JP2005055317A - Thermal type flowmeter - Google Patents

Thermal type flowmeter Download PDF

Info

Publication number
JP2005055317A
JP2005055317A JP2003286853A JP2003286853A JP2005055317A JP 2005055317 A JP2005055317 A JP 2005055317A JP 2003286853 A JP2003286853 A JP 2003286853A JP 2003286853 A JP2003286853 A JP 2003286853A JP 2005055317 A JP2005055317 A JP 2005055317A
Authority
JP
Japan
Prior art keywords
fluid
temperature sensor
heat
flow meter
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003286853A
Other languages
Japanese (ja)
Inventor
Yoshifumi Yamaguchi
芳文 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003286853A priority Critical patent/JP2005055317A/en
Publication of JP2005055317A publication Critical patent/JP2005055317A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal type flowmeter capable of highly accurate measurement of a micro-flow. <P>SOLUTION: This thermal type flowmeter is equipped with a passage tube 1 wherein a fluid or the like comprising a nucleic acid such as DNA or RNA, or a protein, a micro-heater 11 for supplying heat to the fluid, the first temperature sensor 3a provided on the upstream side of the micro-heater, and the second temperature sensor 3b provided on the downstream side, and is used for measuring the flow rate of the fluid based on the temperature difference between the two temperature sensors. The micro-heater 11 is provided inside the wall of the passage tube so that the fluid is brought into contact therewith, and is constituted so that a heat radiation member 12 is provided on the fluid side surface and a heat absorption member 13 is provided on the fluid side surface of the temperature sensor. The material of the passage tube is a stainless steel or a polymer resin, and the heat radiation member may be a metal wire, and the heat absorption member may be a metal film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低流量の計測が可能な熱式流量計に関するものである。   The present invention relates to a thermal flow meter capable of measuring a low flow rate.

従来の熱式流量計は、流体の温度変化に影響を受け難いものや圧力損失が少なくした状態で精度の高い計測をしている(例えば、特許文献1参照)。
図4は従来の熱式流量計を示す構成図である。図4において、1は流体を通す流路管、2はヒータ、3は温度センサ、4、5、8は抵抗器、6はコンデンサ、7はトランジスタ、9は増幅器、10は定温度差制御装置である。
ヒータ2は温度係数が小さい抵抗線を流路管1外周に巻きつけて形成されたもので、流体に対して熱を与えている。温度センサ3は、ヒータ2に対して上流側の流路管1の外側に設けられた温度センサ3aと、下流側の流路管1の外側に設けられた温度センサ3bからなり、流路管1内の流体の温度を計測している。定温度差制御装置10は、温度センサ3a、3bより得られた信号を流体の流量に換算するための定温度差制御装置である。
つぎに、この熱式流量計の動作について述べる。
(1)まず、流路管1に備えられたヒータ2に、電流を流し流路管1を加熱する。ヒータ2の上流側の温度センサ3aによって加熱される前の流体の温度を、流路管1の壁を介して検出する。ヒータ2の下流側に設置された温度センサ3bでは、ヒータ2で加熱された直後の流体の温度を流路管1の壁を介して検出する。
(2)温度センサ3a、3bにより検出された温度差ΔTの微小変化は増幅器9にて電気信号として増幅され、トランジスタ7のベース側に入力される。トランジスタ7においてはベース側に入力された信号に応じ、コレクタ側に接続された正電源+Vsから流れ込む電流をエミッタ側に出力してヒータ2に供給する。すなわち、温度差ΔTが小さくなる場合にヒータ発熱量が過剰であるので、ヒータ2に供給する電流Iを小さくし、温度差ΔTが大きければ、ヒータ発熱量を増加させるように電流Iを大きくする。これにより、温度センサ3a、3b間の温度差を一定に保つことができる。
(3)温度差ΔTの設定は、抵抗器4、5および負電源−Vsの値を変化させることによって行なわれ、ヒータ2に流れる電流Iは抵抗器8の両端にかかる電圧を測定することによって求まる。
(4)このように、従来の熱式流量計は、電流Iの値とヒータ2の抵抗値から消費する加熱電力が求められ、その加熱電力と流量との相関により流体の流量が計測できるようになっている。
実開平5−57624公報(第4−6頁、第1図)
A conventional thermal flow meter performs measurement with high accuracy in a state where it is difficult to be influenced by a temperature change of a fluid or in a state where pressure loss is reduced (see, for example, Patent Document 1).
FIG. 4 is a block diagram showing a conventional thermal flow meter. In FIG. 4, 1 is a flow channel pipe through which fluid flows, 2 is a heater, 3 is a temperature sensor, 4, 5 and 8 are resistors, 6 is a capacitor, 7 is a transistor, 9 is an amplifier, and 10 is a constant temperature difference control device. It is.
The heater 2 is formed by winding a resistance wire having a small temperature coefficient around the outer periphery of the flow channel tube 1 and applies heat to the fluid. The temperature sensor 3 includes a temperature sensor 3 a provided outside the upstream channel pipe 1 with respect to the heater 2 and a temperature sensor 3 b provided outside the downstream channel pipe 1. The temperature of the fluid in 1 is measured. The constant temperature difference control device 10 is a constant temperature difference control device for converting a signal obtained from the temperature sensors 3a and 3b into a fluid flow rate.
Next, the operation of this thermal flow meter will be described.
(1) First, a current is passed through the heater 2 provided in the flow channel tube 1 to heat the flow channel tube 1. The temperature of the fluid before being heated by the temperature sensor 3 a on the upstream side of the heater 2 is detected through the wall of the flow path pipe 1. The temperature sensor 3 b installed on the downstream side of the heater 2 detects the temperature of the fluid immediately after being heated by the heater 2 through the wall of the flow path tube 1.
(2) The minute change of the temperature difference ΔT detected by the temperature sensors 3a and 3b is amplified as an electric signal by the amplifier 9 and input to the base side of the transistor 7. In the transistor 7, a current flowing from the positive power source + Vs connected to the collector side is output to the emitter side and supplied to the heater 2 in accordance with a signal input to the base side. That is, since the heater heat generation amount is excessive when the temperature difference ΔT is small, the current I supplied to the heater 2 is reduced. If the temperature difference ΔT is large, the current I is increased so as to increase the heater heat generation amount. . Thereby, the temperature difference between the temperature sensors 3a and 3b can be kept constant.
(3) The temperature difference ΔT is set by changing the values of the resistors 4 and 5 and the negative power source −Vs, and the current I flowing through the heater 2 is measured by measuring the voltage applied across the resistor 8. I want.
(4) Thus, the conventional thermal flow meter requires the heating power consumed from the value of the current I and the resistance value of the heater 2 so that the flow rate of the fluid can be measured by the correlation between the heating power and the flow rate. It has become.
Japanese Utility Model Publication No. 5-57624 (page 4-6, Fig. 1)

