【0001】
【発明の属する技術分野】
本発明は、密閉型電動圧縮機および冷凍・空調装置にかかり、特に、圧縮機の配管構造に関する。省電力、低振動、低騒音、高信頼性の密閉型電動圧縮機および冷凍・空調装置を提供するのに好適なものである。この冷凍・空調は、例えば冷蔵庫、エアコンディショナー、除湿機、給湯機、カーエアコン等である。
【0002】
【従来の技術】
従来の圧縮機の例として、図9に縦形の圧縮機の例を、図10、図11、図12、図13に横形圧縮機の例を示す。
【0003】
図9に示す従来の縦形の圧縮機は、冷凍・空調システム(例えばヒートポンプ式給湯機など)の基台に密閉容器1の下部を固定する構造であり、支持部材6を密閉容器1の下部付近に配置し、防振するための弾性支持部材7(ゴムまたはバネ)により支持されている。この圧縮機は、重心Gが圧縮機の支持点の中心Rよりも上方に位置している。さらに、圧縮機と冷凍サイクルを接続する接続配管2は密閉容器1の上端または円筒面に配置されている。
【0004】
次に図10、図11に示す従来の横形の圧縮機は、冷凍・空調システム(例えば給湯機など)の基台に密閉容器1の円筒面下部を固定する構造であり、密閉容器1の円筒面下部に支持部材6を配置し、防振するための弾性支持部材7(ゴムまたはバネ)により支持されている。さらに圧縮機と冷凍サイクルを接続する接続配管2は、密閉容器1の両側端面部または円筒面に配置されている。
【0005】
また、図12、図13に示す従来の横形の圧縮機は、密閉容器1の両側端面部の中心軸線の高さ位置に支持部材6を配置したものである。上記中心軸線は、密閉容器1に内蔵された電動機部の回転軸(図示せず)の軸心に略等しい。さらに、圧縮機と冷凍サイクルを接続する接続配管2は、密閉容器1の両側端面部の上部または円筒面に配置されている。
【0006】
上記図10、図11および図12、図13における圧縮機の重心Gは一般的に、ほぼ密閉容器の円筒の中心軸線上、即ち電動機部の回転軸の軸心上にある。図10、図11は圧縮機の支持点の中心Rが重心Gよりも下方にある場合の例であり、図12、図13は圧縮機の支持点の中心Rが重心Gとほぼ一致する場合を示した例である。
【0007】
図12、図13に示すように、圧縮機の支持点の中心Rが重心G、即ち電動機部の回転軸の軸心とほぼ一致する場合は、支持点における振動が実質的に単純な上下方向にできるため、支持構造を単純化しやすく、振動の振幅を小さくしやすい。この種のものとしては、例えば実公平2−16070号公報が挙げられる。
【0008】
【特許文献1】
実公平2−16070号公報
【0009】
【発明が解決しようとする課題】
上記図9に示す圧縮機では、重心Gが圧縮機の支持点Rよりも上方にあるため、圧縮機が振動した場合に、支持点の中心Rと重心Gの距離を腕の長さとするモーメントが圧縮機に作用し、圧縮機の上部ほど振動の振幅が大きくなる傾向にある。さらに、圧縮機と冷凍サイクルを接続する接続配管2は振動の支点にほぼ相当する支持点の中心Rから遠くの接続配管ほど振動の振幅が大きくなり、接続される冷凍サイクルに圧縮機の振動が伝達されやすかった。
【0010】
図10、図11に示す圧縮機では、支持点の中心Rが重心G、即ち電動機部の回転軸の軸心より下方にあると、圧縮機が回転して重心Gを中心に回転方向に振動した場合は、支持点の中心Rと重心Gの距離を腕の長さとするモーメントが支持点に作用する。ここで、支持点は固定されているため、弾性支持部材7の弾性によって、回転方向の振動をある程度吸収して小さくできる。しかし、接続配管2の設けられた圧縮機の上部は支持されていないため、上記支持点に作用したモーメントの反作用が働いて、支持点の中心Rを略中心として圧縮機が図11に示すように点線で左右に振動する。この振動の振幅は、支持点の中心Rを略中心にしているために、圧縮機の上部ほど大きくなる。したがって、接続配管2が密閉容器1の上部に配置している場合は、接続配管2が大きく振幅することとなり、接続される冷凍サイクルに圧縮機の振動が伝達されやすかった。
【0011】
