JP2005055307A - Method and apparatus for measuring level in forbidden band by photoluminescence with added thermal excitation - Google Patents

Method and apparatus for measuring level in forbidden band by photoluminescence with added thermal excitation Download PDF

Info

Publication number
JP2005055307A
JP2005055307A JP2003286624A JP2003286624A JP2005055307A JP 2005055307 A JP2005055307 A JP 2005055307A JP 2003286624 A JP2003286624 A JP 2003286624A JP 2003286624 A JP2003286624 A JP 2003286624A JP 2005055307 A JP2005055307 A JP 2005055307A
Authority
JP
Japan
Prior art keywords
light
level
energy
temperature
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003286624A
Other languages
Japanese (ja)
Other versions
JP3743802B2 (en
Inventor
Norihiko Kamata
憲彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2003286624A priority Critical patent/JP3743802B2/en
Publication of JP2005055307A publication Critical patent/JP2005055307A/en
Application granted granted Critical
Publication of JP3743802B2 publication Critical patent/JP3743802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring a level in a forbidden band by photoluminescence with added thermal excitation which conveniently and accurately measure energy of the level in the forbidden band such as a trap level. <P>SOLUTION: A light emitted by an electron or a hole released from the trap level is observed and the energy of the level in the forbidden band is nondestructively, noncontactly, conveniently and surely separated and measured by organically combining an excitation light of an energy width of the forbidden band of materials or more, an excitation light of the energy width of the forbidden band of the materials or less and thermal energy when the emitted light, the received light and the level in the forbidden band in the electronic material are quantitatively measured. A factor for generating the level in the forbidden band is clearly expressed. A material composition, a manufacturing process and a device structure are easily optimized through a removal of the factor and the efficiency of a light emission/display device is improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発光・受光および電子材料中に存在し、素子効率や安定性、信頼性を低下させるために、その成因解明と除去が望まれている禁制帯内準位(欠陥や残留不純物等の作る、本来あってはならないエネルギー準位で、捕獲準位や非発光再結合準位として作用する)を高精度に検出、評価するための非破壊、非接触の光学的測定方法およびその測定装置に関するものである。   The present invention is present in light-emitting / light-receiving and electronic materials, and in order to lower the device efficiency, stability and reliability, it is desired to elucidate the cause and eliminate the level in the forbidden band (such as defects and residual impurities). Non-destructive, non-contact optical measurement method and its measurement to detect and evaluate with high accuracy the energy level that should not be inherent, which acts as a trap level or non-radiative recombination level. It relates to the device.

これまでのフォトルミネッセンス(PL)では、異なる試料間での発光強度の相対比を求めることは容易であるが、素子効率や安定性、信頼性を定める非発光再結合準位や捕獲準位のふるまいを定量的に調べることは不可能であった。   In conventional photoluminescence (PL), it is easy to obtain the relative ratio of emission intensity between different samples, but the non-emission recombination levels and trap levels that determine device efficiency, stability, and reliability. It was impossible to examine the behavior quantitatively.

これに対して本願発明者らは、禁制帯エネルギー幅以上の励起(Above−Gap Excitation,AGE)光と、禁制帯エネルギー幅以下の励起(Below−Gap Excitation,BGE)光の2波長励起PLの手法により、非発光再結合準位として作用する禁制帯内準位のエネルギー、空間分布、濃度、電子・正孔捕獲率等の非発光再結合パラメータを定量的に導出可能であることを示した。また、パルス励起での時分解PL応答から、より容易に非発光再結合パラメータの導出が可能であることを示した(下記特許文献1参照)。   On the other hand, the inventors of the present invention have two-wavelength excitation PL of excitation light (Above-Gap Excitation, AGE) that is greater than or equal to the forbidden band energy width and excitation light (Below-Gap Excitation, BGE) that is less than or equal to the forbidden band energy width. The method showed that non-radiative recombination parameters such as the energy, spatial distribution, concentration, and electron / hole capture rate of the forbidden band level acting as a non-radiative recombination level can be derived quantitatively. . In addition, it was shown that the non-radiative recombination parameters can be derived more easily from the time-resolved PL response by pulse excitation (see Patent Document 1 below).

しかしながら、ここで非発光再結合準位のエネルギー分布はBGEエネルギーを変化させて測定可能であるが、実際上はそれに十分な強度の光源を赤外領域まで準備すること、特に捕獲準位を分けて測定することはさほど容易でない。   However, the energy distribution of the non-radiative recombination level can be measured here by changing the BGE energy. However, in practice, it is necessary to prepare a light source with sufficient intensity up to the infrared region. It is not so easy to measure.

これとは別に、捕獲準位にキャリアを捕獲させた後、一定速度で昇温させながら熱放出キャリアによる発光を温度の関数として観測する方法(熱ルミネッセンス法)がある。   In addition to this, there is a method (thermoluminescence method) in which light is emitted as a function of temperature while trapping carriers at a trap level and then raising the temperature at a constant rate while raising the temperature.

この方法では、昇温速度を変えながら複数回の測定を行うと、捕獲準位のエネルギーが求められるが、測定に時間がかかる上に精度が十分でなく、また他の非発光再結合準位の影響を分離することができなかった。
特開2002−286640号公報(第2−3頁 図2) E.Kanoh,K.Hoshino,N.Kamata,K.Yamada,M.Nishioka and Y.Arakawa,J.Lumin,63,pp.235−240,1995. N.Kamata,J.M.Z.Ocampo,K.Hoshino,K.Yamada,M.Nishioka,T.Someya and Y.Arakawa,Recent Res.Developments in Quantum Electronics,1,pp.123−135,1999.
In this method, if the measurement is performed multiple times while changing the heating rate, the energy of the trap level is required, but the measurement takes time and the accuracy is not sufficient, and other non-radiative recombination levels. Could not be separated.
JP 2002-286640 A (page 2-3, FIG. 2) E. Kanoh, K .; Hoshino, N .; Kamata, K .; Yamada, M .; Nishioka and Y.J. Arakawa, J .; Lumin, 63, pp. 235-240, 1995. N. Kamata, J .; M.M. Z. Ocampo, K.M. Hoshino, K .; Yamada, M .; Nishioka, T .; Someya and Y.M. Arakawa, Recent Res. Developments in Quantum Electronics, 1, pp. 123-135, 1999.