しかしながら、上記従来の熱式流量計においては、数百nL/min〜数μL/minの微小の流量を計測する場合、ヒータ2および温度センサ3a、3bが流路管1の外側に設置されているため、ヒータ2から発した熱が流路管1を介して温度センサ3a、3bに伝熱されるために、温度差ΔTが小さくなる。そうなると、ヒータ2に供給する電流Iを小さくする必要があるため、当然ヒータが消費する加熱電力の値に誤差が生じ、精度の良い計測ができないという問題があった。また、温度センサ3aの上流側に流体を整える機構がないために、図示していない送液ポンプ内から発生した脈動がそのまま流体を通して温度センサ3a、3bに伝わるので、微弱な温度信号にノイズが加わるとともに、ヒータ2から発生した熱の流体への伝わり方も変化するので、微小流量の計測ができなかった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、送液ポンプ内から発生した脈動に影響されることがなく、数百nL/min〜数μL/minという微少な流体流量の計測ができ、かつ、高感度で高精度の計測ができる熱式流量計を提供することを目的とする。
However, in the above-described conventional thermal flow meter, when measuring a minute flow rate of several hundreds nL / min to several μL / min, the heater 2 and the temperature sensors 3a and 3b are installed outside the flow channel tube 1. Therefore, since the heat generated from the heater 2 is transferred to the temperature sensors 3a and 3b via the flow path pipe 1, the temperature difference ΔT is reduced. In this case, since the current I supplied to the heater 2 needs to be reduced, there is a problem that an error occurs in the value of the heating power consumed by the heater, and accurate measurement cannot be performed. In addition, since there is no mechanism for adjusting the fluid upstream of the temperature sensor 3a, pulsation generated from the liquid feed pump (not shown) is directly transmitted to the temperature sensors 3a and 3b through the fluid. In addition to this, the way in which the heat generated from the heater 2 is transferred to the fluid also changes, so that a minute flow rate cannot be measured.
Therefore, the present invention has been made in view of such problems, and is not affected by pulsation generated from the inside of the liquid feed pump, and has a minute fluid flow rate of several hundreds nL / min to several μL / min. It is an object of the present invention to provide a thermal flow meter capable of measuring the above, and capable of measuring with high sensitivity and high accuracy.

