JP2005055709A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2005055709A
JP2005055709A JP2003287054A JP2003287054A JP2005055709A JP 2005055709 A JP2005055709 A JP 2005055709A JP 2003287054 A JP2003287054 A JP 2003287054A JP 2003287054 A JP2003287054 A JP 2003287054A JP 2005055709 A JP2005055709 A JP 2005055709A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
display device
crystal layer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003287054A
Other languages
Japanese (ja)
Other versions
JP4721252B2 (en
Inventor
Nobuhisa Iwamoto
宜久 岩本
Yasuo Toko
康夫 都甲
Takashi Sugiyama
貴 杉山
Masashi Akaha
正志 赤羽
Munehiro Kimura
宗弘 木村
Shinichiro Oka
真一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2003287054A priority Critical patent/JP4721252B2/en
Publication of JP2005055709A publication Critical patent/JP2005055709A/en
Application granted granted Critical
Publication of JP4721252B2 publication Critical patent/JP4721252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device in which a voltage necessary for the acquisition of a black display state is reduced. <P>SOLUTION: A driving cell 10 retains a liquid crystal layer 15 in which liquid crystal molecules are twist aligned so as to exhibit a helical structure in the state of no electric field generation. Electrodes to generate an electric field with a direction inside a substrate surface in the liquid crystal layer 15 is formed. A compensation means 30 is disposed on one of the surfaces of the driving cell 10. The compensation means 30 includes a liquid crystal layer 35 in which liquid crystal molecules are twist aligned so as to exhibit a helical structure wherein a twist direction of the helical structure is opposite to that of the driving cell 10 and an orientation direction of a liquid crystal molecule located on the center of the liquid crystal layer 35 in the thickness direction perpendicularly intersects an orientation direction of a liquid crystal molecule located on the center of the liquid crystal layer 15 in the thickness direction of the driving cell 10. Polarizing plates 50, 51 are respectively disposed on both sides of a structural body including the driving cell 10 and the compensation means 30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液晶表示装置に関し、特に、インプレーンスイッチングツイストネマチック(IT)モードの液晶表示装置に関する。   The present invention relates to a liquid crystal display device, and more particularly to an in-plane switching twisted nematic (IT) mode liquid crystal display device.

特許文献1〜3に、ITモード(または、IPSモード)の液晶表示装置が開示されている。以下、ITモードの動作について簡単に説明する。   Patent Documents 1 to 3 disclose IT mode (or IPS mode) liquid crystal display devices. The IT mode operation will be briefly described below.

液晶層を挟む一対の基板の一方にのみ櫛歯型電極が形成されている。電界が印加されない状態では、液晶分子はツイストネマチック(TN)配列している。電極に電圧を印加すると、基板面に平行な向きの電界が発生し、電極が形成された基板側の液晶分子が、その長軸方向を基板面内で変化させる向きの力を受ける。電極に高電圧を印加すると、液晶層内の分子のねじれ状態が解消し、ホモジニアス配列に近づく。   A comb-shaped electrode is formed only on one of the pair of substrates sandwiching the liquid crystal layer. In a state where no electric field is applied, the liquid crystal molecules are twisted nematic (TN) aligned. When a voltage is applied to the electrode, an electric field in a direction parallel to the substrate surface is generated, and the liquid crystal molecules on the substrate side on which the electrode is formed receive a force in a direction that changes the major axis direction in the substrate surface. When a high voltage is applied to the electrodes, the twisted state of the molecules in the liquid crystal layer is eliminated, and it approaches a homogeneous alignment.

液晶層の両側に偏光板がクロスニコル配置されている。液晶層内の分子のねじれ状態が解消したときの液晶分子の長軸が、いずれかの偏光板の透過軸に平行であれば黒表示になる。また、電圧を印加していない状態では、白表示になる。   Polarizing plates are arranged in crossed Nicols on both sides of the liquid crystal layer. If the major axis of the liquid crystal molecule when the twisted state of the molecule in the liquid crystal layer is eliminated is parallel to the transmission axis of any polarizing plate, black display is obtained. In addition, white display is obtained when no voltage is applied.

ITモードでは、基板面に平行な面内において液晶分子の長軸方向を変化させるため、液晶分子を基板面に垂直に立たせて黒表示を実現する従来のTNモードの液晶表示装置に比べて、良好な視角特性を得ることができる。   In the IT mode, the major axis direction of the liquid crystal molecules is changed in a plane parallel to the substrate surface. Therefore, compared with the conventional TN mode liquid crystal display device that realizes black display by standing the liquid crystal molecules vertically to the substrate surface, Good viewing angle characteristics can be obtained.

特許第2986756号公報Japanese Patent No. 2986756 特許第3299190号公報Japanese Patent No. 3299190 特開平10−54982号公報Japanese Patent Laid-Open No. 10-54982

ITモードの液晶表示装置においては、液晶層内の液晶分子のねじれ状態を解消させて良好な黒表示を得るために、高い電圧が必要とされる。   In the IT mode liquid crystal display device, a high voltage is required to eliminate the twisted state of the liquid crystal molecules in the liquid crystal layer and obtain a good black display.

本発明の目的は、黒表示状態を得るために必要な電圧を低減させることが可能な液晶表示装置を提供することである。   An object of the present invention is to provide a liquid crystal display device capable of reducing a voltage necessary for obtaining a black display state.

本発明の一観点によると、電界が発生していない状態で液晶分子がツイスト配列してヘリカル構造を示す液晶層を保持し、該液晶層に基板面内方向の電界を発生させる電極が形成された駆動セルと、前記駆動セルの一方の面上に配置され、液晶分子がツイスト配列してヘリカル構造を示す液晶層を含み、ヘリカル構造の旋回方向が、前記駆動セルのヘリカル構造の旋回方向とは逆向きであり、該液晶層の厚さ方向に関して中央に位置する液晶分子の配向方向が、前記駆動セルの液晶層の厚さ方向に関して中央に位置する液晶分子の配向方向と直交する補償手段と、前記駆動セルと補償手段とを含む構造体の両側にそれぞれ配置された偏光板とを有する液晶表示装置が提供される。   According to one aspect of the present invention, an electrode for generating an electric field in a substrate in-plane direction is formed on a liquid crystal layer that holds a liquid crystal layer that exhibits a helical structure by twist alignment of liquid crystal molecules in a state where no electric field is generated. A driving cell and a liquid crystal layer arranged on one surface of the driving cell and having a helical structure in which liquid crystal molecules are twisted and arranged, and the turning direction of the helical structure is the turning direction of the helical structure of the driving cell. Is a reverse direction, and the compensation means in which the orientation direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer is orthogonal to the orientation direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer of the driving cell And a polarizing plate disposed on each side of the structure including the driving cell and compensation means.

本発明の他の観点によると、正の一軸光学異方性または正の二軸光学異方性を有する液晶分子が、電界が発生していない状態でツイスト配列してヘリカル構造を示す液晶層を保持し、該液晶層に基板面内方向の電界を発生させる電極が形成された駆動セルと、前記駆動セルの片側の面上に配置され、負の一軸光学異方性または負の二軸光学異方性を有する液晶分子がツイスト配列してヘリカル構造を示す液晶層を含み、ヘリカル構造の旋回方向が、前記駆動セルのヘリカル構造の旋回方向とは逆向きである補償手段と、前記駆動セルと補償手段との層構造の両側にそれぞれ配置された偏光板とを有する液晶表示装置が提供される。   According to another aspect of the present invention, there is provided a liquid crystal layer having a helical structure in which liquid crystal molecules having positive uniaxial optical anisotropy or positive biaxial optical anisotropy are twisted in a state where an electric field is not generated. A driving cell in which an electrode for holding and generating an electric field in the in-plane direction of the substrate is formed on the liquid crystal layer, and is disposed on one surface of the driving cell and has negative uniaxial optical anisotropy or negative biaxial optical Compensation means including a liquid crystal layer having a helical structure in which anisotropic liquid crystal molecules are twisted and having a helical structure in which the rotational direction of the helical structure is opposite to the rotational direction of the helical structure of the drive cell, and the drive cell There is provided a liquid crystal display device having polarizing plates disposed on both sides of the layer structure of the compensation means.