発光・受光および電子材料・デバイスの素子効率や安定性、信頼性を改善するために、禁制帯内準位を高精度に検出、評価するための非破壊、非接触の測定手法が産業界から強く望まれている。   Non-destructive and non-contact measurement methods from the industry to detect and evaluate forbidden band levels with high accuracy in order to improve element efficiency, stability, and reliability of light emitting / receiving and electronic materials / devices It is strongly desired.

本発明は、上記状況に鑑みて、捕獲準位を始めとする禁制帯内準位のエネルギーを簡便、かつ正確に測定することができる熱励起を加えたフォトルミネッセンスによる禁制帯内準位の測定方法およびその測定装置を提供することを目的とする。   In view of the above situation, the present invention measures the level in the forbidden band by photoluminescence with thermal excitation that can easily and accurately measure the energy in the forbidden band level including the trap level. It is an object to provide a method and a measuring device thereof.

本発明は、上記目的を達成するために、
〔1〕熱励起を加えたフォトルミネッセンス(PL)による禁制帯内準位の測定方法において、
(a)発光・受光および電子材料に低温下で予め光子エネルギーEexc のAGE光またはBGE光を照射して、励起キャリア(電子又は正孔)を禁制帯内の捕獲準位に捕獲させ、
(b)AGE光またはBGE光を遮断後、一定昇温率で温度を上昇させながら、捕獲準位から熱放出されたキャリアによる発光を温度の関数として観測するときに、ある中間温度で光子エネルギーEB のBGE光を照射して、照射しなければその後熱放射されたであろう捕獲エネルギーET <EB の捕獲準位のキャリアをBGEにより光励起して、一度に発光を生成させ、この後の昇温では、捕獲エネルギーET <EB の捕獲準位にキャリアは存在しないため発光は生じず、捕獲エネルギーET >EB の準位からのキャリアが熱放出される温度に達して初めて次の発光を生じさせ、
(c)前記光励起と熱励起の相反的関係から、特定の光子エネルギーEexc とEB 、あるいは相異なる複数のEexc とEB の組み合わせを利用して、禁制帯内準位のエネルギーを検出することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the method for measuring the level in the forbidden band by photoluminescence (PL) with thermal excitation,
(A) Light emission / light reception and electronic material are irradiated with AGE light or BGE light of photon energy E exc beforehand at a low temperature so that excited carriers (electrons or holes) are trapped in the trap level in the forbidden band,
(B) After blocking the AGE light or the BGE light, the photon energy at a certain intermediate temperature when observing the light emission by the carriers thermally released from the trap level as a function of temperature while increasing the temperature at a constant temperature rising rate. by irradiating BGE light E B, and photoexcitation by BGE the trap level of the carriers then have to irradiate heat radiated by will will capture energy E T <E B, to produce a light emission at a time, this At a later temperature rise, no carriers are present at the trapping level of trapping energy E T <E B , so no light emission occurs, and the carrier reaches a temperature at which the carriers from the level of trapping energy E T > E B are thermally released. For the first time,
(C) From the reciprocal relationship between photoexcitation and thermal excitation, the energy of the level in the forbidden band is detected using specific photon energies E exc and E B or a combination of different E exc and E B. It is characterized by doing.

ここで、簡単化のために2つの捕獲準位(エネルギーET1およびET2)と1つの非発光再結合準位(エネルギーENT)を有する半導体を図1に例示し、電子の捕獲、放出過程に関し説明する。 Here, for simplification, a semiconductor having two trap levels (energy E T1 and E T2 ) and one non-radiative recombination level (energy E NT ) is illustrated in FIG. The process will be described.

図1は、2つの捕獲準位(エネルギーET1およびET2)と1つの非発光再結合準位(エネルギーENT)を持つ半導体のエネルギーバンド図(簡単化するため電子のみを考慮するもの)である。ここで、上記(a)でAGE光により捕獲準位1および2に電子が捕獲される。この場合、通常の熱ルミネッセンス測定では、捕獲準位1から非発光再結合準位および伝導帯への電子放出(要するエネルギーΔE1 =ENT−ET1,ΔE2 =Eg −ET1)が温度T1 ,T2 (T2 >T1 )で起こるが、このうち温度T2 での放出過程のみが発光として観測される。このとき捕獲準位2からの電子放出はΔE3 =ENT−ET2およびΔE4 =Eg −ET2に対応する温度が高すぎるため観測されず、結局捕獲準位2および非発光再結合準位は検出されない。 Figure 1 shows the energy band diagram of a semiconductor with two trap levels (energy E T1 and E T2 ) and one non-radiative recombination level (energy E NT ) (think only electrons for simplicity). It is. Here, in (a) above, electrons are trapped in the trap levels 1 and 2 by the AGE light. In this case, in normal thermoluminescence measurement, electron emission from the trap level 1 to the non-radiative recombination level and the conduction band (required energy ΔE 1 = E NT −E T1 , ΔE 2 = E g −E T1 ) Although it occurs at temperatures T 1 and T 2 (T 2 > T 1 ), only the emission process at temperature T 2 is observed as light emission. At this time, the electron emission from the trap level 2 is not observed because the temperatures corresponding to ΔE 3 = E NT −E T2 and ΔE 4 = E g −E T2 are too high, and eventually the trap level 2 and the non-radiative recombination The level is not detected.