上記問題を解決するため、本発明は次のように構成したものである。
請求項1に記載の発明は、DNAやRNAの核酸や蛋白質からなる流体等が流れる流路管と、前記流体に熱を供給するマイクロヒータと、前記マイクロヒータの上流側に設けた第1の温度センサ、下流側に設けられた第2の温度センサとを備え、前記二つの温度センサの温度差に基づいて前記流体の流量を計測する熱式流量計において、前記マイクロヒータは前記流体が接触するように前記流路管の壁内に設けられ、かつ前記流体側表面に放熱部材を設けたものとし、前記温度センサは前記流体が接触するように前記流路管の壁内に設けられ、かつ前記流体側表面に吸熱部材を設けたものである。
請求項1に記載の発明によれば、マイクロヒータからの熱は流体に直接伝達するので、マイクロヒータが過剰に発熱することがなく、沸点の低い流体を用いても気泡が発生することがない。また、流路管内においては、吸熱部材が流路管内の流体に接するように配置されているので、微小の流量でも流体の温度を高感度に計測することができる。
請求項2に記載の発明は、 前記流路管の材質をステンレスまたは高分子樹脂とし、前記放熱部材を金属製ワイヤーとし、前記吸熱部材を金属膜としたものである。
請求項2に記載の発明によれば、金属製ワイヤーおよび金属膜により熱伝導が良くなるので、微小の流量でも流体の温度を高感度に計測することができる。
請求項3に記載の発明は、前記前記放熱部材および前記吸熱部材の表面は、PTFE(ポリテトラフルオロエチレン)、PE(ポリプロピレン)、PS(ポリスチレン)およびカーボンナノチューブの少なくとも一つの不活性材料からなる保護部材で被覆したものである。
請求項3に記載の発明によれば、流体が腐食性であってもマイクロヒータ、ワイヤー部材および金属膜の表面は、腐食することがない。
請求項4に記載の発明は、前記第1の温度センサの上流側に前記流体の流れを層流にする整流部を設けたものである。
請求項4に記載の発明によれば、送液ポンプ内から発生した脈動は整流部を通過する間に打ち消されるため、流体の温度を計測する温度センサにノイズが入る可能性は少なくなる。したがって、微小に変化する流体の温度を高感度に計測することができる。
請求項5に記載の発明は、前記整流部を、PTFE(ポリテトラフルオロエチレン)またはPEEK(ポリエーテルエーテルケトン)の材料で構成したものである。
請求項5に記載の発明によれば、流体として強酸、強アルカリだけでなく、各種有機溶剤も流すことができるため、流体の選択の自由度が広がる。
In order to solve the above problems, the present invention is configured as follows.
According to the first aspect of the present invention, there is provided a flow path tube through which a fluid comprising DNA or RNA nucleic acid or protein flows, a microheater for supplying heat to the fluid, and a first heater provided upstream of the microheater. A thermal flow meter that measures the flow rate of the fluid based on a temperature difference between the two temperature sensors, and the micro heater is in contact with the fluid It is provided in the wall of the flow channel tube and a heat radiating member is provided on the fluid side surface, and the temperature sensor is provided in the wall of the flow channel tube so that the fluid is in contact, In addition, a heat absorbing member is provided on the fluid side surface.
According to the first aspect of the present invention, the heat from the microheater is directly transferred to the fluid, so that the microheater does not generate excessive heat and no bubbles are generated even when a fluid having a low boiling point is used. . Further, since the heat absorbing member is disposed in the flow path pipe so as to be in contact with the fluid in the flow path pipe, the temperature of the fluid can be measured with high sensitivity even at a minute flow rate.
In the invention according to claim 2, the material of the channel tube is stainless steel or polymer resin, the heat radiating member is a metal wire, and the heat absorbing member is a metal film.
According to the invention described in claim 2, since the heat conduction is improved by the metal wire and the metal film, the temperature of the fluid can be measured with high sensitivity even at a minute flow rate.
According to a third aspect of the present invention, the surfaces of the heat radiating member and the heat absorbing member are made of at least one inert material of PTFE (polytetrafluoroethylene), PE (polypropylene), PS (polystyrene), and carbon nanotubes. It is covered with a protective member.
According to the invention described in claim 3, even if the fluid is corrosive, the surfaces of the microheater, the wire member, and the metal film are not corroded.
According to a fourth aspect of the present invention, a rectifying unit is provided upstream of the first temperature sensor to make the fluid flow laminar.
According to the fourth aspect of the present invention, the pulsation generated from the inside of the liquid feed pump is canceled while passing through the rectifying unit, so that the possibility of noise entering the temperature sensor that measures the temperature of the fluid is reduced. Therefore, the temperature of the fluid that changes slightly can be measured with high sensitivity.
According to a fifth aspect of the present invention, the rectifying unit is made of a material of PTFE (polytetrafluoroethylene) or PEEK (polyetheretherketone).
According to the fifth aspect of the invention, not only strong acid and strong alkali but also various organic solvents can be flowed as the fluid, so that the degree of freedom of fluid selection is widened.

