Next, a method for producing the fuel cell separator according to the present invention will be described.
As the material for the fuel cell separator, the above-mentioned natural graphite powder, artificial graphite powder, graphite powder such as mesophase carbon, and graphite powder containing the above organic compound are used. The content of the organic compound is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of natural graphite powder, artificial graphite powder, mesophase carbon graphitized powder, or a mixed powder thereof. If the amount is less than 0.1 part by mass, the effect of improving the miscibility with the binder is insufficient. On the other hand, if the amount exceeds 10 parts by mass, the electrical conductivity is hindered due to a decrease in the contact frequency between the graphite powders. The more preferable organic compound content is 0.2 to 5 parts by mass.

かかる比率で有機化合物と黒鉛粉末とを含有した黒鉛質粉末は、さらに均一に混合することが好ましい。混合する方法としては、乾式法あるいは湿式法のいずれの方法を用いてもよい。また、混合に用いる装置としては、攪拌羽根式、噴霧式等の一般に用いられている混合、造粒、表面改質装置を用いることができる。   It is preferable that the graphite powder containing the organic compound and the graphite powder at such a ratio is further uniformly mixed. As a mixing method, either a dry method or a wet method may be used. Moreover, as an apparatus used for mixing, generally used mixing, granulating, and surface modifying apparatuses such as a stirring blade type and a spraying type can be used.

次に、上記のようにして黒鉛粉末と有機化合物とを混合した黒鉛質粉末に、結合剤を混合する。上記結合剤としては、熱硬化性樹脂を用いることが好ましい。例えば、フェノール樹脂、フルフラール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂およびポリイミド樹脂などから選ばれる1種または2種以上であり、特にフェノール樹脂が好適である。これは、フェノール樹脂が取り扱い易くかつ安価である他、得られるセパレータの寸法精度と機械的強度が優れているためである。   Next, the binder is mixed with the graphite powder obtained by mixing the graphite powder and the organic compound as described above. As the binder, it is preferable to use a thermosetting resin. For example, it is 1 type or 2 or more types chosen from a phenol resin, a furfural resin, a furan resin, an epoxy resin, an unsaturated polyester resin, a polyimide resin etc., and a phenol resin is especially suitable. This is because the phenol resin is easy to handle and inexpensive, and the resulting separator has excellent dimensional accuracy and mechanical strength.

上記結合剤の混合量は、黒鉛質粉末、即ち、黒鉛粉末と有機化合物とを混合した本発明の黒鉛質粉末100質量部に対して3〜30質量部とするのが好ましい。結合剤の混合量が3質量部未満の場合には、該混合物の流動性が不十分であるため、成形体内部に気孔が発生し易く、ガス遮断性に優れた燃料電池セパレータが得られないおそれがある。また、結着力が不十分なため、強度が低い成形体となる。一方、30質量部を超える場合は、樹脂の比率が多くなるため、比抵抗が大きくなる傾向にある。さらに好ましい混合量は、5〜20質量部である。   The mixing amount of the binder is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the graphite powder, that is, the graphite powder of the present invention in which the graphite powder and the organic compound are mixed. When the mixing amount of the binder is less than 3 parts by mass, the fluidity of the mixture is insufficient, so that pores are easily generated inside the molded body, and a fuel cell separator with excellent gas barrier properties cannot be obtained. There is a fear. Moreover, since the binding force is insufficient, the molded product has a low strength. On the other hand, when the amount exceeds 30 parts by mass, the ratio of the resin increases, so that the specific resistance tends to increase. A more preferable mixing amount is 5 to 20 parts by mass.

燃料電池用セパレータの成形法は、例えば、プレス成形法や射出成形法等のモールド成形法が有利に適合する。プレス成形法を用いる場合は、本発明に係る黒鉛質粉末に、上述した結合剤の1種または2種以上を混合した混合物をプレス成形機に供給し、燃料電池セパレータを製造する。なお、上述の混合時には、必要に応じて溶剤を加えたり、あるいは、成形性を向上するために、金型に供給する前に混合物を加熱し予備硬化して流動性を調整することが好ましい。プレス成形の条件は、結合剤として使用する熱硬化性樹脂によっても異なるが、加圧成形時の金型の加熱温度が130〜220℃、プレス圧力が200N/cm2以上であることが好ましい。 For example, a molding method such as a press molding method or an injection molding method is advantageously suited as a molding method for the fuel cell separator. When the press molding method is used, a fuel cell separator is manufactured by supplying a mixture obtained by mixing one or more of the above-described binders to the graphite powder according to the present invention to a press molding machine. In addition, at the time of the above-mentioned mixing, in order to add a solvent as needed, or to improve moldability, it is preferable to adjust the fluidity by heating and pre-curing the mixture before supplying it to the mold. The conditions for press molding differ depending on the thermosetting resin used as the binder, but it is preferable that the heating temperature of the mold during pressure molding is 130 to 220 ° C. and the press pressure is 200 N / cm 2 or more.