これに対し、上記(b)で前述の温度T2 まで昇温を行うと、図2に示す通り、捕獲準位1の電子は既に放出されており、電子は捕獲準位2のみに捕獲されている。この状態に温度を保ち光子エネルギーEB2=Eg −ET2のBGE光を照射すると、捕獲準位2から伝導帯への電子放出が発光として観測される。また再度AGE光での電子捕獲、温度T2 までの昇温後、今度はEB2でなく、まずEB1=ENT−ET2のBGE光を照射し、その後に先のEB2のBGE光を照射すると、捕獲準位2の電子は非発光再結合準位を介して非発光再結合してしまっているため、発光は生じない(図2参照)。 On the other hand, when the temperature is raised to the above-described temperature T 2 in (b), the electrons at the trap level 1 are already emitted as shown in FIG. 2, and the electrons are captured only at the trap level 2. ing. When the temperature is maintained in this state and irradiation with BGE light having photon energy E B2 = E g −E T2 is performed, electron emission from the trap level 2 to the conduction band is observed as light emission. In addition, after electron capture with AGE light again and temperature rise to T 2 , this time, instead of E B2 , first irradiate BGE light of E B1 = E NT −E T2 , and then BGE light of the previous E B2 , The electrons in the trap level 2 are non-radiatively recombined via the non-radiative recombination level, and thus no light emission occurs (see FIG. 2).

このことから、従来手法では測定不能であった捕獲準位2および非発光再結合準位のエネルギーを定量的に検出することができる。なお、図3に示すように、最初にAGE光でなく光子エネルギーEexc =ET2のBGE光を用いると、直接捕獲準位2のみに電子を捕獲させることができる。したがって、前述の通り捕獲準位へキャリアを捕獲させる光子エネルギーEexc および捕獲準位からキャリアを放出させる光子エネルギーEB の組み合わせによって、禁制帯内の捕獲準位、非発光再結合準位を個別に分離し、しかもその個々を定量測定することが可能となる。 From this, it is possible to quantitatively detect the energy of the trap level 2 and the non-radiative recombination level that could not be measured by the conventional method. As shown in FIG. 3, when BGE light having photon energy E exc = E T2 is first used instead of AGE light, electrons can be captured only at the direct capture level 2. Therefore, the capture level and the non-radiative recombination level in the forbidden band are individually determined by the combination of the photon energy E exc that captures carriers to the capture level and the photon energy E B that releases carriers from the capture level as described above. In addition, it is possible to quantitatively measure the individual.

〔2〕熱励起を加えたフォトルミネッセンス(PL)による禁制帯内準位の測定装置において、AGE光を照射するAGE光源と、BGE光を照射するBGE光源と、試料としての発光材料に作用する冷却および加熱装置と、この冷却および加熱装置の温度を制御する温度制御装置と、試料の温度を検出するセンサとを備え、発光・受光および電子材料に低温下で予め光子エネルギーEexc のAGE光またはBGE光を照射して、励起キャリア(電子又は正孔)を禁制帯内の捕獲準位に捕獲させ、AGE光を遮断後、前記温度制御装置により、一定昇温率で温度を上昇させながら、捕獲準位から熱放出されたキャリアによる発光を温度の関数として観測するときに、ある中間温度で光子エネルギーEB のBGE光を照射すると、照射しなければその後熱放射されたであろう捕獲エネルギーET <EB の捕獲準位のキャリアをBGEにより光励起させ、一度に発光を生じさせ、この後の昇温では、捕獲エネルギーET <EB の捕獲準位にキャリアは存在しないため発光は生じず、捕獲エネルギーET >EB の準位からのキャリアが熱放出される温度に達して初めて次の発光を生じさせ、この光励起と熱励起の相反的関係から、特定の光子エネルギーEexc とEB 、あるいは相異なる複数のEexc とEB の組み合わせを利用して、禁制帯内準位のエネルギーを測定することを特徴とする。 [2] In a forbidden band level measuring device using photoluminescence (PL) with thermal excitation, it acts on an AGE light source that emits AGE light, a BGE light source that emits BGE light, and a luminescent material as a sample a cooling and heating device, a temperature control device for controlling the temperature of the cooling and heating device, and a sensor for detecting the temperature of the sample, AGE light pre photon energy E exc at a low temperature in the light emitting and receiving and electronic materials Or, by irradiating with BGE light, the excited carriers (electrons or holes) are trapped in the trap level in the forbidden band, and after blocking the AGE light, the temperature control device is used to raise the temperature at a constant heating rate. , when observing light emitted by carriers heat released from the trap level as a function of temperature, is irradiated with BGE light of photon energy E B at some intermediate temperatures, unless irradiated The trap level of a carrier of heat emitted will capture energy E T <E B is photoexcited by BGE after, the light emission caused at a time, a Atsushi Nobori after this, capture energy E T <the E B Since there is no carrier in the trap level, no light emission occurs, and the next light emission is generated only when the carrier from the level of the trap energy E T > E B reaches the temperature at which heat is released. From the reciprocal relationship, the energy of the level in the forbidden band is measured using specific photon energies E exc and E B , or a combination of a plurality of different E exc and E B.

本発明によれば、以下のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(A)非破壊、非接触の光学測定であり、電極が不要であるため試料形状によらない、各プロセスごとの測定評価が可能である。   (A) Non-destructive and non-contact optical measurement, and since no electrode is required, measurement and evaluation can be performed for each process regardless of the sample shape.