図12、図13に示すように、圧縮機の支持点の中心Rが重心G、即ち電動機部の回転軸の軸心とほぼ一致する場合は、図11のような反作用によって接続配管2が設けられた圧縮機の上部が大きく振幅することは生じにくい。したがって、図10、図11の例よりも接続配管2が設けられた圧縮機の上部の振幅を小さくしやすい。しかし、図13に示されたものは、接続配管2が支持点の中心Rと大きく離れているため、支持点の中心Rを中心とする接続配管2の位置で回転方向の振幅は、小さくできるとはいえない。
【0012】
以上のように、上記従来の圧縮機では、接続配管から振動の伝播による冷凍サイクルの振動の増加、ならびに騒音の増加をもたらす要因となっていた。さらに、接続配管からの振動の伝播に起因する冷凍サイクルの配管および冷凍サイクル全体の振動が、配管接合部等に繰り返し応力を発生させ、接合部の劣化にいたる可能性があった。
【0013】
本発明の目的は、圧縮機の運転に伴って生じる振動を、冷媒配管を接続する接合配管部で小さくなるようにして、冷媒配管の振動および冷媒配管から冷凍サイクル全体への伝播を小さくして、振動および騒音を小さくすることができる圧縮機及び冷凍・空調装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するための第1手段として、本発明の密閉型電動圧縮機は、密閉容器内に収納した電動要素およびこの電動要素と回転軸で連結された圧縮要素から構成された圧縮機において、上記密閉容器に取付けられて冷凍サイクルの冷媒配管が接続される複数の接続配管の固有振動数を前記冷媒配管の固有振動数よりも高く、かつ複数の前記接続配管と前記冷媒配管の接続部が前記圧縮機が持つ振動モードの節となる位置と略同一の高さとすることを特徴とすることにより達成される。
【0015】
また、上記目的を達成するための第2手段として、本発明の密閉型電動圧縮機は、密閉容器内に収納した電動要素およびこの電動要素と回転軸で連結された圧縮要素から構成された圧縮機において、上記密閉容器に取付けられて冷凍サイクルの冷媒配管が接続される複数の接続配管の固有振動数を前記冷媒配管の固有振動数よりも高く、かつ複数の前記接続配管と前記冷媒配管の接続部が前記圧縮機の前記回転軸の軸心上と略同一とすることを特徴とすることにより達成される。
【0016】
上記手段により、圧縮機の運転に伴って生じる振動が、冷媒配管を接続する接合配管部で小さくなり、この接続配管に接続される冷媒配管に伝播される振動エネルギが抑制されるため、配管振動および配管にかかるストレスの低減が可能である。
【0017】
【発明の実施の形態】
図1は縦形の密閉型電動圧縮機の一実施例を示す。図1の縦形の密閉型電動圧縮機は、密閉容器1内に電動要素10、圧縮要素11及びこの両者10、11を連結する回転軸14を配置して構成されている。密閉容器1内の底部には潤滑油12が貯溜する油溜り部13が形成されている。ここで圧縮要素11は、スクロール型、ロータリ型の何れかの構造になっており、ロータリ型においては2段圧縮方式であってもよい。なお、ここでのロータリ型とはローラとベーンの一体構造も含まれている。
【0018】
次に密閉型電動圧縮機と冷凍サイクルの配管系統について説明する。密閉型電動圧縮機には冷凍サイクル本体の冷媒配管3(3a、3b)に接続される接続配管2が密閉容器1の円筒面に取付けられており、一方に吸込パイプ2a、他方に吐出パイプ2bで形成されている。接続配管2は密閉容器1の壁面を近接するように折曲され、接続配管2と冷媒配管3との接合部である配管接合部5まで延出されている。配管接合部5の位置は、密閉容器における振動の振幅が最小となる部分(以下振動モードの節F)と略同一の高さに位置している。また、接続配管2および冷媒配管3の配管の固有振動数については、接続配管2の固有振動数を冷媒配管3の固有振動数よりも高くしている。配管接続2の固有振動数を高くすることについては、冷媒配管3の材質が銅(冷凍サイクルにおいて一般的な材質)で構成されている場合、接続配管2そのものの材質(例えばSUS管、炭素鋼鋼管)、接続配管2の形状(例えば、配管径、配管肉厚の変更)、または接続配管2を密閉型電動圧縮機に直接固定することで対応している。