本発明の熱式流量計によれば、マイクロヒータから発した熱が金属製ワイヤーを介して流体に直接伝達させるので、ヒータが過剰に発熱し気泡の発生がない。したがって、沸点の低い流体にも適用できる。
請求項2に記載の発明によれば、前記流路管の材質をステンレスまたは高分子樹脂とし、前記放熱部材を金属製ワイヤーとし、前記吸熱部材を金属膜とし熱伝導性のよいものを用いているため、微小の流量においても、流体の温度差を高感度に計測することができる。また、金属製ワイヤーを用いているので、流体の流れを安定に維持することができる
請求項3に記載の発明によれば、PTFE、PE、PSおよびカーボンナノチューブなどの不活性材料を、マイクロヒータおよびマイクロヒータの表面に設けた金属製ワイヤーや温度センサ表面の金属膜をコーティングしているので、流体が腐食性であってもマイクロヒータ、ワイヤーおよび金属膜は、腐食することがない。
請求項4に記載の発明によれば、第1の温度センサの上流側に前記流体の流れを層流にする整流部を設けたので、送液ポンプによる脈動は整流部を通過する間に打ち消され、温度センサにノイズが入ることがなくなる。したがって、微小に変化する流体の温度を高感度に計測することができる。
請求項5に記載の発明によれば、整流部を、PTFEまたはPEEKの材料で構成したので、流体として強酸、強アルカリ、各種有機溶剤も流すことができるため、流体の選択の自由度が広がり、長期間安定した流量計測が可能になるという効果がある。
According to the thermal type flow meter of the present invention, the heat generated from the micro heater is directly transmitted to the fluid through the metal wire, so that the heater generates excessive heat and no bubbles are generated. Therefore, it can be applied to a fluid having a low boiling point.
According to the invention of claim 2, the material of the flow path tube is stainless steel or polymer resin, the heat radiating member is a metal wire, the heat absorbing member is a metal film, and a material having good thermal conductivity is used. Therefore, even at a minute flow rate, the temperature difference of the fluid can be measured with high sensitivity. In addition, since a metal wire is used, the flow of fluid can be stably maintained. According to the invention of claim 3, an inert material such as PTFE, PE, PS, and carbon nanotube is used as a microheater. Since the metal wire provided on the surface of the microheater and the metal film on the surface of the temperature sensor are coated, the microheater, the wire and the metal film are not corroded even if the fluid is corrosive.
According to the fourth aspect of the present invention, since the rectifying unit that makes the flow of the fluid laminar flow is provided on the upstream side of the first temperature sensor, the pulsation due to the liquid feeding pump is canceled while passing through the rectifying unit. This prevents noise from entering the temperature sensor. Therefore, the temperature of the fluid that changes slightly can be measured with high sensitivity.
According to the fifth aspect of the present invention, since the rectifying unit is made of PTFE or PEEK material, strong acid, strong alkali, and various organic solvents can be flowed as the fluid, so that the degree of freedom of fluid selection is widened. There is an effect that it becomes possible to measure the flow rate stably for a long time.