上述の構造とすることにより、従来のITモードの液晶表示装置に比べて低電圧駆動が可能になる。   With the above-described structure, low-voltage driving is possible as compared with the conventional IT mode liquid crystal display device.

図1に、本発明の第1の実施例による液晶表示装置の主要部の分解斜視図を示す。第1の実施例による液晶表示装置は、駆動セル10、補償セル30、駆動セル側の偏光板50、及び補償セル側の偏光板51を含んで構成される。   FIG. 1 is an exploded perspective view of the main part of the liquid crystal display device according to the first embodiment of the present invention. The liquid crystal display device according to the first embodiment includes a driving cell 10, a compensation cell 30, a polarizing plate 50 on the driving cell side, and a polarizing plate 51 on the compensation cell side.

駆動セル10は従来のITモードの液晶セルと同様の構成を有し、電極基板11、対向基板12、両者の間に保持された液晶層15を含んで構成される。液晶層15には、正の一軸光学異方性を有する液晶分子16が充填されている。電極基板11の対向面上に、ある距離を隔てて電極13及び14が形成されている。電極13と14との間に電圧を印加すると、液晶層15内に基板面に平行な成分を有する電界が発生する。この電界は、電極基板11から対向基板12に近づくに従って弱くなる。   The drive cell 10 has the same configuration as that of a conventional IT mode liquid crystal cell, and includes an electrode substrate 11, a counter substrate 12, and a liquid crystal layer 15 held between the two. The liquid crystal layer 15 is filled with liquid crystal molecules 16 having positive uniaxial optical anisotropy. Electrodes 13 and 14 are formed on the opposing surface of the electrode substrate 11 at a certain distance. When a voltage is applied between the electrodes 13 and 14, an electric field having a component parallel to the substrate surface is generated in the liquid crystal layer 15. This electric field becomes weaker as it approaches the counter substrate 12 from the electrode substrate 11.

電極13と14とによって発生する基板面に平行な方向の電界の向きを基準(0°)とし、電極基板11の対向面に向かって反時計回りに回転した方位角θで液晶分子の配向方向(長軸方向)等を表す角度座標を定義する。   The orientation direction of the liquid crystal molecules at an azimuth angle θ rotated counterclockwise toward the opposing surface of the electrode substrate 11 with the direction of the electric field generated in a direction parallel to the substrate surface generated by the electrodes 13 and 14 as a reference (0 °). Define the angle coordinates representing (long axis direction) and the like.

電極基板11及び対向基板12の対向面に、配向膜が形成されている。なお、図示していないが、電極基板11の面内に複数の画素が画定され、電極13及び14は画素ごとに配置されている。   An alignment film is formed on the opposing surfaces of the electrode substrate 11 and the counter substrate 12. Although not shown, a plurality of pixels are defined within the surface of the electrode substrate 11, and the electrodes 13 and 14 are arranged for each pixel.

電極基板11及び対向基板12上の配向膜に、ラビング処理が施されている。電極基板11上の配向膜に施されたラビングの方向D1は方位角270°の方向であり、対向基板12上の配向膜に施されたラビングの方向D2は方位角0°の方向である。配向膜に接触する液晶分子はラビング方向に平行に配向し、ラビング方向を示す矢印の先端側の端部が基板から持ち上がるようにチルトする。   The alignment film on the electrode substrate 11 and the counter substrate 12 is rubbed. The rubbing direction D1 applied to the alignment film on the electrode substrate 11 is a direction having an azimuth angle of 270 °, and the rubbing direction D2 applied to the alignment film on the counter substrate 12 is a direction having an azimuth angle of 0 °. The liquid crystal molecules in contact with the alignment film are aligned parallel to the rubbing direction and tilted so that the end portion on the tip side of the arrow indicating the rubbing direction is lifted from the substrate.

電極基板11側の液晶分子の基板から持ち上がった方の端部が、対向基板12側の液晶分子の基板に接触する方の端部に対応するように、液晶層15内の液晶分子16がツイストし、ヘリカル構造を構成する。このヘリカル構造は左旋回となり、ねじね角は90°、厚さ方向の中央に位置する液晶分子の配向方向の方位角θは225°になる。   The liquid crystal molecules 16 in the liquid crystal layer 15 are twisted so that the end of the liquid crystal molecules on the electrode substrate 11 side lifted from the substrate corresponds to the end of the liquid crystal molecules on the counter substrate 12 side in contact with the substrate. And constitutes a helical structure. This helical structure turns left, the twist angle is 90 °, and the azimuth angle θ in the alignment direction of the liquid crystal molecules located at the center in the thickness direction is 225 °.

補償セル30は、下側基板31、上側基板32、両者に挟まれた液晶層35を含んで構成される。下側基板31が駆動セル10の対向基板12に接触している。下側基板31及び上側基板32の対向面上に配向膜が形成され、ラビング処理が施されている。下側基板31上の配向膜に施されたラビングの方向D3は方位角90°の方向であり、上側基板32上の配向膜に施されたラビングの方向D4は方位角0°の方向である。   The compensation cell 30 includes a lower substrate 31, an upper substrate 32, and a liquid crystal layer 35 sandwiched between both. The lower substrate 31 is in contact with the counter substrate 12 of the drive cell 10. An alignment film is formed on the opposing surfaces of the lower substrate 31 and the upper substrate 32 and subjected to a rubbing process. A rubbing direction D3 applied to the alignment film on the lower substrate 31 is a direction having an azimuth angle of 90 °, and a rubbing direction D4 applied to the alignment film on the upper substrate 32 is a direction having an azimuth angle of 0 °. .

液晶層35内の液晶分子36がツイストし、ヘリカル構造を構成する。このヘリカル構造は右旋回となり、ねじれ角は90°、厚さ方向の中央に位置する液晶分子の配向方向の方位角θは135°になる。駆動セル10の液晶層15の厚さ方向に関して中央に位置する液晶分子の配向方向と、補償セル30の液晶層35の厚さ方向に関して中央に位置する液晶分子の配向方向とは、相互に直交する。   The liquid crystal molecules 36 in the liquid crystal layer 35 are twisted to form a helical structure. This helical structure turns clockwise, the twist angle is 90 °, and the azimuth angle θ in the alignment direction of the liquid crystal molecules located at the center in the thickness direction is 135 °. The alignment direction of the liquid crystal molecules positioned in the center with respect to the thickness direction of the liquid crystal layer 15 of the driving cell 10 and the alignment direction of the liquid crystal molecules positioned in the center with respect to the thickness direction of the liquid crystal layer 35 of the compensation cell 30 are orthogonal to each other. To do.