また、射出成形法を用いる場合には、本発明に係る黒鉛質粉末に、結合剤を1種または2種以上混合した混合物を射出成形機に供給し、燃料電池セパレータを製造する。射出成形の条件としては、100〜140℃の温度で混合した後、金型に射出成形することが好ましく、また、この際の金型は、樹脂を硬化させるために、40〜200℃に加熱しておくことが好ましい。   When the injection molding method is used, a fuel cell separator is manufactured by supplying a mixture obtained by mixing one or more binders with the graphite powder according to the present invention to an injection molding machine. As conditions for injection molding, it is preferable to mix at a temperature of 100 to 140 ° C. and then injection mold into a mold. In this case, the mold is heated to 40 to 200 ° C. in order to cure the resin. It is preferable to keep it.

なお、上記のようにして得たセパレータは、プレス成形や射出成形のままでも優れた電気伝導性(低い比抵抗)を有しているため、従来技術で行っていたような成形後の焼成や黒鉛化処理を行う必要がない。因みに本発明において、電気伝導性に優れるとは、比抵抗にして10mΩ・cm以下を意味し、本発明では上記の値以下のセパレータの開発を目標とする。   In addition, since the separator obtained as described above has excellent electrical conductivity (low specific resistance) even as it is in press molding or injection molding, it can be fired after molding as performed in the prior art. There is no need to perform graphitization. Incidentally, in the present invention, excellent electrical conductivity means a specific resistance of 10 mΩ · cm or less, and the present invention aims to develop a separator having the above value or less.

平均粒径15μmのメソカーボン小球体の黒鉛粉末100質量部に対して、0.5質量部のブチラール樹脂(デンカ社製6000EP)を溶かした塩化メチレン溶液50質量部を添加し、攪拌転動式の造粒装置を用いて混練処理を行い、燃料電池セパレータ用の黒鉛質粉末Aを得た。同様にして、平均粒径15μmのメソカーボン小球体の黒鉛粉末100質量部に対して、0.5質量部のポリビニルアルコール樹脂(信越化学社製PA−05GP)を含む水溶液50質量部を添加し、攪拌転動式の造粒装置を用いて混練処理を行い、燃料電池セパレータ用黒鉛質粉末Bを得た。これらの黒鉛質粉末AおよびBのそれぞれ80質量部を、粘性係数0.7Pa・s(20℃)の液状レゾール系フェノール樹脂20質量部と混合した後、離型紙上に塗布して一晩放置して乾燥し、解砕して得た粉末について、フローテスター(島津製作所製FT−500)で80℃における粘性係数を測定した。   50 parts by mass of methylene chloride solution in which 0.5 part by mass of butyral resin (6000EP manufactured by Denka) was added to 100 parts by mass of graphite powder of mesocarbon spherules with an average particle size of 15 μm. A kneading process was performed using a granule apparatus to obtain a graphite powder A for a fuel cell separator. Similarly, 50 parts by mass of an aqueous solution containing 0.5 parts by mass of a polyvinyl alcohol resin (PA-05GP manufactured by Shin-Etsu Chemical Co., Ltd.) is added to 100 parts by mass of graphite powder of mesocarbon spherules having an average particle size of 15 μm and stirred. A kneading process was performed using a rolling granulator to obtain a graphite powder B for a fuel cell separator. After mixing 80 parts by mass of each of these graphite powders A and B with 20 parts by mass of a liquid resol phenolic resin having a viscosity coefficient of 0.7 Pa · s (20 ° C.), it is coated on release paper and left overnight. The powder obtained by drying and crushing was measured for viscosity coefficient at 80 ° C. with a flow tester (FT-500, manufactured by Shimadzu Corporation).