以下、本発明の具体的実施例を図に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の熱式流量計の構成を示す構成図である。図において、11はマイクロヒータ、3は温度センサ、12は放熱部材である金属製ワイヤー、13,13a,13bは吸熱部材である金属膜、14,14a,14b,14cは不活性材料からなる保護部材である。
流路管1はステンレスまたは高分子樹脂製からなる。流路管1内の壁面すれすれにマイクロヒータ11を固定し、そのマイクロヒータ11の上部に微小な長さの金属製ワイヤー12が取り付けられている。一方、マイクロヒータ11から上流側に十分な距離をおいて温度センサ3aが固定され、その温度センサ3aの表面に薄膜の金属膜13aが流路管1の流体に接するように固定されている。また、マイクロヒータ11の下流側の直後にも、温度センサ3bが固定化され、その温度センサ3bの上部にも薄膜の金属膜13bが流路管1内の流体に接するように固定されている。図中の矢印は流体の流れ方向を表している。
まず、流路管1内を通過する流体の温度T1を金属膜13aで計測される。マイクロヒータ11から発生した熱は金属製ワイヤー12に伝達され流体に供給され、金属製ワイヤー12から発生した熱を吸収した流体の温度T2を金属膜13bの点で計測し、下記の式(1)のように温度差ΔTを算出する。
ΔT=T2−T1 ・・・・・・・・・・・・(1)
また、この温度差ΔTを用いて流体がマイクロヒータ11から得る熱量Qは以下の式(2)で示される。
Q=α×S×ΔT ・・・・・・・・・・・・(2)
S:流路管1の内の面積(流体の面積)
α:熱伝達率
αをレイノズル数Reの関数で表すと、下記の式(3)になる。
α=0.023×(Re)0.8×(Pr)0.4×λ/D ・・・・・(3)
Re:レイノズル数
Pr:プラントル数
λ:熱伝導率
以上のことから、ΔTとλが一定であれば、熱量Qはαに比例する。αはReの関数であることから、熱量Qは流速に比例することになるので、この流体に伝熱される熱量Qを測定することによって、流体の流量を計測する。
そこで、流路管1の外側から熱を供給するのと比べて、マイクロヒータ11から発した熱が金属製ワイヤー12を介して流体に直接伝達されるので、マイクロヒータ11が過剰に発熱することがない。そのため、沸点の低い流体を用いても気泡が発生する可能性は少なくなる。また、金属膜13a、13bは、流路管1内の流体に接するように配置されており、電極材料にも良い銅やアルミなどの熱伝導性のよいものを用いているため、微小の流量で流した場合においても、流体の温度差(ΔT)を高感度に計測することが可能となる。さらに、流路管1内には、微小の長さの金属製ワイヤー12が突き出ているだけなので、流体の流れを安定に維持することができる。
なお、マイクロヒータ11から流体への熱伝達手段に関してワイヤーではなく、平板電極を用いても良いが、ワイヤー状の方が好ましく、電極素材に関しては、カーボンナノチューブを電極材料として用いても良い。
FIG. 1 is a configuration diagram showing the configuration of the thermal flow meter of the present invention. In the figure, 11 is a microheater, 3 is a temperature sensor, 12 is a metal wire as a heat radiating member, 13, 13a and 13b are metal films as a heat absorbing member, and 14, 14a, 14b and 14c are protections made of an inert material. It is a member.
The channel tube 1 is made of stainless steel or polymer resin. A microheater 11 is fixed to the wall surface in the flow path tube 1, and a metal wire 12 having a very small length is attached to the top of the microheater 11. On the other hand, a temperature sensor 3 a is fixed at a sufficient distance upstream from the microheater 11 1, and a thin metal film 13 a is fixed on the surface of the temperature sensor 3 a so as to be in contact with the fluid in the flow channel tube 1. Further, immediately after the downstream side of the micro heater 11, the temperature sensor 3 b is fixed, and a thin metal film 13 b is also fixed to the upper part of the temperature sensor 3 b so as to be in contact with the fluid in the flow channel tube 1. . The arrows in the figure indicate the direction of fluid flow.
First, the temperature T 1 of the fluid passing through the flow channel pipe 1 is measured with the metal film 13a. The heat generated from the microheater 11 is transmitted to the metal wire 12 and supplied to the fluid, and the temperature T 2 of the fluid that has absorbed the heat generated from the metal wire 12 is measured at the point of the metal film 13b. The temperature difference ΔT is calculated as in 1).
ΔT = T 2 -T 1 (1)
The amount of heat Q that the fluid obtains from the microheater 11 using this temperature difference ΔT is expressed by the following equation (2).
Q = α × S × ΔT (2)
S: Area within the flow path pipe 1 (area of fluid)
α: When the heat transfer coefficient α is expressed as a function of the number of Ray nozzles Re, the following equation (3) is obtained.
α = 0.023 × (Re) 0.8 × (Pr) 0.4 × λ / D (3)
Re: Ray nozzle number Pr: Prandtl number λ: Thermal conductivity From the above, if ΔT and λ are constant, the heat quantity Q is proportional to α. Since α is a function of Re, the amount of heat Q is proportional to the flow velocity. Therefore, the flow rate of the fluid is measured by measuring the amount of heat Q transferred to the fluid.
Therefore, the heat generated from the microheater 11 is directly transmitted to the fluid through the metal wire 12 as compared with the case where heat is supplied from the outside of the flow channel tube 1, so that the microheater 11 generates excessive heat. There is no. Therefore, the possibility that bubbles are generated is reduced even when a fluid having a low boiling point is used. Further, since the metal films 13a and 13b are arranged so as to be in contact with the fluid in the flow channel tube 1 and have good thermal conductivity such as copper and aluminum which are good as electrode materials, a minute flow rate is used. Even in the case of flowing in, the temperature difference (ΔT) of the fluid can be measured with high sensitivity. Furthermore, since the metal wire 12 having a very small length protrudes into the flow channel tube 1, the fluid flow can be stably maintained.
Note that a plate electrode may be used instead of a wire for the heat transfer means from the microheater 11 to the fluid, but a wire shape is preferred, and a carbon nanotube may be used as the electrode material for the electrode material.