偏光板50が、駆動セル10の電極基板11の外側の面に密着し、偏光板51が、補償セル30の上側基板32の外側の面に密着している。偏光板50の透過軸の方向D5の方位角θは0°であり、偏光板51の透過軸の方向D6の方位角θは90°である。すなわち、偏光板50と51とは、クロスニコル配置とされている。   The polarizing plate 50 is in close contact with the outer surface of the electrode substrate 11 of the driving cell 10, and the polarizing plate 51 is in close contact with the outer surface of the upper substrate 32 of the compensation cell 30. The azimuth angle θ in the transmission axis direction D5 of the polarizing plate 50 is 0 °, and the azimuth angle θ in the transmission axis direction D6 of the polarizing plate 51 is 90 °. That is, the polarizing plates 50 and 51 are in a crossed Nicols arrangement.

図2に、図1に示した液晶表示装置の電気光学特性を示す。横軸は印加電界を単位「V/mm」で表し、縦軸は光透過率を単位「%」で表す。なお、光透過率はシミュレーション計算により求めた結果である。液晶材料として誘電率異方性Δεが正であるメルク(株)製のMLC2051(屈折率異方性Δn=0.11)を想定した。また、偏光板50及び51は、吸収の無い理想的なものを仮定した。   FIG. 2 shows electro-optical characteristics of the liquid crystal display device shown in FIG. The horizontal axis represents the applied electric field in the unit “V / mm”, and the vertical axis represents the light transmittance in the unit “%”. The light transmittance is a result obtained by simulation calculation. As a liquid crystal material, MLC2051 (refractive index anisotropy Δn = 0.11) manufactured by Merck Co., Ltd. having a positive dielectric anisotropy Δε was assumed. The polarizing plates 50 and 51 were assumed to be ideal without absorption.

図中の実線aは、駆動セル10の液晶層15の厚さと、補償セル30の液晶層35の厚さとが等しい場合を示す。破線a11、a12、a13は、それぞれ補償セル30の液晶層35が、駆動セル10の液晶層15よりも0.1μm、0.2μm、0.3μmだけ厚い場合を示す。破線a21、a22、a23は、それぞれ補償セル30の液晶層35が、駆動セル10の液晶層15よりも0.1μm、0.2μm、0.3μmだけ薄い場合を示す。なお、電界無印加時における駆動セル10のリタデーションΔndは0.4μmとした。 A solid line a 0 in the figure indicates a case where the thickness of the liquid crystal layer 15 of the driving cell 10 is equal to the thickness of the liquid crystal layer 35 of the compensation cell 30. Dashed lines a 11 , a 12 , and a 13 indicate cases where the liquid crystal layer 35 of the compensation cell 30 is thicker by 0.1 μm, 0.2 μm, and 0.3 μm than the liquid crystal layer 15 of the driving cell 10, respectively. Dashed lines a 21 , a 22 , and a 23 indicate cases where the liquid crystal layer 35 of the compensation cell 30 is thinner than the liquid crystal layer 15 of the driving cell 10 by 0.1 μm, 0.2 μm, and 0.3 μm, respectively. The retardation Δnd of the drive cell 10 when no electric field was applied was 0.4 μm.

印加電界が0の時に、黒表示になる。駆動セル10の液晶層15の厚さと補償セル30の液晶層35の厚さとが等しい場合に、印加電圧が0のときの光透過率が0になる。補償セル30の液晶層35の厚さが、駆動セル10の液晶層15の厚さからずれると、黒表示状態のときの光透過率が0ではなくなり、ずれ量が大きくなるに従って光透過率も大きくなる。   When the applied electric field is 0, black is displayed. When the thickness of the liquid crystal layer 15 of the driving cell 10 and the thickness of the liquid crystal layer 35 of the compensation cell 30 are equal, the light transmittance is zero when the applied voltage is zero. If the thickness of the liquid crystal layer 35 of the compensation cell 30 deviates from the thickness of the liquid crystal layer 15 of the driving cell 10, the light transmittance in the black display state is not zero, and the light transmittance increases as the amount of displacement increases. growing.

想定した液晶材料の屈折率異方性が0.11であるため、液晶層の厚さのずれ量が0.3μmのとき、補償セル30のリタデーションと駆動セル10のリタデーションとの差は、約0.03μmになる。補償セル30のリタデーションと、電界無印加時における駆動セル10のリタデーションとの差が0.03μm以下であれば、良好な黒表示が得られることが分かる。また、リタデーションの差が0.03μm以下の場合、所定の電界を印加した白表示状態のときの光透過率に、大きな差は見られない。従って、補償セル30のリタデーションと駆動セル10のリタデーションとの差を0.03μm以下とすることが好ましい。   Since the assumed refractive index anisotropy of the liquid crystal material is 0.11, when the amount of deviation in the thickness of the liquid crystal layer is 0.3 μm, the difference between the retardation of the compensation cell 30 and the retardation of the drive cell 10 is about 0.03 μm. It can be seen that if the difference between the retardation of the compensation cell 30 and the retardation of the driving cell 10 when no electric field is applied is 0.03 μm or less, a good black display can be obtained. Further, when the retardation difference is 0.03 μm or less, there is no significant difference in light transmittance in the white display state where a predetermined electric field is applied. Therefore, it is preferable that the difference between the retardation of the compensation cell 30 and the retardation of the driving cell 10 is 0.03 μm or less.

従来のITモードの液晶表示装置では、良好な黒表示を行うために大きな電界を発生させる必要があったが、上記実施例による液晶表示装置はノーマリブラック表示であるため、駆動電圧を下げることができる。   In the conventional IT mode liquid crystal display device, it was necessary to generate a large electric field in order to perform a good black display. However, since the liquid crystal display device according to the above embodiment is a normally black display, the drive voltage is lowered. Can do.

図3に、駆動セル10のリタデーションと補償セル30のリタデーションとを等しくした場合の電気光学特性を示す。横軸は印加電界を単位「V/mm」で表し、縦軸は光透過率を単位「%」で表す。図中の破線または実線b〜bは、それぞれリタデーションΔndが0.40μm、0.47μm、0.80μm、1.20μm、1.60μm、2.00μmの場合の光透過率を示す。 FIG. 3 shows electro-optical characteristics when the retardation of the driving cell 10 and the retardation of the compensation cell 30 are equal. The horizontal axis represents the applied electric field in the unit “V / mm”, and the vertical axis represents the light transmittance in the unit “%”. Broken lines or solid lines b 1 to b 6 in the figure indicate the light transmittance when the retardation Δnd is 0.40 μm, 0.47 μm, 0.80 μm, 1.20 μm, 1.60 μm, and 2.00 μm, respectively.

いずれのリタデーションの場合でも、白表示状態における光透過率に大きな差はない。従来のITモードの液晶表示装置においては、良好な白表示を得るためにリタデーションを0.49μm近傍に設定する必要(第一ミニマム条件)があったが、第1の実施例による液晶表示装置においては、リタデーションの広い範囲で良好な白表示が得られる。また、リタデーションが0.40〜2.00μmの範囲で、黒表示の品質にも大きな差は見られなかった。   In any of the retardations, there is no significant difference in light transmittance in the white display state. In the conventional IT mode liquid crystal display device, it was necessary to set the retardation in the vicinity of 0.49 μm in order to obtain a good white display (first minimum condition). In the liquid crystal display device according to the first embodiment, however, Provides a good white display over a wide range of retardation. Further, when the retardation was in the range of 0.40 to 2.00 μm, no significant difference was observed in the quality of black display.

駆動セル10を厚くすると応答速度が遅くなる。従来のITモードの液晶表示装置と同等の応答速度を維持するために、リタデーションを0.3μm〜1μmとすることが好ましい。   When the drive cell 10 is thickened, the response speed becomes slow. In order to maintain a response speed equivalent to that of a conventional IT mode liquid crystal display device, the retardation is preferably set to 0.3 μm to 1 μm.