(B)励起光スポットサイズを絞ることにより、局所的な評価が可能である。この極限として、近接場光学技術を用いて、単分子、単一量子ドット測定までが可能である。一方、スポットサイズを広げると、広範囲な領域の平均情報が容易に得られる。   (B) Local evaluation is possible by reducing the excitation light spot size. As this limit, it is possible to measure single molecules and single quantum dots using near-field optical technology. On the other hand, when the spot size is increased, average information of a wide area can be easily obtained.

(C)発光観測による準位のエネルギー、空間分布測定が、さらに広いエネルギー領域で簡便に可能となる。   (C) Level energy and spatial distribution measurement by light emission observation can be easily performed in a wider energy range.

(D)捕獲準位以外の非発光再結合準位に関する情報は従来の熱ルミネッセンス測定では得られないが、本発明ではそれが可能である。これにより、禁制帯内準位を総括的に分類評価することができる。   (D) Information on non-radiative recombination levels other than the trap level cannot be obtained by conventional thermoluminescence measurement, but this is possible in the present invention. As a result, the forbidden band level can be comprehensively evaluated.

(E)熱ルミネッセンス測定で問題であった測定時間を大幅に短縮し、測定精度を改善することができる。   (E) The measurement time, which is a problem in thermoluminescence measurement, can be greatly shortened and the measurement accuracy can be improved.

発光・受光および電子材料に低温下で予め光子エネルギーEexc のAGE光またはBGE光を照射し、励起キャリア(電子又は正孔)を禁制帯内の捕獲準位に捕獲させる。AGE光またはBGE光を遮断後、一定昇温率で温度を上昇させながら、捕獲準位から熱放出されたキャリアによる発光を温度の関数として観測する。このときある中間温度で光子エネルギーEB のBGE光を照射すると、照射しなければその後熱放射されたであろう捕獲エネルギーET <EB の捕獲準位のキャリアはBGEにより光励起され、一度に発光を生じる。この後の昇温では、捕獲エネルギーET <EB の捕獲準位にキャリアは存在しないため発光は生じず、捕獲エネルギーET >EB の準位からのキャリアが熱放出される温度に達して初めて次の発光が生じる。 Light emission, light reception, and electronic material are preliminarily irradiated with AGE light or BGE light with photon energy E exc at a low temperature, and excited carriers (electrons or holes) are captured in a trap level in the forbidden band. After blocking the AGE light or BGE light, light emission from the carriers thermally released from the trap level is observed as a function of temperature while the temperature is increased at a constant temperature increase rate. At this time, when the BGE light having the photon energy E B is irradiated at a certain intermediate temperature, the carriers in the trap level E T <E B that would have been thermally radiated if not irradiated are photoexcited by the BGE at a time. Luminescence occurs. At the subsequent temperature rise, no carriers are present at the trapping level of trapping energy E T <E B , so no light emission occurs, and the temperature reaches the temperature at which carriers from the level of trapping energy E T > E B are thermally released. The next light emission occurs for the first time.

この光励起と熱励起の相反的関係から、特定の光子エネルギーEexc とEB 、あるいは相異なる複数のEexc とEB の組み合わせを利用して、本発明は禁制帯内の捕獲準位、非発光再結合準位のエネルギーを簡便、確実に測定する。また、この測定手法、並びにこの測定を行うために、試料を一定温度に保ち、また、一定速度で昇温しながら2波長励起発光測定が可能な測定装置を提供する。 Due to the reciprocal relationship between photoexcitation and thermal excitation, the present invention utilizes specific photon energies E exc and E B , or a combination of a plurality of different E exc and E B , so Easily and reliably measure the energy of the luminescence recombination level. In addition, this measurement technique and a measurement apparatus capable of performing two-wavelength excitation luminescence measurement while keeping the sample at a constant temperature and raising the temperature at a constant speed are provided.

図4は本発明の実施例を示す熱励起を加えたフォトルミネッセンスによる禁制帯内準位の測定装置(システム)の構成図である。   FIG. 4 is a block diagram of an apparatus (system) for measuring levels in the forbidden band by photoluminescence with thermal excitation according to an embodiment of the present invention.

この図において、1はAGE光源、2はBGE光源、3は試料、4は分光器、5は光電子増倍管、6はデジタルオシロスコープ、7はボックスカー積分器、8はコンピュータ、9は冷却および加熱装置、10は温度制御装置、11は温度センサである。   In this figure, 1 is an AGE light source, 2 is a BGE light source, 3 is a sample, 4 is a spectrometer, 5 is a photomultiplier tube, 6 is a digital oscilloscope, 7 is a boxcar integrator, 8 is a computer, 9 is cooling and A heating device, 10 is a temperature control device, and 11 is a temperature sensor.

一例として、試料3として青色発光半導体であるGaNを評価する場合、AGE光源1としては重水素ランプに干渉フィルターを組み合わせたもの、BGE光源2としては連続発振Nd:YAGレーザー類、または波長可変のNd:YAGレーザー励起光パラメトリック発振器(OPO)、色素レーザー、Ti:サファイアレーザー等のパルス発振レーザー類を用いる。試料3からの発光は分光器4で分光後、光電子増倍管5で受光し、その時間応答波形(連続発振レーザー励起の場合はその光チョッパーによる断続に対する波形変化)がデジタルオシロスコープ6、またはボックスカー積分器7等を通してコンピュータ8に記録される。また、コンピュータ8はAGE光源1またはBGE光源2に接続されて、これらの励起光を得ることができるようになっている。   For example, when GaN, which is a blue light emitting semiconductor, is evaluated as the sample 3, the AGE light source 1 is a combination of a deuterium lamp and an interference filter, the BGE light source 2 is a continuous wave Nd: YAG laser, or a wavelength-tunable laser. Pulsed lasers such as an Nd: YAG laser excitation light parametric oscillator (OPO), a dye laser, and a Ti: sapphire laser are used. The light emitted from the sample 3 is separated by the spectroscope 4 and then received by the photomultiplier tube 5, and the time response waveform (in the case of continuous wave laser excitation, the waveform change due to the intermittent chopper) is a digital oscilloscope 6 or box. It is recorded in the computer 8 through the Kerr integrator 7 or the like. Further, the computer 8 is connected to the AGE light source 1 or the BGE light source 2 so as to obtain these excitation lights.