【0019】
まず、圧縮要素11の圧縮動作について説明する。電動要素10に通電されて回転子15が回転すると、圧縮機構部が公転運動するように回転軸14に偏心作用を設けているために、回転子15と共に回転軸14が回転することにより、冷媒の吸込パイプ2aから圧縮要素11に冷媒ガスを吸込み、圧縮機構部において容積変化を繰り返し、冷媒ガスを圧縮して冷媒の吐出パイプ2bから密閉容器1外に吐出される。
【0020】
上記圧縮動作により、密閉型電動圧縮機は回転子15の回転および圧縮要素11の圧縮動作の反作用として回転軸14に回転振動が生じ、この回転振動は圧縮要素11を介して密閉容器1に伝播されて、この密閉容器1に周方向の振動が発生する。このため、密閉型電動圧縮機の回転軸14の軸方向には、密閉容器1における振動の振幅が最小となる部分である節Fと振動の振幅が最大となる部分である腹Hが発生することとなる。
【0021】
上記構造により、密閉型電動圧縮機が振動した場合に、密閉容器1からの接続配管2に振動が伝播されるが、接続配管2は冷媒配管3よりも固有振動数を高くし、かつ密閉容器1の振動モードの節となる節Fと略同一の高さから接続配管2と配管接合部5を延出しているために、密閉型電動圧縮機の回転振動時に伴う配管接合部5の位置での振動の振幅が小さくなり、冷媒配管3の振動および冷媒配管3から冷凍サイクル全体に伝播される振動エネルギが抑えられ、配管振動や配管にかかるストレスが低減することができる。なお、図2、図3に示す別の密閉型電動圧縮機において、節Fは圧縮要素11の構造、回転子15のアンバランス量などにより発生する位置が異なるが、本発明は節Fがどの場所にあっても同様の効果が得られる。また上記実施例は、縦形の密閉型電動圧縮機について記しているが、横形の密閉型電動圧縮機に対しても同様の効果が得られる。
【0022】
次に図4に示す横形の密閉型電動圧縮機の一実施例を説明する。図4の横形の密閉型電動圧縮機は、密閉容器1内に電動要素10、圧縮要素11及びこの両者10、11を連結する回転軸14を配置して構成されている。密閉容器1内の底部には潤滑油12が貯溜する油溜り部13が形成されている。ここで圧縮要素11は、スクロール型、ロータリ型の何れかの構造になっており、ロータリ型においては2段圧縮方式であってもよい。なお、ここでのロータリ型とはローラとベーンの一体構造も含まれている。
【0023】
次に密閉型電動圧縮機と冷凍サイクルの配管系統について説明する。密閉型電動圧縮機には冷凍サイクル本体の冷媒配管3(3a、3b)に接続される接続配管2が密閉容器1の円筒面に取付けられており、一方に吸込パイプ2a、他方に吐出パイプ2bで形成されている。接続配管2は密閉容器1の壁面を近接するように折曲され、接続配管2と冷媒配管3との接合部である配管接合部5まで延出されている。配管接合部5の位置は、密閉容器における回転軸の軸心上と略同一になるように設置している。また、接続配管2および冷媒配管3の配管の固有振動数については、接続配管2の固有振動数を冷媒配管3の固有振動数よりも高くしている。
【0024】
まず、圧縮要素11の圧縮動作について説明する。電動要素10に通電されて回転子15が回転すると、圧縮機構部が公転運動するように回転軸14に偏心作用を設けているために、回転子15と共に回転軸14が回転することにより、冷媒の吸込パイプ2aから圧縮要素11に冷媒ガスを吸込み、圧縮機構部において容積変化を繰り返し、冷媒ガスを圧縮して冷媒の吐出パイプ2bから密閉容器1外に吐出される。
【0025】
上記圧縮動作により、密閉型電動圧縮機は回転子15の回転および圧縮要素11の圧縮動作の反作用として回転軸14に回転振動が生じ、この回転振動は圧縮要素11を介して密閉容器1に伝播されて、この密閉容器1に周方向の振動が発生する。また、回転子15および圧縮要素11には、回転子15のアンバランス量が存在し、このアンバランス量が回転することにより、密閉容器1の外周方向へ働く遠心力が部分的に発生し、この遠心力によって、回転軸14の周りを密閉型電動圧縮機は旋回運動する。また、回転子15の回転運動および圧縮要素11の回転運動の反作用として、回転子16および密閉容器1が回転軸14を中心に反作用の大きさに応じた僅かな角度分だけ自転運動する。これらの旋回運動と自転運動が繰り返されることによって、密閉型電動圧縮機には回転軸14の軸心を中心として振動が発生することとなる。