図4に、駆動セル10の電極基板11上の配向膜のラビング方向D1と、印加される電界の向きとの関係を90°からずらした場合の電気光学特性を示す。横軸は印加電界を単位「V/mm」で表し、縦軸は光透過率を単位「%」で表す。なお、駆動セル10の液晶層15及び補償セル30の液晶層35の厚さを4μmとし、ヘリカル構造のねじれ角は90°とした。   FIG. 4 shows electro-optical characteristics when the relationship between the rubbing direction D1 of the alignment film on the electrode substrate 11 of the drive cell 10 and the direction of the applied electric field is shifted from 90 °. The horizontal axis represents the applied electric field in the unit “V / mm”, and the vertical axis represents the light transmittance in the unit “%”. The thickness of the liquid crystal layer 15 of the driving cell 10 and the liquid crystal layer 35 of the compensation cell 30 was 4 μm, and the helical angle of the helical structure was 90 °.

図4には、電極基板11上の配向膜のラビング方向D1と、電極13及び14により発生する基板面に平行な方向の電界の向きとの成す角φが60°、70°、80°、及び90°の場合の光透過率を示す。いずれの場合も、良好な黒表示及び白表示が得られることがわかる。   In FIG. 4, the angle φ formed by the rubbing direction D1 of the alignment film on the electrode substrate 11 and the direction of the electric field in the direction parallel to the substrate surface generated by the electrodes 13 and 14 is 60 °, 70 °, 80 °, And the light transmittance in the case of 90 °. In any case, it can be seen that good black display and white display can be obtained.

図5に、駆動セル10のヘリカル構造のねじれ角θdを変化させた時の電気光学特性を示す。横軸は印加電界を単位「V/mm」で表し、縦軸は光透過率を単位「%」で表す。駆動セル10の液晶層15及び補償セル30の液晶層35の厚さを4μmとした。補償セル30のヘリカル構造のねじれ角θcはねじれ角θdと等しくなるようにした。ヘリカル構造のねじれ角を変化させても、駆動セル10の液晶層15の厚さ方向に関して中央に位置する液晶分子の配向方向が、方位角225°の方向になるようにした。補償セル30に関しても、液晶層35の厚さ方向に関して中央に位置する液晶分子の配向方向を135°で固定した。
このため、いずれの場合も、駆動セル10の液晶層15の厚さ方向に関して中央に位置する液晶分子の配向方向と、補償セル30の液晶層35の厚さ方向に関して中央に位置する液晶分子の配向方向とは相互に直交する。
FIG. 5 shows electro-optical characteristics when the helical angle θd of the helical structure of the drive cell 10 is changed. The horizontal axis represents the applied electric field in the unit “V / mm”, and the vertical axis represents the light transmittance in the unit “%”. The thickness of the liquid crystal layer 15 of the driving cell 10 and the liquid crystal layer 35 of the compensation cell 30 was 4 μm. The helical angle θc of the helical structure of the compensation cell 30 was made equal to the helical angle θd. Even if the twist angle of the helical structure is changed, the orientation direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 15 of the driving cell 10 is set to the direction of the azimuth angle of 225 °. Regarding the compensation cell 30 as well, the orientation direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 35 was fixed at 135 °.
For this reason, in any case, the alignment direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 15 of the driving cell 10 and the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 35 of the compensation cell 30. The orientation directions are orthogonal to each other.

図5には、駆動セル10のヘリカル構造のねじれ角θdが30°、60°、90°、120°、150°、及び180°の場合の光透過率を示す。ねじれ角θdが90°よりも小さくなると、光透過率の最大値が低下する。また、ねじれ角θdが90°よりも大きくなると、光透過率の立ち上がりが急峻になる。いずれの場合にも、良好な黒表示状態が得られている。従って、ねじれ角θdが0°よりも大きく180°以下であれば、画像表示を行うことが可能である。   FIG. 5 shows the light transmittance when the helical angle θd of the helical structure of the drive cell 10 is 30 °, 60 °, 90 °, 120 °, 150 °, and 180 °. When the twist angle θd is smaller than 90 °, the maximum value of the light transmittance is lowered. Further, when the twist angle θd is larger than 90 °, the rise of the light transmittance becomes steep. In any case, a good black display state is obtained. Therefore, if the twist angle θd is greater than 0 ° and 180 ° or less, image display can be performed.

なお、より高いコントラストを得るために、駆動セル10のヘリカル構造のねじれ角θdと、補償セル30のヘリカル構造のねじれ角θcとを等しくし、両者を0°よりも大きく、かつ180°以下とすることが好ましい。   In order to obtain a higher contrast, the helical angle θd of the helical structure of the drive cell 10 and the helical angle θc of the helical structure of the compensation cell 30 are made equal, and both are greater than 0 ° and 180 ° or less. It is preferable to do.

図6に、補償セル30のヘリカル構造のねじれ角θcのみを変化させた時の電気光学特性を示す。横軸は印加電界を単位「V/mm」で表し、縦軸は光透過率を単位「%」で表す。駆動セル10の液晶層15及び補償セル30の液晶層35の厚さを4μmとし、駆動セル10のヘリカル構造のねじれ角θdは90°とした。また、補償セル30のヘリカル構造のねじれ角θcを変化させても、液晶層35の厚さ方向に関して中央に位置する液晶分子の配向方向が、方位角135°の方向になるようにした。このため、いずれの場合も、駆動セル10の液晶層15の厚さ方向に関して中央に位置する液晶分子の配向方向と、補償セル30の液晶層35の厚さ方向に関して中央に位置する液晶分子の配向方向とは相互に直交する。   FIG. 6 shows electro-optical characteristics when only the twist angle θc of the helical structure of the compensation cell 30 is changed. The horizontal axis represents the applied electric field in the unit “V / mm”, and the vertical axis represents the light transmittance in the unit “%”. The thickness of the liquid crystal layer 15 of the drive cell 10 and the liquid crystal layer 35 of the compensation cell 30 was 4 μm, and the twist angle θd of the helical structure of the drive cell 10 was 90 °. Further, even if the helical angle θc of the helical structure of the compensation cell 30 is changed, the alignment direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 35 is set to the direction of the azimuth angle 135 °. For this reason, in any case, the alignment direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 15 of the drive cell 10 and the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 35 of the compensation cell 30. The orientation directions are orthogonal to each other.

補償セル30のヘリカル構造のねじれ角θcを90°から小さくしていくと、電界無印加時における光透過率が上昇する。この場合、電界を強くしていくと、光透過率は低下して極小値を示し、その後上昇する。光透過率が極小値を示す電界を印加することにより、黒表示を行うことができる。   As the torsion angle θc of the helical structure of the compensation cell 30 is reduced from 90 °, the light transmittance increases when no electric field is applied. In this case, as the electric field is strengthened, the light transmittance decreases and shows a minimum value, and then increases. A black display can be performed by applying an electric field showing a minimum value of light transmittance.

補償セル30のヘリカル構造のねじれ角θcが90°のときには、ノーマリブラック表示になる。ねじれ角θcを90°よりも小さくすることにより、ノーマリホワイト表示を行うことができる。ノーマルホワイト表示を行う際に、十分なコントラストを確保するために、補償セル30のヘリカル構造のねじれ角θcを30〜60°とすることが好ましい。   When the torsion angle θc of the helical structure of the compensation cell 30 is 90 °, normally black display is obtained. By making the twist angle θc smaller than 90 °, normally white display can be performed. In order to ensure sufficient contrast when performing normal white display, the helical angle of the helical structure of the compensation cell 30 is preferably set to 30 to 60 °.