つぎに、上記黒鉛質粉末AおよびBのそれぞれ80質量部に、フェノール樹脂20質量部を混合した後、離型紙上に塗布して一晩放置乾燥し、得られた乾燥物を100℃の条件下で90分間加熱して予備硬化した後、解砕し、得られた粉末を金型に供給し、金型温度160℃、プレス圧力700N/cm2の条件でプレス成形して、厚さ:2mm、幅:200m、長さ:200mmの成形体を製造した。得られた成形体について、嵩密度、比抵抗、ガス透過量を下記の方法で測定した。なお、比較例として、平均粒径15μmのメソカーボン小球体の黒鉛粉末を、そのまま燃料電池セパレータ用黒鉛質粉末Cとして用いた場合についても、黒鉛質粉末A,Bと同様の測定を行った。
・平均粒径:レーザー回折法により測定した粒度分布の累積度数が体積百分率で50%となる粒径とした。
・嵩比重:黒鉛質成形体の重量(質量)を黒鉛質成形体の体積で除して求めた。
・比抵抗:JIS−K7194-1994の方法に従い、電気比抵抗測定装置を用いて測定した。
・ガス透過量:ガス透過量測定装置を用いて、黒鉛質成形体(薄板)の片面側から圧力:0.098MPa(ゲージ圧)(=1kgf/cm2・G)で窒素を供給し、窒素の透過量を測定した。
Next, 20 parts by mass of phenol resin is mixed with 80 parts by mass of each of the above graphite powders A and B, and then coated on a release paper and left to dry overnight. After pre-curing by heating for 90 minutes, the powder is crushed, and the resulting powder is supplied to a mold, press-molded under conditions of a mold temperature of 160 ° C. and a press pressure of 700 N / cm 2 , and the thickness: A molded body of 2 mm, width: 200 m, and length: 200 mm was produced. About the obtained molded object, the bulk density, the specific resistance, and the gas permeation amount were measured by the following methods. As a comparative example, mesocarbon spherule graphite powder having an average particle size of 15 μm was used as it was as the graphite powder C for fuel cell separator, and the same measurement as the graphite powders A and B was performed.
-Average particle size: The particle size distribution measured by the laser diffraction method was a particle size at which the cumulative frequency was 50% by volume.
Bulk specific gravity: Determined by dividing the weight (mass) of the graphite molded body by the volume of the graphite molded body.
Specific resistance: Measured using an electrical specific resistance measuring device according to the method of JIS-K7194-1994.
-Gas permeation amount: Using a gas permeation amount measuring device, supply nitrogen at a pressure of 0.098 MPa (gauge pressure) (= 1 kgf / cm 2 · G) from one side of the graphite compact (thin plate). The amount of permeation was measured.

上記の測定結果を表1に示す。本発明に従って得た黒鉛質粉末A,Bはいずれも、粘性係数が低くて流動性が良好で、成形加工性に優れている。さらに、これらを用いた成形体は、いずれも嵩密度が高く、比抵抗が10mΩ・cm以下と小さく、ガス透過量も少なく、ガス遮断性に優れることがわかる。一方、比較例の黒鉛質粉末Cは、粘性係数は極めて高くて測定が不可能であり、成形加工性が劣る。しかも、この黒鉛質粉末を用いた成形体は、嵩密度が低く、比抵抗も10mΩ・cm以下の目標を達成できていない。   The measurement results are shown in Table 1. Graphite powders A and B obtained according to the present invention have a low viscosity coefficient, good fluidity, and excellent moldability. Furthermore, it can be seen that molded bodies using these have a high bulk density, a specific resistance as small as 10 mΩ · cm or less, a small amount of gas permeation, and excellent gas barrier properties. On the other hand, the graphite powder C of the comparative example has an extremely high viscosity coefficient, cannot be measured, and has poor moldability. In addition, the compact using the graphite powder has a low bulk density and a specific resistance of 10 mΩ · cm or less cannot be achieved.

Figure 2005056642
Figure 2005056642

平均粒径10μmの人造黒鉛粉末(日本黒鉛社製SP−10)100質量部に対して、0.5質量部のブチラール樹脂(デンカ社製6000EP)を溶かした塩化メチレン溶液50重量部を添加し、攪拌転動式の造粒装置を用いて混練処理を行い、燃料電池セパレータ用の黒鉛質粉末Dを得た。この黒鉛質粉末Dを用い、実施例1と同様にして、粉末の粘性係数の測定を行った。また、実施例1と同様にして、成形体を製造し、嵩密度、比抵抗、ガス透過量の測定を行った。なお、比較例として、平均粒径10μmの人造黒鉛粉末(日本黒鉛社製SP−10)をそのまま燃料電池セパレータ用黒鉛質粉末Eとして用いた場合についても、同様の測定を行った。   50 parts by weight of a methylene chloride solution in which 0.5 parts by weight of a butyral resin (6000 EP made by Denka) was added to 100 parts by weight of artificial graphite powder having an average particle size of 10 μm (SP-10 made by Nippon Graphite Co., Ltd.) and stirred. A kneading process was performed using a rolling granulator to obtain a graphite powder D for a fuel cell separator. Using this graphite powder D, the viscosity coefficient of the powder was measured in the same manner as in Example 1. Moreover, it carried out similarly to Example 1, and manufactured the molded object, and measured the bulk density, the specific resistance, and the gas permeation amount. As a comparative example, the same measurement was performed when artificial graphite powder having an average particle size of 10 μm (SP-10 manufactured by Nippon Graphite Co., Ltd.) was used as it was as graphite powder E for fuel cell separators.