さらに、本発明では、試料3の温度を制御するための構成を有している。つまり、試料3に作用する冷却および加熱装置9と、この冷却および加熱装置9の温度を制御する温度制御装置10と、試料3の温度を検出する温度センサ11とを備えている。   Further, the present invention has a configuration for controlling the temperature of the sample 3. That is, a cooling and heating device 9 that acts on the sample 3, a temperature control device 10 that controls the temperature of the cooling and heating device 9, and a temperature sensor 11 that detects the temperature of the sample 3 are provided.

以下、本発明の熱励起を加えたフォトルミネッセンスによる禁制帯内準位のエネルギーの測定の実施例について説明する。   Hereinafter, an embodiment of the measurement of energy in the forbidden band level by photoluminescence with thermal excitation according to the present invention will be described.

図5は、本発明にかかるBGE照射を加えた場合の発光強度の温度依存性を示す図、図6は本発明にかかるBGE照射を加えない場合の発光強度の温度依存性と、各ピークをもたらす捕獲準位のエネルギーを示す図である。   FIG. 5 is a diagram showing the temperature dependence of the emission intensity when the BGE irradiation according to the present invention is applied, and FIG. 6 shows the temperature dependence of the emission intensity when the BGE irradiation according to the present invention is not applied and each peak. It is a figure which shows the energy of the capture level to bring.

標準的な赤色蛍光体としてY2 2 S:Eu3+が知られている。そこで、母体のY2 2 S結晶を光励起すると、励起キャリアがEu3+に移動し、Eu3+のf−f遷移により固有の赤色発光(波長626nm)を生じる。このY2 2 S:Eu3+蛍光体(4.5mol%)を15Kに冷却し、波長240nm(光子エネルギーEexc =5.17eV)のAGE光を強度0.25nW/mm2 で300sec照射して禁制帯内の捕獲準位をキャリアで満たした。 Y 2 O 2 S: Eu 3+ is known as a standard red phosphor. Therefore, when photoexcitation of Y 2 O 2 S crystal maternal excited carriers moved to Eu 3+, resulting in specific red emission (wavelength 626 nm) by f-f transition of Eu 3+. This Y 2 O 2 S: Eu 3+ phosphor (4.5 mol%) is cooled to 15 K and irradiated with AGE light having a wavelength of 240 nm (photon energy E exc = 5.17 eV) at an intensity of 0.25 nW / mm 2 for 300 seconds. And the capture level in the forbidden band was filled with the carrier.

次に、3.17K/min(K/分)の速度で60Kまで昇温し、波長1064nm(光子エネルギーEB =1.17eV)のBGE光を強度7.87mW/mm2 で照射したところ、図5に示すように、Eu3+のf−f遷移による発光強度の一時的増大が観測された。その後、BGE照射を続けながら、3.17K/min(K/分)の速度で昇温し発光強度を温度の関数として調べたところ、260K付近に次のピークが観測された。 Next, the temperature was increased to 60 K at a rate of 3.17 K / min (K / min), and BGE light having a wavelength of 1064 nm (photon energy E B = 1.17 eV) was irradiated at an intensity of 7.87 mW / mm 2 . As shown in FIG. 5, a temporary increase in emission intensity due to Eu 3+ f-f transition was observed. Thereafter, while continuing the BGE irradiation, the temperature was raised at a rate of 3.17 K / min (K / min) and the emission intensity was examined as a function of temperature, and the following peak was observed at around 260 K.

一方、同一の試料を15Kに冷却し、波長240nm(光子エネルギーEexc =5.17eV)のAGE光を強度0.25nW/mm2 で300sec照射して禁制帯内の捕獲準位をキャリアで満たした。 On the other hand, the same sample is cooled to 15 K, and AGE light with a wavelength of 240 nm (photon energy E exc = 5.17 eV) is irradiated for 300 sec at an intensity of 0.25 nW / mm 2 to fill the trap level in the forbidden band with carriers. It was.

次に、3.17K/min(K/分)の速度で300Kまで昇温したところ、少なくとも6つの発光ピークが観測された。図6に示すように、これらのうち低温側から4つの発光ピークに着目し、それらをもたらす捕獲準位からの発光を伴うキャリア放出に要するエネルギー(図1の捕獲準位1ではΔE2 =Eg −ET1、図2の捕獲準位ではΔE4 =Eg −ET2に対応するエネルギー)をε1 ,ε2 ,ε3 ,ε4 とし、それらの値を、昇温率をβ1 ,β2 の2段階に変えた測定でのピーク温度Tm1,Tm2から求めた。その結果は、ε1 =0.22eV(Tm1=62.8K,Tm2=53.7K,β1 =13K/min,β2 =0.36K/min)、ε2 =0.55eV(Tm1=107.4K,Tm2=98.1K,β1 =9.0K/min,β2 =0.5K/min)、ε3 =0.69eV(Tm1=132.9K,Tm2=121.6K,β1 =9.0K/min,β2 =0.5K/min)、ε4 =1.10eV(Tm1=192.9K,Tm2=179.7K,β1 =4.0K/min,β2 =0.33K/min)であった。 Next, when the temperature was raised to 300 K at a rate of 3.17 K / min (K / min), at least six emission peaks were observed. As shown in FIG. 6, paying attention to four emission peaks from the low temperature side among these, energy required for carrier emission accompanied by light emission from the trap level that causes them (ΔE 2 = E at the trap level 1 in FIG. 1). g− E T1 , the energy corresponding to ΔE 4 = E g −E T2 in the trap level of FIG. 2) is ε 1 , ε 2 , ε 3 , ε 4, and these values are expressed as β 1 , Β 2 was obtained from the peak temperatures T m1 and T m2 in the two-stage measurement. As a result, ε 1 = 0.22 eV (T m1 = 62.8 K, T m2 = 53.7 K, β 1 = 13 K / min, β 2 = 0.36 K / min), ε 2 = 0.55 eV (T m1 = 107.4K, T m2 = 98.1K , β 1 = 9.0K / min, β 2 = 0.5K / min), ε 3 = 0.69eV (T m1 = 132.9K, T m2 = 121 .6K, β 1 = 9.0 K / min, β 2 = 0.5 K / min), ε 4 = 1.10 eV (T m1 = 192.9 K, T m2 = 179.7 K, β 1 = 4.0 K / min, β 2 = 0.33 K / min).