一般的には、補償セル30のヘリカル構造のねじれ角θcを、駆動セル10のヘリカル構造のねじれ角θdよりも小さくすることにより、ノーマリホワイト表示になる。補償セル30のヘリカル構造のねじれ角θcが、駆動セル10のヘリカル構造のねじれ角θdよりも大きくなると、良好な黒表示状態を得ることができない。このため、ねじれ角θcをねじれ角θd以下とすることが好ましい。   Generally, normally white display is obtained by making the twist angle θc of the helical structure of the compensation cell 30 smaller than the twist angle θd of the helical structure of the drive cell 10. If the torsion angle θc of the helical structure of the compensation cell 30 is larger than the torsion angle θd of the helical structure of the drive cell 10, a good black display state cannot be obtained. For this reason, it is preferable to set the twist angle θc to be equal to or smaller than the twist angle θd.

ノーマリホワイト表示を行う場合、従来のITモードの液晶表示装置で黒表示させる場合に比べて、低い電圧(弱い電界)で良好な黒表示を行うことができる。   When performing normally white display, it is possible to perform better black display at a lower voltage (weak electric field) than when performing black display with a conventional IT mode liquid crystal display device.

上記第1の実施例では、駆動セル10の対向基板12側に補償セル30を配置したが、電極基板11側に補償セル30を配置しても同様の効果が得られる。また、上記第1の実施例では、正の一軸光学異方性を有する液晶材料を想定してシミュレーションを行ったが、正の二軸光学異方性を有する液晶材料を用いてもよい。   In the first embodiment, the compensation cell 30 is arranged on the counter substrate 12 side of the drive cell 10, but the same effect can be obtained even if the compensation cell 30 is arranged on the electrode substrate 11 side. In the first embodiment, the simulation is performed assuming a liquid crystal material having positive uniaxial optical anisotropy. However, a liquid crystal material having positive biaxial optical anisotropy may be used.

上記第1の実施例では、誘電率異方性が正の液晶材料を用いたが、誘電率異方性が負の液晶材料を用いてもよい。誘電率異方性が負であっても、基板面に平行な電界を印加することにより、基板面に平行な面内に関する配向方向を変化させることができる。   In the first embodiment, a liquid crystal material having a positive dielectric anisotropy is used. However, a liquid crystal material having a negative dielectric anisotropy may be used. Even if the dielectric anisotropy is negative, the orientation direction in the plane parallel to the substrate surface can be changed by applying an electric field parallel to the substrate surface.

上記第1の実施例で用いられる補償セル30の液晶層35内の液晶分子は、動作中にその配列状態を変化させない。従って、補償セル30の代わりに、同等の光学特性を有する液晶ポリマ等からなる光学フィルムを用いてもよい。   The liquid crystal molecules in the liquid crystal layer 35 of the compensation cell 30 used in the first embodiment do not change their alignment state during operation. Therefore, instead of the compensation cell 30, an optical film made of a liquid crystal polymer or the like having equivalent optical characteristics may be used.

図7に、第2の実施例による液晶表示装置の主要部の分解斜視図を示す。以下、図1に示した液晶表示装置の構成と異なる点について説明する。駆動セル10と偏光板50との間に、1/4波長板52が挿入され、補償セル30と偏光板51との間に1/4波長板53が挿入されている。その他の構成は、図1に示した液晶表示装置の構成と同様である。   FIG. 7 is an exploded perspective view of the main part of the liquid crystal display device according to the second embodiment. Hereinafter, differences from the configuration of the liquid crystal display device shown in FIG. 1 will be described. A quarter wavelength plate 52 is inserted between the drive cell 10 and the polarizing plate 50, and a quarter wavelength plate 53 is inserted between the compensation cell 30 and the polarizing plate 51. Other configurations are the same as those of the liquid crystal display device shown in FIG.

1/4波長板52及び53として、正の一軸光学異方性または正の二軸光学異方性を有するものを使用することができる。1/4波長板52の面内の遅相軸が、偏光板50の透過軸と直交し、1/4波長板53の面内の遅相軸が、偏光板51の透過軸に平行になる。なお、逆に、1/4波長板52の面内の遅相軸が、偏光板50の透過軸と平行になり、1/4波長板53の面内の遅相軸が、偏光板51の透過軸に直交するようにしてもよい。   As the quarter-wave plates 52 and 53, those having positive uniaxial optical anisotropy or positive biaxial optical anisotropy can be used. The slow axis in the plane of the quarter wavelength plate 52 is orthogonal to the transmission axis of the polarizing plate 50, and the slow axis in the plane of the quarter wavelength plate 53 is parallel to the transmission axis of the polarizing plate 51. . Conversely, the slow axis in the plane of the quarter-wave plate 52 is parallel to the transmission axis of the polarizing plate 50, and the slow axis in the plane of the quarter-wave plate 53 is You may make it orthogonally cross a transmission axis.

図8に、第2の実施例による液晶表示装置の視角特性を示し、図9に、第1の実施例による液晶表示装置の視角特性を示す。視角特性は、シンテック(株)製のLCD MASTER 1次元シミュレータを用いて計算した。液晶材料としてメルク(株)製のZLI−4792を想定し、偏光板として日東電工(株)製のG−1220DUを想定し、1/4波長板として、厚さ方向のリタデーションが70nm、面内方向のリタデーションが137.5nmの正の二軸光学異方性を有するフィルムを想定した。駆動セル10及び補償セル30の液晶層の厚さを4.9μmとし、ヘリカル構造のねじれ角を90°とした。   FIG. 8 shows the viewing angle characteristics of the liquid crystal display device according to the second embodiment, and FIG. 9 shows the viewing angle characteristics of the liquid crystal display device according to the first embodiment. The viewing angle characteristics were calculated using an LCD MASTER one-dimensional simulator manufactured by Shintech Co., Ltd. Assuming ZLI-4792 manufactured by Merck Co., Ltd. as the liquid crystal material, and assuming G-1220DU manufactured by Nitto Denko Co., Ltd. as the polarizing plate, the retardation in the thickness direction is 70 nm as a quarter wavelength plate, in-plane A film having positive biaxial optical anisotropy with a direction retardation of 137.5 nm was assumed. The thickness of the liquid crystal layer of the drive cell 10 and the compensation cell 30 was 4.9 μm, and the helical angle of the helical structure was 90 °.

図8及び図9に示した方位角0°は、図7及び図1に示した角度座標の315°に対応する。また、最外周が、基板法線方向からの傾き角(極角)80°に対応する。図中の実線は、電圧無印加時(黒表示時)における等輝度曲線を示す。   The azimuth angle 0 ° shown in FIGS. 8 and 9 corresponds to the angular coordinate 315 ° shown in FIGS. 7 and 1. The outermost circumference corresponds to an inclination angle (polar angle) of 80 ° from the normal direction of the substrate. The solid line in the figure shows an isoluminance curve when no voltage is applied (when black is displayed).

第2の実施例の場合の方が、第1の実施例の場合に比べて、等輝度曲線の間隔が広くなっており、視角特性が改善されていることがわかる。1/4波長板として、二軸光学異方性を有するものを使用する場合には、厚さ方向のリタデーションが、面内方向のリタデーションの40〜60%のものを用いることが好ましい。   In the case of the second embodiment, it can be seen that the interval of the isoluminance curves is wider than that of the first embodiment, and the viewing angle characteristics are improved. When using what has biaxial optical anisotropy as a quarter wavelength plate, it is preferable to use a thing whose retardation of thickness direction is 40 to 60% of retardation of an in-plane direction.