図2は第2の実施例の構成を示す図である。マイクロヒータ11と、そのマイクロヒータ11の上面に貼り付けられた金属製ワイヤー12の表面に不活性材料18がコーティングされているとともに、金属膜13a、金属膜13bの表面にも不活性材料19、20がコーティングされている。
このように、耐薬品性を有するPTEFやPEEK(ピーク)などの高分子樹脂あるいは化学的反応性に乏しいという特性を有するカーボンナノチューブで、マイクロヒータ11およびマイクロヒータ11の上部に取り付けられた金属製ワイヤー12や金属膜13a、金属膜13bの表面を薄く均一にコーティングしているような構造となっているので、塩酸(HCl)、硫酸(H2SO4)、硝酸(HNO3)、弗酸(HF)、水酸化ナトリウム(NaOH)、アセトン(CH3COCH3)、クロロホルム(CHCl3)などの溶剤を流体として流しても、電極の構成成分である銅やアルミが化学変化して流体中に析出することがなく、また、流体中に含まれる核酸や蛋白質などの生体分子および有機化合物類が電極表面上に吸着・残留することもない。よって、電極の感度が低下したり、流量計内部から汚染の原因を発生することもなく、長期間安定した流量計測が可能となる。
なお、コーティング材料にカーボンナノチューブを用いる場合、チューブ両端面にフッ素(F)を結合させるなど、端面の不活性処理を施したものを用いた方が好ましい。
FIG. 2 is a diagram showing the configuration of the second embodiment. An inert material 18 is coated on the surface of the microheater 11 and the metal wire 12 affixed to the upper surface of the microheater 11, and the inert material 19 is also applied to the surfaces of the metal film 13 a and the metal film 13 b. 20 is coated.
Thus, a polymer resin such as PTEF or PEEK (peak) having chemical resistance or a carbon nanotube having a characteristic of poor chemical reactivity, which is made of metal attached to the top of the microheater 11 and the microheater 11. Since the surface of the wire 12, the metal film 13a, and the metal film 13b is thinly and uniformly coated, hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), hydrofluoric acid Even if a solvent such as (HF), sodium hydroxide (NaOH), acetone (CH 3 COCH 3 ), chloroform (CHCl 3 ) is flowed as a fluid, the components of the electrode, such as copper and aluminum, undergo chemical changes and are in the fluid. In addition, biomolecules such as nucleic acids and proteins and organic compounds contained in the fluid are not adsorbed and remain on the electrode surface. With it. Therefore, it is possible to measure the flow rate stably for a long period of time without lowering the sensitivity of the electrode or causing a contamination from the inside of the flow meter.
In addition, when using a carbon nanotube as a coating material, it is preferable to use a material that has been subjected to an inert treatment on the end surface, such as bonding fluorine (F) to both end surfaces of the tube.

図3は第3実施例を示す図である。流路管1内において、、15は整流部
温度センサ3bの上流側に整流部15を設けている。このように、図示していない送液ポンプ内から送られた流体は、整流部15内に格子状に形成された多数の空孔を通過するような構造となっているので、送液ポンプから発生した脈動は整流部15を通過する間に徐々に打ち消される。そのため、流体の温度を計測する金属膜13a、金属膜13bにノイズが入る可能性を少なくすることができる。また、整流部15の素材にPTFEやPEEKなどの高分子樹脂を用いているため、塩酸、硝酸、硫酸、弗酸、水酸化ナトリウムのような強酸・強アルカリだけでなく、アルコール、アセトン、ヘキサン、クロロホルムなどの有機溶剤も流すことが可能となる。
FIG. 3 is a diagram showing a third embodiment. In the flow path pipe 1, 15 is provided with a rectification unit 15 upstream of the rectification unit temperature sensor 3b. Thus, since the fluid sent from the liquid feed pump (not shown) has a structure that passes through a large number of holes formed in a lattice shape in the rectifying unit 15, the liquid feed pump The generated pulsation is gradually canceled while passing through the rectifying unit 15. Therefore, the possibility of noise entering the metal film 13a and the metal film 13b for measuring the temperature of the fluid can be reduced. Further, since a polymer resin such as PTFE or PEEK is used as the material of the rectifying unit 15, not only strong acid / strong alkali such as hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, sodium hydroxide, but also alcohol, acetone, hexane In addition, an organic solvent such as chloroform can be allowed to flow.