ここで、60Kまで昇温した後に、BGE光(光子エネルギーEB =1.17eV)を照射した図5と照射していない図6とを比較すると、図6の発光ピークε2 (0.55eV)、ε3 (0.69eV)、ε4 (1.10eV)は、図5では検出されていないことが分かる。これは図5において照射したBGE光の光子エネルギーEB が1.17eV(>ε2 ,ε3 ,ε4 )のため、図6のε2 ,ε3 ,ε4 で示される発光ピークをもたらす捕獲準位はこのBGE照射でキャリアを全て放出してしまい、その後の昇温で十分な熱エネルギーを得ても、もはやキャリア放出が起こらないからである。また、図5で260K付近の発光ピークが得られたことから、この発光ピークをもたらす捕獲準位のキャリア放出エネルギーは1.17eV以上であることが判明する。 Here, when FIG. 5 irradiated with BGE light (photon energy E B = 1.17 eV) after heating up to 60 K is compared with FIG. 6 without irradiation, the emission peak ε 2 (0.55 eV in FIG. 6) is compared. ), Ε 3 (0.69 eV) and ε 4 (1.10 eV) are not detected in FIG. This is because the photon energy E B of the BGE light irradiated in FIG. 5 is 1.17 eV (> ε 2 , ε 3 , ε 4 ), resulting in emission peaks indicated by ε 2 , ε 3 , ε 4 in FIG. This is because the trap level releases all the carriers by this BGE irradiation, and even if sufficient thermal energy is obtained by the subsequent temperature increase, carrier emission no longer occurs. In addition, since an emission peak near 260 K is obtained in FIG. 5, it is found that the carrier emission energy at the trap level that causes this emission peak is 1.17 eV or more.

すなわち、昇温途中で照射したBGE光の光子エネルギーと、それにより消失した熱ルミネッセンスをもたらす捕獲準位のキャリア放出エネルギーとが対応しており、禁制帯内準位の挙動とキャリア捕獲、放出過程並びに発光・非発光再結合過程を総合的に観測する新たな測定手法が実証された。   That is, the photon energy of the BGE light irradiated during the temperature rise corresponds to the carrier emission energy of the trap level that causes the thermoluminescence lost by it, and the behavior of the forbidden band level and the carrier capture and emission process In addition, a new measurement technique that comprehensively observes luminescence / non-light emission recombination processes was demonstrated.

上記した実施例の具体的作用について説明する。   The specific operation of the above embodiment will be described.

発光・受光および電子材料の禁制帯エネルギー幅にも依存するが、BGEによる光励起は紫外〜可視の光子エネルギー領域で有利であり、簡便迅速な測定が可能であるが、赤外の低エネルギー領域測定はさほど容易ではない。一方、熱励起は低エネルギー領域での測定に有効だが、時間を要し精度が不十分である上にエネルギーが高くなるにつれ測定は困難となる。そこで、AGEおよびBGE光による光励起と熱励起プロセスを有機的に組み合わせることにより、試料禁制帯エネルギー幅の全エネルギー領域において、簡便かつ高精度な測定を実現し、上記課題を解決することができる。   Although it depends on the energy band width of light emission / light reception and electronic materials, BGE photoexcitation is advantageous in the ultraviolet to visible photon energy region, and simple and quick measurement is possible, but in the infrared low energy region measurement. It's not so easy. On the other hand, although thermal excitation is effective for measurement in a low energy region, it takes time and is insufficient in accuracy and becomes difficult as energy increases. Thus, by organically combining photoexcitation and thermal excitation processes using AGE and BGE light, simple and highly accurate measurement can be realized in the entire energy region of the sample forbidden band energy width, and the above problems can be solved.

さらに、2波長励起PLの利点により、禁制帯内準位として捕獲準位のみならず、他の非発光再結合準位までを一括して評価することが初めて可能となる。   Furthermore, the advantage of the two-wavelength excitation PL makes it possible for the first time to evaluate not only the trapping level but also other non-radiative recombination levels as a forbidden band level.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明の熱励起を加えたフォトルミネッセンスによる禁制帯内準位の定量的測定方法およびその装置は、禁制帯内準位の成因を明示し、その除去を通して材料組成、作製プロセス、デバイス構造等の最適化を容易とすることができる発光・受光および電子材料・デバイスの測定ツールに適している。   The method and apparatus for quantitatively measuring the level in the forbidden band by photoluminescence with thermal excitation according to the present invention clearly shows the origin of the level in the forbidden band, and through its removal, the material composition, fabrication process, device structure, etc. It is suitable for measuring tools for light emission, light reception and electronic materials and devices that can be easily optimized.