図10に、第3の実施例による液晶表示装置の分解斜視図を示す。以下、図1に示した第1の実施例による液晶表示の構成と異なる点について説明する。第1の実施例では、補償セル30の液晶材料として正の光学異方性を持ったものを用いたが、第3の実施例では、負の一軸光学異方性または負の二軸光学異方性を持った液晶材料を用いる。液晶分子は円盤状(discotic)形状を有する。液晶分子のダイレクタ方向が、液晶分子の光軸方向と一致する。なお、必ずしも両者が一致した液晶材料を用いる必要はない。   FIG. 10 is an exploded perspective view of the liquid crystal display device according to the third embodiment. Hereinafter, differences from the configuration of the liquid crystal display according to the first embodiment shown in FIG. 1 will be described. In the first embodiment, a liquid crystal material having a positive optical anisotropy is used for the compensation cell 30, but in the third embodiment, a negative uniaxial optical anisotropy or a negative biaxial optical anisotropy is used. An anisotropic liquid crystal material is used. The liquid crystal molecules have a discotic shape. The director direction of the liquid crystal molecules coincides with the optical axis direction of the liquid crystal molecules. Note that it is not always necessary to use a liquid crystal material in which both match.

補償セル30の下側基板31及び上側基板32の表面上において、液晶分子は直立(upright)し、厚さ方向に関して右旋回している。すなわち、補償セル30のヘリカル構造の旋回方向は、駆動セル10のヘリカル構造の旋回方向と逆向きである。下側基板31の表面上の液晶分子は、その光軸が0°方向を向くように配向し、上側基板32の表面上の液晶分子は、その光軸が90°方向を向くように配向している。   On the surface of the lower substrate 31 and the upper substrate 32 of the compensation cell 30, the liquid crystal molecules are upright and are turning right with respect to the thickness direction. That is, the turning direction of the helical structure of the compensation cell 30 is opposite to the turning direction of the helical structure of the drive cell 10. The liquid crystal molecules on the surface of the lower substrate 31 are aligned so that their optical axes are oriented in the 0 ° direction, and the liquid crystal molecules on the surface of the upper substrate 32 are oriented so that their optical axes are oriented in the 90 ° direction. ing.

補償セル30の液晶層35の厚さ方向に関して中央に位置する液晶分子の光軸方向は、方位角45°の方向である。駆動セル10の液晶層15の厚さ方向に関して中央に位置する液晶分子の配向方向も方位角45°の方向であるため、両者は相互に平行になる。   The optical axis direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 35 of the compensation cell 30 is an azimuth angle of 45 °. Since the alignment direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer 15 of the driving cell 10 is also a direction having an azimuth angle of 45 °, both are parallel to each other.

以下、上述の補償セル30の作製方法について説明する。下側基板31及び上側基板32の対向面上に配向膜を形成する。この配向膜として、例えば特開平9−26572号公報の段落319に示されたポリイミド膜を用いることができる。この配向膜にラビング処理を施す。下側基板31の配向膜のラビング方向は、方位角90°の方向とし、上側基板32の配向膜のラビング方向は、方位角0°の方向とする。   Hereinafter, a method for manufacturing the compensation cell 30 will be described. An alignment film is formed on the opposing surfaces of the lower substrate 31 and the upper substrate 32. As this alignment film, for example, a polyimide film shown in paragraph 319 of JP-A-9-26572 can be used. The alignment film is rubbed. The rubbing direction of the alignment film of the lower substrate 31 is a direction with an azimuth angle of 90 °, and the rubbing direction of the alignment film of the upper substrate 32 is a direction with an azimuth angle of 0 °.

配向膜に接する円盤状液晶分子が基板面に対してほぼ直立し、その光軸がラビング方向とほぼ直交する。円盤状液晶材料として、例えば特開平9−26572号公報に開示された光学活性を有する混合液晶化合物を用いることができる。この際にカイラルピッチの調整のために光学活性材料の混合比率を調整することは当業者にとって公知の手法である。上下基板の配向膜のラビングによって、上下基板近傍の液晶分子の配向方向が拘束され、上下基板間で90°のツイスト角を持つ補償セルが得られる。   The discotic liquid crystal molecules in contact with the alignment film are almost upright with respect to the substrate surface, and the optical axis thereof is substantially orthogonal to the rubbing direction. As the discotic liquid crystal material, for example, a mixed liquid crystal compound having optical activity disclosed in JP-A-9-26572 can be used. At this time, adjusting the mixing ratio of the optically active material for adjusting the chiral pitch is a method known to those skilled in the art. By rubbing the alignment films on the upper and lower substrates, the alignment direction of the liquid crystal molecules in the vicinity of the upper and lower substrates is restricted, and a compensation cell having a twist angle of 90 ° between the upper and lower substrates is obtained.

図11に、第3の実施例による液晶表示装置の視角特性を示す。負の光学異方性を有する液晶材料として、メルク(株)製のZLI−4792の常光屈折率と異常光屈折率とを入れ替えたものを想定した。その他の条件は、図8及び図9で示したシミュレーションの場合と同様である。図11の方位角及び極角の意味も、図8に示した方位角及び極角の意味と同様である。   FIG. 11 shows the viewing angle characteristics of the liquid crystal display device according to the third embodiment. As the liquid crystal material having negative optical anisotropy, an ordinary light refractive index and an extraordinary light refractive index of ZLI-4792 manufactured by Merck Co., Ltd. were assumed to be interchanged. Other conditions are the same as in the simulations shown in FIGS. The meanings of azimuth and polar angles in FIG. 11 are the same as the meanings of azimuth and polar angles shown in FIG.

図11に示した等輝度曲線の間隔が、図8及び図9に示した等輝度曲線の間隔に比べて著しく広くなっている。すなわち、視角特性が著しく改善されていることがわかる。   The interval between the isoluminance curves shown in FIG. 11 is significantly wider than the interval between the isoluminance curves shown in FIGS. That is, it can be seen that the viewing angle characteristics are remarkably improved.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

本発明は、液晶表示装置に関し、特に液晶分子を基板面内方向に回転させて透過率を変化させるITモードの液晶表示装置に関する。この液晶表示装置により、セグメント表示、及びドットマトリクス表示を行うことができる。また、この液晶表示装置は、単純マトリクス駆動及び薄膜トランジスタ(TFT)駆動のいずれにも適用可能である。   The present invention relates to a liquid crystal display device, and more particularly to an IT mode liquid crystal display device that changes the transmittance by rotating liquid crystal molecules in the in-plane direction of the substrate. With this liquid crystal display device, segment display and dot matrix display can be performed. This liquid crystal display device can be applied to both simple matrix driving and thin film transistor (TFT) driving.