【0026】
上記構造により、密閉型電動圧縮機が振動した場合に、密閉容器1からの接続配管2に振動が伝播されるが、接続配管2は冷媒配管3よりも固有振動数を高くし、かつ密閉容器1の回転軸14の軸心上と略同一になるよう接続配管2と配管接合部5を延出しているために、密閉型電動圧縮機の回転振動時に伴う配管接合部5の位置での振動の振幅が小さくなり、冷媒配管3の振動および冷媒配管3から冷凍サイクル全体に伝播される振動エネルギが抑えられ、配管振動や配管にかかるストレスが低減することができる。なお、本発明は例えば図6、図7、図8に示すように、密閉容器1の回転軸14の軸心上と略同一になるよう接続配管2と配管接合部5を延出する構成であれば同様の効果が得られる。また支持部材6が密閉容器1のどの位置に取付けられていても同様の効果が得られる。
【0027】
【発明の効果】
以上詳細に説明したように、本発明によれば、運転条件によって圧縮機の振動レベルが増大した場合でも、冷凍サイクル本体へ振動の伝搬を抑制し、圧縮機から突起される配管の信頼性を十分に確保することができ、省電力、低振動、低騒音、高信頼性の密閉型電動圧縮機を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る縦形の密閉型電動圧縮機の断面図。
【図2】本発明の一実施形態に係る別の縦形の密閉型電動圧縮機の断面図。
【図3】本発明の一実施形態に係る別の縦形の密閉型電動圧縮機の断面図。
【図4】本発明の一実施形態に係る横形の密閉型電動圧縮機の断面図。
【図5】図4のAから矢視図。
【図6】本発明の一実施形態に係る別の横形の密閉型電動圧縮機の断面図。
【図7】図6のA矢視図。
【図8】図6のB矢視図。
【図9】従来の縦形の密閉型電動圧縮機を示す図。
【図10】従来の横形の密閉型電動圧縮機を示す図。
【図11】図10のA矢視図。
【図12】従来の横形の密閉型電動圧縮機を示す図。
【図13】図12のA矢視図。
【符号の説明】
1…密閉容器、2…接続配管、3…冷媒配管、5…配管接合部、6…支持部材、7…弾性支持部材、10…電動要素、11…圧縮要素、12…潤滑油、13…油溜り部、14…回転軸、15…回転子、16…固定子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hermetic electric compressor and a refrigeration / air conditioning apparatus, and more particularly to a piping structure of a compressor. It is suitable for providing a power-saving, low vibration, low noise, highly reliable hermetic electric compressor and refrigeration / air-conditioning apparatus. The refrigeration / air conditioning is, for example, a refrigerator, an air conditioner, a dehumidifier, a water heater, a car air conditioner, or the like.
[0002]
[Prior art]
As an example of a conventional compressor, FIG. 9 shows an example of a vertical compressor, and FIGS. 10, 11, 12, and 13 show examples of a horizontal compressor.