本発明にかかる2つの捕獲準位(エネルギーET1およびET2)と1つの非発光再結合準位(エネルギーENT)を持つ半導体のエネルギーバンド図である。FIG. 3 is an energy band diagram of a semiconductor having two trap levels (energy E T1 and E T2 ) and one non-radiative recombination level (energy E NT ) according to the present invention. AGE光で捕獲準位1および2に電子を捕獲させた後、図1における温度T2 まで昇温すると、捕獲準位2のみに電子が捕獲されている状態を示す説明図である。FIG. 2 is an explanatory diagram showing a state in which electrons are captured only in the trap level 2 when the electrons are trapped in the trap levels 1 and 2 by AGE light and then heated to a temperature T 2 in FIG. AGE光で全ての捕獲準位に電子を捕獲させる他に、本発明の方法により、特定のBGE光で単一の捕獲準位(たとえば光子エネルギーEexc =ET2で捕獲準位2)のみに選択的に電子を捕獲させる状態を示す説明図である。In addition to trapping electrons in all trap levels with AGE light, the method of the present invention allows only a single trap level (eg, trap level 2 with photon energy E exc = E T2 ) with a specific BGE light. It is explanatory drawing which shows the state which selectively captures an electron. 本発明の実施例を示す熱励起を加えたフォトルミネッセンスによる禁制帯内準位の測定装置(システム)の構成図である。It is a block diagram of the measuring device (system) in the forbidden band level by the photoluminescence which added the thermal excitation which shows the Example of this invention. 本発明にかかるBGE照射を加えた場合の発光強度の温度依存性を示す図である。It is a figure which shows the temperature dependence of the emitted light intensity at the time of adding BGE irradiation concerning this invention. 本発明にかかるBGE照射を加えない場合の発光強度の温度依存性と、各ピークをもたらす捕獲準位のエネルギーを示す図である。It is a figure which shows the temperature dependence of the emitted light intensity when not applying BGE irradiation concerning this invention, and the energy of the capture level which brings about each peak.

符号の説明Explanation of symbols

1 AGE光源
2 BGE光源
3 試料
4 分光器
5 光電子増倍管
6 デジタルオシロスコープ
7 ボックスカー積分器
8 コンピュータ
9 冷却および加熱装置
10 温度制御装置
11 温度センサ
DESCRIPTION OF SYMBOLS 1 AGE light source 2 BGE light source 3 Sample 4 Spectrometer 5 Photomultiplier tube 6 Digital oscilloscope 7 Boxcar integrator 8 Computer 9 Cooling and heating apparatus 10 Temperature control apparatus 11 Temperature sensor

Claims (2)

フォトルミネッセンス(PL)による禁制帯内準位の測定方法において、
(a)発光・受光および電子材料に低温下で予め光子エネルギーEexc のAGE光またはBGE光を照射して、励起キャリア(電子又は正孔)を禁制帯内の捕獲準位に捕獲させ、
(b)AGE光またはBGE光を遮断後、一定昇温率で温度を上昇させながら、捕獲準位から熱放出されたキャリアによる発光を温度の関数として観測するときに、ある中間温度で光子エネルギーEB のBGE光を照射して、照射しなければその後熱放射されたであろう捕獲エネルギーET <EB の捕獲準位のキャリアをBGEにより光励起して、一度に発光を生成させ、この後の昇温では、捕獲エネルギーET <EB の捕獲準位にキャリアは存在しないため発光は生じず、捕獲エネルギーET >EB の準位からのキャリアが熱放出される温度に達して初めて次の発光を生じさせ、
(c)前記光励起と熱励起の相反的関係から、特定の光子エネルギーEexc とEB 、あるいは相異なる複数のEexc とEB の組み合わせを利用して禁制帯内準位のエネルギーを検出することを特徴とする熱励起を加えたフォトルミネッセンスによる禁制帯内準位の測定方法。
In the method for measuring the level in the forbidden band by photoluminescence (PL),
(A) Light emission / light reception and electronic material are irradiated with AGE light or BGE light of photon energy E exc beforehand at a low temperature so that excited carriers (electrons or holes) are trapped in the trap level in the forbidden band,
(B) After blocking the AGE light or the BGE light, the photon energy at a certain intermediate temperature when observing the light emission by the carriers thermally released from the trap level as a function of temperature while increasing the temperature at a constant temperature rising rate. by irradiating BGE light E B, and photoexcitation by BGE the trap level of the carriers then have to irradiate heat radiated by will will capture energy E T <E B, to produce a light emission at a time, this At a later temperature rise, no carriers are present at the trapping level of trapping energy E T <E B , so no light emission occurs, and the carrier reaches a temperature at which the carriers from the level of trapping energy E T > E B are thermally released. For the first time,
(C) From the reciprocal relationship between photoexcitation and thermal excitation, the energy of the forbidden band level is detected using specific photon energies E exc and E B , or a combination of different E exc and E B. A method for measuring a level in a forbidden band by photoluminescence with thermal excitation.
フォトルミネッセンス(PL)による禁制帯内準位の測定装置において、
(a)AGE光を照射するAGE光源と、
(b)BGE光を照射するBGE光源と、
(c)試料としての発光材料に作用する冷却および加熱装置と、
(d)該冷却および加熱装置の温度を制御する温度制御装置と、
(e)試料の温度を検出するセンサとを備え、
(f)発光・受光および電子材料に低温下で予め光子エネルギーEexc のAGE光またはBGE光を照射して、励起キャリア(電子又は正孔)を禁制帯内の捕獲準位に捕獲させ、AGE光またはBGE光を遮断後、前記センサ及び温度制御装置により、一定昇温率で温度を上昇させながら、捕獲準位から熱放出されたキャリアによる発光を温度の関数として観測するときに、ある中間温度で光子エネルギーEB のBGE光を照射すると、照射しなければその後熱放射されたであろう捕獲エネルギーET <EB の捕獲準位のキャリアをBGEにより光励起させ、一度に発光を生じさせ、この後の昇温では、捕獲エネルギーET <EB の捕獲準位にキャリアは存在しないため発光は生じず、捕獲エネルギーET >EB の準位からのキャリアが熱放出される温度に達して初めて次の発光を生じさせ、この光励起と熱励起の相反的関係から特定の光子エネルギーEexc とEB 、あるいは相異なる複数のEexc とEB の組み合わせを利用して、禁制帯内準位のエネルギーを測定することを特徴とする熱励起を加えたフォトルミネッセンスによる禁制帯内準位の測定装置。
In the measuring device of the level in the forbidden band by photoluminescence (PL),
(A) an AGE light source that emits AGE light;
(B) a BGE light source that emits BGE light;
(C) a cooling and heating device acting on the luminescent material as a sample;
(D) a temperature control device for controlling the temperature of the cooling and heating device;
(E) a sensor for detecting the temperature of the sample,
(F) Light emission, light reception, and electronic material are irradiated with AGE light or BGE light of photon energy E exc in advance at a low temperature so that excited carriers (electrons or holes) are trapped in the trap level in the forbidden band. When the light emitted from the trapped level is observed as a function of temperature while the temperature is increased at a constant temperature increase rate by the sensor and the temperature control device after blocking light or BGE light, When BGE light of photon energy E B is irradiated at a temperature, the carriers at the trap energy level E T <E B that would otherwise have been thermally radiated if not irradiated are photoexcited by BGE, causing light emission at once. , a Atsushi Nobori after this, <trapping level in the carrier does not occur are emission due to the absence, captured energy E T of E B> carrier of heat emission from the level of E B capture energy E T That allowed for the first time caused the following emission reached temperature, using a combination of a specific photon energy E exc and E B or a plurality of different E exc and E B, the reciprocal relationship between the excitation and thermal excitation, A device for measuring levels in a forbidden band by photoluminescence with thermal excitation, characterized by measuring the energy of the level in the forbidden band.
JP2003286624A 2003-08-05 2003-08-05 Method and apparatus for measuring levels in forbidden bands by photoluminescence with thermal excitation Expired - Lifetime JP3743802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286624A JP3743802B2 (en) 2003-08-05 2003-08-05 Method and apparatus for measuring levels in forbidden bands by photoluminescence with thermal excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286624A JP3743802B2 (en) 2003-08-05 2003-08-05 Method and apparatus for measuring levels in forbidden bands by photoluminescence with thermal excitation