上記測定の結果を表2に示す。本発明に従って製造した黒鉛質粉末Dの粘性係数は低く、成形加工性に優れる。さらに、その粉末を用いた成形体は、嵩密度が高く、比抵抗も10mΩ・cmと小さく、ガス透過量も少なく、ガス遮断性に優れる。一方、比較例の黒鉛質粉末Eは、流動性が悪く、成形加工性が劣る。さらに、この粉末を用いた成形体は、嵩密度が低く、比抵抗も10mΩ・cm以下の目標を達成できていない。   The measurement results are shown in Table 2. Graphite powder D produced according to the present invention has a low viscosity coefficient and excellent moldability. Further, a molded body using the powder has a high bulk density, a specific resistance as small as 10 mΩ · cm, a small gas permeation amount, and an excellent gas barrier property. On the other hand, the graphite powder E of the comparative example has poor fluidity and poor moldability. Furthermore, a molded body using this powder has a low bulk density and a specific resistance of 10 mΩ · cm or less cannot be achieved.

Figure 2005056642
Figure 2005056642

本発明は、燃料電池セパレータ用に限らず、導電性樹脂材料、導電性塗料などの原料としても好適に利用できる。   The present invention is not limited to the fuel cell separator, and can be suitably used as a raw material for conductive resin materials, conductive paints, and the like.

Claims (4)

黒鉛粉末と有機化合物を含有するものであって、前記有機化合物が、一価アルコール類、多価アルコール類、カルボン酸類、あるいはこれらの脱水縮合物のうちの1種又は2種以上であることを特徴とする燃料電池セパレータ用黒鉛質粉末。   It contains graphite powder and an organic compound, and the organic compound is a monohydric alcohol, a polyhydric alcohol, a carboxylic acid, or one or more of these dehydration condensates. A graphite powder for fuel cell separators. 前記有機化合物は、沸点が160℃以上であることを特徴とする請求項1に記載の燃料電池セパレータ用黒鉛質粉末。   The graphite powder for a fuel cell separator according to claim 1, wherein the organic compound has a boiling point of 160 ° C. or higher. 前記有機化合物を、前記黒鉛粉末100質量部に対して0.1〜10質量部含有することを特徴とする請求項1または2に記載の燃料電池セパレータ用黒鉛質粉末。   The graphite powder for a fuel cell separator according to claim 1 or 2, wherein the organic compound is contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the graphite powder. 請求項1〜3のいずれか1項に記載の黒鉛質粉末と結合剤との混合物を、モールド成形法により成形してなることを特徴とする燃料電池セパレータ。

A fuel cell separator obtained by molding a mixture of the graphite powder according to any one of claims 1 to 3 and a binder by a molding method.

JP2003284957A 2003-08-01 2003-08-01 Graphite material powder for fuel cell separator, and fuel cell separator Pending JP2005056642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284957A JP2005056642A (en) 2003-08-01 2003-08-01 Graphite material powder for fuel cell separator, and fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284957A JP2005056642A (en) 2003-08-01 2003-08-01 Graphite material powder for fuel cell separator, and fuel cell separator

Publications (1)

Publication Number Publication Date
JP2005056642A true JP2005056642A (en) 2005-03-03

Family

ID=34364739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284957A Pending JP2005056642A (en) 2003-08-01 2003-08-01 Graphite material powder for fuel cell separator, and fuel cell separator

Country Status (1)

Country Link
JP (1) JP2005056642A (en)

Similar Documents

Publication Publication Date Title
JP5057263B2 (en) Separator material for polymer electrolyte fuel cell and method for producing the same
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP2001122677A (en) Method for manufacturing separator for fuel battery
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JP5249610B2 (en) Manufacturing method of fuel cell separator
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
CN1677716A (en) Separator for fuel cell, method for preparing the same, and fuel cell comprising the same
JP2005056642A (en) Graphite material powder for fuel cell separator, and fuel cell separator
JP2002075394A (en) Separator member for fuel cell
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP2005339953A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg and manufacturing method for it
Hui et al. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells
JPS62260709A (en) Formed carbon article and production thereof
JP2001266912A (en) Separator for fuel cell and its manufacturing method
JP4254698B2 (en) Resin composition for fuel cell separator and fuel cell separator
JP2005336478A (en) Curable composition, its cured product and its molded article
JP2005339954A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg, and manufacturing method for it
JP2002313356A (en) Fuel cell separator and its manufacturing method
JP2005122974A (en) Fuel cell separator and fuel cell
JP2002100378A (en) Separator for fuel cell and fuel cell
JP2006318695A (en) Manufacturing method of graphite powder for fuel cell separator
JP2001351645A (en) Separator for fuel cell and fuel cell