本発明は、流体の種類に制限をもたせる必要がないので、マイクロリアクタ内での化学合成をはじめ、高速液体クロマトグラフィー(High Performance Liquid Chromatography:HPLC)、FIA(Flow Injection Analysis)装置、SPR装置などによる溶液中の有機化合物の計測ならびにDNA−DNA相互作用や蛋白質−蛋白質相互作用などの高感度計測に用いられる送液ポンプの流量制御に適用できる。   In the present invention, since there is no need to limit the kind of fluid, chemical synthesis in a microreactor, high performance liquid chromatography (HPLC), FIA (Flow Injection Analysis) apparatus, SPR apparatus, etc. are used. The present invention can be applied to the measurement of organic compounds in a solution and the flow rate control of a liquid feed pump used for highly sensitive measurement such as DNA-DNA interaction and protein-protein interaction.

本発明の第1の実施例を示す熱式流量計の側断面図。1 is a side sectional view of a thermal flow meter showing a first embodiment of the present invention. 本発明の第2実施例を示す熱式流量計の側断面図。The sectional side view of the thermal type flow meter which shows 2nd Example of this invention. 本発明の第3実施例を示す熱式流量計の部分拡大側断面図。The partial expanded side sectional view of the thermal type flow meter which shows 3rd Example of this invention. 従来の熱式流量計の構成を示す構成図。The block diagram which shows the structure of the conventional thermal type flow meter.

符号の説明Explanation of symbols

1 流路管
2 ヒータ
3 温度センサ
3a 第1の温度センサ
3b 第2の温度センサ
4、5、8 抵抗器
6 コンデンサ
7 トランジスタ
9 増幅器
10 定温度差制御装置
11 マイクロヒータ
12 放熱部材(金属製ワイヤー)
13,13a,13b 吸熱部材(金属膜)
14,14a,14b,14c保護部材
15 整流部
DESCRIPTION OF SYMBOLS 1 Channel pipe 2 Heater 3 Temperature sensor 3a 1st temperature sensor 3b 2nd temperature sensor 4, 5, 8 Resistor 6 Capacitor 7 Transistor 9 Amplifier 10 Constant temperature difference control apparatus 11 Micro heater 12 Heat radiating member (metal wire )
13, 13a, 13b Endothermic member (metal film)
14, 14a, 14b, 14c protection member 15 rectification unit

Claims (5)

DNAやRNAの核酸や蛋白質からなる流体等が流れる流路管と、前記流体に熱を供給するマイクロヒータと、前記マイクロヒータの上流側に設けた第1の温度センサ、下流側に設けられた第2の温度センサとを備え、前記二つの温度センサの温度差に基づいて前記流体の流量を計測する熱式流量計において、
前記マイクロヒータは前記流体が接触するように前記流路管の壁内に設けられ、かつ前記流体側表面に放熱部材を設けたものとし、前記温度センサは前記流体が接触するように前記流路管の壁内に設けられ、かつ前記流体側表面に吸熱部材を設けたものとしたことを特徴とする熱式流量計。
A flow path tube through which a fluid such as DNA or RNA nucleic acid or protein flows, a microheater for supplying heat to the fluid, a first temperature sensor provided on the upstream side of the microheater, provided on the downstream side A thermal flow meter that includes a second temperature sensor and measures the flow rate of the fluid based on a temperature difference between the two temperature sensors;
The microheater is provided in the wall of the flow path tube so that the fluid comes into contact, and a heat radiating member is provided on the fluid side surface, and the temperature sensor is arranged so that the fluid comes into contact with the flow path. A thermal flow meter provided in a wall of a pipe and provided with a heat absorbing member on the fluid side surface.
前記流路管の材質をステンレスまたは高分子樹脂とし、前記放熱部材を金属製ワイヤーとし、前記吸熱部材を金属膜としたことを特徴とする請求項1記載の熱式流量計。 2. The thermal flow meter according to claim 1, wherein the material of the flow path tube is stainless steel or polymer resin, the heat radiating member is a metal wire, and the heat absorbing member is a metal film. 前記放熱部材および前記吸熱部材の表面は、PTFE(ポリテトラフルオロエチレン)、PE(ポリプロピレン)、PS(ポリスチレン)およびカーボンナノチューブの少なくとも一つの不活性材料からなる保護部材で被覆したことを特徴とする請求項1または2記載の熱式流量計。 The surfaces of the heat radiating member and the heat absorbing member are covered with a protective member made of at least one inert material of PTFE (polytetrafluoroethylene), PE (polypropylene), PS (polystyrene) and carbon nanotubes. The thermal flow meter according to claim 1 or 2. 前記第1の温度センサの上流側に前記流体の流れを層流にする整流部を設けたことを特徴とする請求項1から3のいずれか1項に記載の熱式流量計。 4. The thermal flow meter according to claim 1, further comprising a rectification unit configured to make the flow of the fluid laminar on the upstream side of the first temperature sensor. 5. 前記整流部は、PTFE(ポリテトラフルオロエチレン)またはPEEK(ポリエーテルエーテルケトン)からなる材料で構成したことを特徴とする請求項4記載の熱式流量計。 The thermal flow meter according to claim 4, wherein the rectifying unit is made of a material made of PTFE (polytetrafluoroethylene) or PEEK (polyetheretherketone).
JP2003286853A 2003-08-05 2003-08-05 Thermal type flowmeter Pending JP2005055317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286853A JP2005055317A (en) 2003-08-05 2003-08-05 Thermal type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286853A JP2005055317A (en) 2003-08-05 2003-08-05 Thermal type flowmeter