Publications (2)

Publication Number Publication Date
JP2005055307A true JP2005055307A (en) 2005-03-03
JP3743802B2 JP3743802B2 (en) 2006-02-08

Family

ID=34365864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286624A Expired - Lifetime JP3743802B2 (en) 2003-08-05 2003-08-05 Method and apparatus for measuring levels in forbidden bands by photoluminescence with thermal excitation

Country Status (1)

Country Link
JP (1) JP3743802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040816A (en) * 2013-08-23 2015-03-02 株式会社Screenホールディングス Inspection apparatus and inspection method
CN112014359A (en) * 2020-08-27 2020-12-01 中国电子科技集团公司第十一研究所 Indium-arsenic-antimony component determination method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040816A (en) * 2013-08-23 2015-03-02 株式会社Screenホールディングス Inspection apparatus and inspection method
CN112014359A (en) * 2020-08-27 2020-12-01 中国电子科技集团公司第十一研究所 Indium-arsenic-antimony component determination method and device

Also Published As

Publication number Publication date
JP3743802B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
Singh et al. Stimulated-emission cross section and fluorescent quantum efficiency of Nd 3+ in yttrium aluminum garnet at room temperature
Poolton et al. Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars
Grim et al. Nonlinear quenching of densely excited states in wide-gap solids
Hu et al. Carrier multiplication in a single semiconductor nanocrystal
Hartel et al. Intrinsic nonradiative recombination in ensembles of silicon nanocrystals
JP4334927B2 (en) Inspection method and inspection apparatus for semiconductor laser diode chip
Varney et al. Energy levels of exciton traps in yttrium aluminum garnet single crystals
US4259574A (en) Microanalysis by pulse laser emission spectroscopy
Htoon et al. Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy
Fasoli et al. Optical methods for the evaluation of the thermal ionization barrier of lanthanide excited states in luminescent materials
Van Dao et al. Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots
Trinkler et al. Localised transitions in luminescence of AlN ceramics
Brodu et al. Exciton-phonon coupling in InP quantum dots with ZnS and (Zn, Cd) Se shells
JP3743802B2 (en) Method and apparatus for measuring levels in forbidden bands by photoluminescence with thermal excitation
Senanayake et al. Electron trap liberation in MgF2 doped with Yb2+ using a two-color excitation experiment
Popov et al. Time-resolved luminescence of CsI Tl crystals excited by pulsed electron beam
RU2578051C1 (en) Method of determining interlayer electron relaxation time in semiconductor quantum dots based on first type heterojunction
McClelland et al. Photoacoustic characterization of cw argon‐ion laser irradiation of Ge
Walser et al. Dynamics of photoexcited states and charge carriers in organic thin films: Alq3
Meuret Applications of photon bunching in cathodoluminescence
Bounouar et al. Extraction of the homogeneous linewidth of the spectrally diffusing line of a CdSe/ZnSe quantum dot embedded in a nanowire
Zheng et al. Exciton and biexciton recombination in semiconductor nanocrystals
Grivickas et al. Free-carrier absorption and luminescence decay of porous silicon
Shay et al. Cathodoluminescence of ZnSiP2 and CdSnP2
JP3862964B2 (en) Method and apparatus for measuring level in forbidden band by two-wavelength excitation photoluminescence

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Ref document number: 3743802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term