第1の実施例による液晶表示装置の分解斜視図である。1 is an exploded perspective view of a liquid crystal display device according to a first embodiment. 第1の実施例による液晶表示装置の電気光学特性を、駆動セルと補償セルとの液晶層の厚さの差ごとに示すグラフである。6 is a graph showing electro-optical characteristics of the liquid crystal display device according to the first embodiment for each difference in thickness of the liquid crystal layer between the driving cell and the compensation cell. 第1の実施例による液晶表示装置の電気光学特性を、駆動セルと補償セルとのリタデーションごとに示すグラフである。It is a graph which shows the electro-optical characteristic of the liquid crystal display device by a 1st Example for every retardation of a drive cell and a compensation cell. 第1の実施例による液晶表示装置の電気光学特性を、駆動セルの電極基板側の配向方向と電界方向とのなす角ごとに示すグラフである。6 is a graph showing electro-optical characteristics of the liquid crystal display device according to the first embodiment for each angle formed by the alignment direction on the electrode substrate side of the driving cell and the electric field direction. 第1の実施例による液晶表示装置の電気光学特性を、駆動セルと補償セルとのヘリカル構造のねじれ角ごとに示すグラフである。4 is a graph showing electro-optical characteristics of the liquid crystal display device according to the first embodiment for each twist angle of a helical structure of a drive cell and a compensation cell. 第1の実施例による液晶表示装置の電気光学特性を、駆動セルのヘリカル構造のねじれ角を90°に固定した場合に、補償セルのヘリカル構造のねじれ角ごとに示すグラフである。6 is a graph showing electro-optical characteristics of the liquid crystal display device according to the first embodiment for each helical angle of the helical structure of the compensation cell when the helical angle of the helical structure of the driving cell is fixed at 90 °. 第2の実施例による液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device by a 2nd Example. 第2の実施例による液晶表示装置の視角特性を示すグラフである。It is a graph which shows the viewing angle characteristic of the liquid crystal display device by a 2nd Example. 第1の実施例による液晶表示装置の視角特性を示すグラフである。It is a graph which shows the viewing angle characteristic of the liquid crystal display device by a 1st Example. 第3の実施例による液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device by a 3rd Example. 第3の実施例による液晶表示装置の視角特性を示すグラフである。It is a graph which shows the viewing angle characteristic of the liquid crystal display device by a 3rd Example.

符号の説明Explanation of symbols

10 駆動セル
11 電極基板
12 対向基板
13、14 電極
15、35 液晶層
16、36、36A 液晶分子
30 補償セル
31 下側基板
32 上側基板
35 液晶層
50、51 偏光板
52、53 1/4波長板
DESCRIPTION OF SYMBOLS 10 Drive cell 11 Electrode substrate 12 Opposite substrate 13, 14 Electrode 15, 35 Liquid crystal layer 16, 36, 36A Liquid crystal molecule 30 Compensation cell 31 Lower substrate 32 Upper substrate 35 Liquid crystal layer 50, 51 Polarizing plate 52, 53 1/4 wavelength Board

Claims (11)

電界が発生していない状態で液晶分子がツイスト配列してヘリカル構造を示す液晶層を保持し、該液晶層に基板面内方向の電界を発生させる電極が形成された駆動セルと、
前記駆動セルの一方の面上に配置され、液晶分子がツイスト配列してヘリカル構造を示す液晶層を含み、ヘリカル構造の旋回方向が、前記駆動セルのヘリカル構造の旋回方向とは逆向きであり、該液晶層の厚さ方向に関して中央に位置する液晶分子の配向方向が、前記駆動セルの液晶層の厚さ方向に関して中央に位置する液晶分子の配向方向と直交する補償手段と、
前記駆動セルと補償手段とを含む構造体の両側にそれぞれ配置された偏光板と
を有する液晶表示装置。
A driving cell in which liquid crystal molecules are twisted in a state where no electric field is generated and a liquid crystal layer having a helical structure is held, and an electrode for generating an electric field in a substrate in-plane direction is formed on the liquid crystal layer;
The liquid crystal layer is arranged on one surface of the drive cell and includes a liquid crystal layer in which liquid crystal molecules are twisted to show a helical structure, and the turning direction of the helical structure is opposite to the turning direction of the helical structure of the drive cell. Compensation means in which the alignment direction of the liquid crystal molecules positioned in the center with respect to the thickness direction of the liquid crystal layer is orthogonal to the alignment direction of the liquid crystal molecules positioned in the center with respect to the thickness direction of the liquid crystal layer of the drive cell;
A liquid crystal display device comprising polarizing plates disposed on both sides of a structure including the driving cell and compensation means.
前記駆動セル及び前記補償手段内の液晶分子が、正の一軸光学異方性または正の二軸光学異方性を有する請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the liquid crystal molecules in the driving cell and the compensation unit have positive uniaxial optical anisotropy or positive biaxial optical anisotropy. 電界が発生していない状態における前記駆動セルのリタデーションと、前記補償手段のリタデーションとの差が0.03μm以下である請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein a difference between the retardation of the driving cell and the retardation of the compensation unit in a state where no electric field is generated is 0.03 μm or less. 前記補償手段のリタデーション、及び電界が発生していない状態における前記駆動セルのリタデーションが、0.3μm〜1μmである請求項1〜3のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein retardation of the compensation means and retardation of the driving cell in a state where no electric field is generated are 0.3 μm to 1 μm. 前記補償手段のヘリカル構造のねじれ角が、前記駆動セルのヘリカル構造のねじれ角以下である請求項1〜4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein a helical angle of the helical structure of the compensation means is equal to or smaller than a helical angle of the helical structure of the drive cell. 前記駆動セルのヘリカル構造のねじれ角と、前記補償手段のヘリカル構造のねじれ角とが等しく、共に0°より大きく180°以下である請求項1〜4のいずれかに記載の液晶表示装置。 5. The liquid crystal display device according to claim 1, wherein the helical angle of the helical structure of the driving cell is equal to the helical angle of the helical structure of the compensating means, and both are larger than 0 ° and not larger than 180 °. さらに、前記駆動セルと該駆動セル側の前記偏光板との間、及び前記補償手段と該補償手段側の前記偏光板との間に配置され、正の一軸光学異方性または正の二軸光学異方性を有する1/4波長板を有する請求項1〜6のいずれかに記載の液晶表示装置。 Furthermore, it is disposed between the driving cell and the polarizing plate on the driving cell side, and between the compensating means and the polarizing plate on the compensating means side, and is positive uniaxial optical anisotropy or positive biaxial The liquid crystal display device according to claim 1, further comprising a quarter-wave plate having optical anisotropy. 前記1/4波長板が正の二軸光学異方性を有し、厚さ方向のリタデーションが、面内方向のリタデーションの40%〜60%である請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, wherein the quarter-wave plate has positive biaxial optical anisotropy, and the retardation in the thickness direction is 40% to 60% of the retardation in the in-plane direction. 正の一軸光学異方性または正の二軸光学異方性を有する液晶分子が、電界が発生していない状態でツイスト配列してヘリカル構造を示す液晶層を保持し、該液晶層に基板面内方向の電界を発生させる電極が形成された駆動セルと、
前記駆動セルの片側の面上に配置され、負の一軸光学異方性または負の二軸光学異方性を有する液晶分子がツイスト配列してヘリカル構造を示す液晶層を含み、ヘリカル構造の旋回方向が、前記駆動セルのヘリカル構造の旋回方向とは逆向きである補償手段と、
前記駆動セルと補償手段との層構造の両側にそれぞれ配置された偏光板と
を有する液晶表示装置。
Liquid crystal molecules having positive uniaxial optical anisotropy or positive biaxial optical anisotropy hold a liquid crystal layer having a helical structure by twist alignment in a state where no electric field is generated. A driving cell in which an electrode for generating an inward electric field is formed;
A liquid crystal layer disposed on one surface of the drive cell and having a negative uniaxial optical anisotropy or a negative biaxial optical anisotropy and having a helical structure in which the liquid crystal molecules have a twist arrangement; Compensation means whose direction is opposite to the turning direction of the helical structure of the drive cell;
A liquid crystal display device comprising polarizing plates disposed on both sides of the layer structure of the driving cell and compensation means.
前記補償手段の液晶分子のダイレクタ方向が該液晶分子の光軸方向に一致し、前記補償セルの液晶層の厚さ方向に関して中央に位置する液晶分子の配向方向が、前記駆動セルの液晶層の厚さ方向に関して中央に位置する液晶分子の配向方向と平行である請求項9に記載の液晶表示装置。 The director direction of the liquid crystal molecules of the compensation means coincides with the optical axis direction of the liquid crystal molecules, and the alignment direction of the liquid crystal molecules located in the center with respect to the thickness direction of the liquid crystal layer of the compensation cell is the liquid crystal layer of the drive cell. The liquid crystal display device according to claim 9, wherein the liquid crystal display device is parallel to the alignment direction of liquid crystal molecules located in the center with respect to the thickness direction. さらに、前記駆動セルと該駆動セル側の前記偏光板との間、及び前記補償手段と該補償手段側の前記偏光板との間に配置され、正の一軸光学異方性または正の二軸光学異方性を有する1/4波長板を有する請求項9または10に記載の液晶表示装置。 Furthermore, it is disposed between the driving cell and the polarizing plate on the driving cell side, and between the compensating means and the polarizing plate on the compensating means side, and is positive uniaxial optical anisotropy or positive biaxial The liquid crystal display device according to claim 9, comprising a quarter-wave plate having optical anisotropy.
JP2003287054A 2003-08-05 2003-08-05 Normally white type LCD Expired - Lifetime JP4721252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287054A JP4721252B2 (en) 2003-08-05 2003-08-05 Normally white type LCD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287054A JP4721252B2 (en) 2003-08-05 2003-08-05 Normally white type LCD