Publications (1)

Publication Number Publication Date
JP2005055317A true JP2005055317A (en) 2005-03-03

Family

ID=34366033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286853A Pending JP2005055317A (en) 2003-08-05 2003-08-05 Thermal type flowmeter

Country Status (1)

Country Link
JP (1) JP2005055317A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116479A (en) * 2004-10-22 2006-05-11 Nagano Keiki Co Ltd Microchip, sensor-integrated microchip, and microchip system
JP2010021147A (en) * 2008-07-11 2010-01-28 Qinghua Univ Hollow heat source
JP2010034056A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010530940A (en) * 2007-05-29 2010-09-16 メッツ カンパニー リミテッド Safety device for digital gas valve
CN109884064A (en) * 2019-04-24 2019-06-14 金华伏安光电科技有限公司 A kind of data acquisition device of liquid sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116479A (en) * 2004-10-22 2006-05-11 Nagano Keiki Co Ltd Microchip, sensor-integrated microchip, and microchip system
JP4621475B2 (en) * 2004-10-22 2011-01-26 長野計器株式会社 Sensor-integrated microchip and microchip system
JP2010530940A (en) * 2007-05-29 2010-09-16 メッツ カンパニー リミテッド Safety device for digital gas valve
JP2010021147A (en) * 2008-07-11 2010-01-28 Qinghua Univ Hollow heat source
JP2010034056A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
CN109884064A (en) * 2019-04-24 2019-06-14 金华伏安光电科技有限公司 A kind of data acquisition device of liquid sensor

Similar Documents

Publication Publication Date Title
JP2007529749A (en) High precision measurement and control of low flow rate fluid
CN109964102B (en) Airflow sensor with thermal conductivity and thermal diffusivity sensing
JP5714911B2 (en) Thermal loop flow sensor
EP0403142B1 (en) Compensated thermal flux mass flowmeter
JP2005055317A (en) Thermal type flowmeter
Tan et al. Characteristics of on-wall in-tube flexible thermal flow sensor under radially asymmetric flow condition
JP5695671B2 (en) Fluid velocity measurement system
Lin et al. Low-power micro-fabricated liquid flow-rate sensor
JP2006010322A (en) Thermal flowmeter
US6736005B2 (en) High accuracy measuring and control of low fluid flow rates
JP2004184177A (en) Flowmeter
JP3391694B2 (en) Thermal flow sensor for liquids
KR20110006869U (en) Unequal length sensor element of thermal mass flow meter
JP2004069667A (en) Thermal mass flow meter for liquid
TWI802865B (en) flow measuring device
EP4279880A1 (en) Flow sensing device
JP2011237200A (en) Flowmeter and flow measurement method
JP4081639B2 (en) Thermal mass flow meter for liquids
JP6165949B1 (en) Thermal flow meter
JP2002005708A (en) Thermal flow rate sensor
JP2005172506A (en) Low-flow sensor
JP5097496B2 (en) Temperature measuring device
JPS5886417A (en) Method and device for measuring flow rate
JP3540279B2 (en) Flowmeter
CN110291372B (en) Calorimetric probe and method for calorimetric measurement