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011039696A Division JP5597577B2 (en) 2011-02-25 2011-02-25 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2005055709A true JP2005055709A (en) 2005-03-03
JP4721252B2 JP4721252B2 (en) 2011-07-13

Family

ID=34366176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287054A Expired - Lifetime JP4721252B2 (en) 2003-08-05 2003-08-05 Normally white type LCD

Country Status (1)

Country Link
JP (1) JP4721252B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192854A (en) * 2006-01-17 2007-08-02 Stanley Electric Co Ltd Liquid crystal display device
JP2007199157A (en) * 2006-01-24 2007-08-09 Stanley Electric Co Ltd Liquid crystal display element and method for driving liquid crystal display element
JP2007199158A (en) * 2006-01-24 2007-08-09 Stanley Electric Co Ltd Liquid crystal display element and method for driving liquid crystal display element
JP2007213007A (en) * 2006-01-12 2007-08-23 Stanley Electric Co Ltd Liquid crystal display element
JP2008096481A (en) * 2006-10-06 2008-04-24 Stanley Electric Co Ltd Field sequential liquid crystal display device
WO2016035811A1 (en) * 2014-09-05 2016-03-10 シャープ株式会社 Liquid crystal display panel
WO2016208516A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Liquid crystal display panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247432A (en) * 1991-02-01 1992-09-03 Asahi Glass Co Ltd Liquid crystal display element
JPH1073823A (en) * 1996-09-02 1998-03-17 Hitachi Ltd Active matrix type liquid crystal display device
JPH1096914A (en) * 1996-09-20 1998-04-14 Matsushita Electric Ind Co Ltd Liquid crystal display device, phase plate and manufacture of phase plate
JP2001066597A (en) * 1999-08-31 2001-03-16 Nippon Mitsubishi Oil Corp Normally black mode tn liquid crystal display device
JP2002189222A (en) * 2000-12-19 2002-07-05 Sanyo Electric Co Ltd Liquid crystal display device
JP2003172925A (en) * 1999-10-29 2003-06-20 Citizen Watch Co Ltd Liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247432A (en) * 1991-02-01 1992-09-03 Asahi Glass Co Ltd Liquid crystal display element
JPH1073823A (en) * 1996-09-02 1998-03-17 Hitachi Ltd Active matrix type liquid crystal display device
JPH1096914A (en) * 1996-09-20 1998-04-14 Matsushita Electric Ind Co Ltd Liquid crystal display device, phase plate and manufacture of phase plate
JP2001066597A (en) * 1999-08-31 2001-03-16 Nippon Mitsubishi Oil Corp Normally black mode tn liquid crystal display device
JP2003172925A (en) * 1999-10-29 2003-06-20 Citizen Watch Co Ltd Liquid crystal display device
JP2002189222A (en) * 2000-12-19 2002-07-05 Sanyo Electric Co Ltd Liquid crystal display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213007A (en) * 2006-01-12 2007-08-23 Stanley Electric Co Ltd Liquid crystal display element
JP2007192854A (en) * 2006-01-17 2007-08-02 Stanley Electric Co Ltd Liquid crystal display device
JP2007199157A (en) * 2006-01-24 2007-08-09 Stanley Electric Co Ltd Liquid crystal display element and method for driving liquid crystal display element
JP2007199158A (en) * 2006-01-24 2007-08-09 Stanley Electric Co Ltd Liquid crystal display element and method for driving liquid crystal display element
JP2008096481A (en) * 2006-10-06 2008-04-24 Stanley Electric Co Ltd Field sequential liquid crystal display device
US9971193B2 (en) 2014-09-05 2018-05-15 Sharp Kabushiki Kaisha Liquid crystal display panel
WO2016035811A1 (en) * 2014-09-05 2016-03-10 シャープ株式会社 Liquid crystal display panel
CN106796367A (en) * 2014-09-05 2017-05-31 夏普株式会社 Liquid crystal display panel
TWI603125B (en) * 2014-09-05 2017-10-21 夏普股份有限公司 Liquid crystal display panel
WO2016208516A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Liquid crystal display panel
CN107735723A (en) * 2015-06-23 2018-02-23 夏普株式会社 Liquid crystal display panel
US20180314109A1 (en) * 2015-06-23 2018-11-01 Sharp Kabushiki Kaisha Liquid crystal display panel
TWI645236B (en) * 2015-06-23 2018-12-21 日商夏普股份有限公司 Liquid crystal display panel

Also Published As

Publication number Publication date
JP4721252B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP3299190B2 (en) Liquid crystal display
JP5767687B2 (en) Liquid crystal display device and manufacturing method thereof
JP4948871B2 (en) Liquid crystal display element
JP2982869B2 (en) Liquid crystal display
JP3330574B2 (en) Liquid crystal display
JP4801363B2 (en) Liquid crystal display element
JP3544348B2 (en) Liquid crystal display
KR100966230B1 (en) Viewing angle controllable liquid crystal display device
JP2009156930A (en) Liquid crystal display unit
JP5210677B2 (en) Liquid crystal display
JP4721252B2 (en) Normally white type LCD
JP2000081618A (en) Liquid crystal display device
JP4846222B2 (en) Liquid crystal display element
JP3776844B2 (en) Liquid crystal display
WO2007032356A1 (en) Liquid crystal display
JP5597577B2 (en) Liquid crystal display
JP4241364B2 (en) Liquid crystal display device and electronic device
JP2006301466A (en) Liquid crystal display device
JP2016099454A (en) Liquid crystal display device
JP4515203B2 (en) Vertical alignment type ECB mode liquid crystal display element
JP2001147450A (en) Liquid crystal display device
JP4063919B2 (en) LCD panel
KR100448051B1 (en) Wide viewing angle liquid crystal display
JP3506804B2 (en) LCD panel
JPH05289097A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250