[0003]
The conventional vertical compressor shown in FIG. 9 has a structure in which the lower part of the hermetic container 1 is fixed to the base of a refrigeration / air conditioning system (for example, a heat pump type water heater), and the support member 6 is located near the lower part of the hermetic container 1. And is supported by an elastic support member 7 (rubber or spring) for vibration isolation. In this compressor, the center of gravity G is located above the center R of the support point of the compressor. Furthermore, the connection pipe 2 that connects the compressor and the refrigeration cycle is disposed on the upper end or the cylindrical surface of the sealed container 1.
[0004]
Next, the conventional horizontal compressor shown in FIGS. 10 and 11 has a structure in which the lower part of the cylindrical surface of the sealed container 1 is fixed to the base of a refrigeration / air conditioning system (for example, a water heater). A support member 6 is disposed at the lower part of the surface and is supported by an elastic support member 7 (rubber or spring) for vibration isolation. Further, the connecting pipe 2 that connects the compressor and the refrigeration cycle is disposed on both side end surfaces or the cylindrical surface of the sealed container 1.
[0005]
In addition, the conventional horizontal compressor shown in FIGS. 12 and 13 is configured such that the support member 6 is disposed at the height position of the central axis of both side end surface portions of the sealed container 1. The central axis is substantially equal to the axis of the rotating shaft (not shown) of the electric motor unit built in the sealed container 1. Furthermore, the connecting pipe 2 that connects the compressor and the refrigeration cycle is disposed on the upper part or the cylindrical surface of the both end surfaces of the sealed container 1.
[0006]
In FIG. 10, FIG. 11, FIG. 12, and FIG. 13, the center of gravity G of the compressor is generally substantially on the center axis of the cylinder of the sealed container, that is, on the axis of the rotating shaft of the motor unit. 10 and 11 show examples in which the center R of the support point of the compressor is below the center of gravity G, and FIGS. 12 and 13 show the case where the center R of the support point of the compressor substantially coincides with the center of gravity G. This is an example.
[0007]
As shown in FIGS. 12 and 13, when the center R of the support point of the compressor is substantially coincident with the center of gravity G, that is, the axis of the rotating shaft of the motor unit, the vibration at the support point is substantially simple in the vertical direction. Therefore, it is easy to simplify the support structure and reduce the amplitude of vibration. Examples of this type include Japanese Utility Model Publication No. 2-16070.
[0008]
[Patent Document 1]
Japanese Utility Model Publication 2-16070 [0009]
[Problems to be solved by the invention]
In the compressor shown in FIG. 9, since the center of gravity G is above the support point R of the compressor, when the compressor vibrates, the moment having the distance between the center R of the support point and the center of gravity G as the length of the arm. Acts on the compressor, and the upper part of the compressor tends to increase the amplitude of vibration. Further, the connecting pipe 2 connecting the compressor and the refrigeration cycle has a larger vibration amplitude as the connecting pipe is farther from the center R of the support point, which is substantially equivalent to the fulcrum of vibration, and the compressor vibration is generated in the connected refrigeration cycle. It was easy to be transmitted.
[0010]
In the compressor shown in FIGS. 10 and 11, when the center R of the support point is below the center of gravity G, that is, below the axis of the rotating shaft of the motor unit, the compressor rotates and vibrates in the rotational direction around the center of gravity G. In this case, a moment having the distance between the center R of the support point and the center of gravity G as the length of the arm acts on the support point. Here, since the support point is fixed, the vibration in the rotational direction can be absorbed and reduced to some extent by the elasticity of the elastic support member 7. However, since the upper part of the compressor provided with the connecting pipe 2 is not supported, the reaction of the moment acting on the support point works, and the compressor is substantially centered on the center R of the support point as shown in FIG. Vibrates left and right with a dotted line. Since the amplitude of this vibration is substantially centered at the center R of the support point, the amplitude of the vibration increases toward the top of the compressor. Therefore, when the connection pipe 2 is arranged at the upper part of the sealed container 1, the connection pipe 2 has a large amplitude, and the vibration of the compressor is easily transmitted to the connected refrigeration cycle.
[0011]
As shown in FIGS. 12 and 13, when the center R of the support point of the compressor substantially coincides with the center of gravity G, that is, the axis of the rotating shaft of the motor unit, the connecting pipe 2 is provided by the reaction as shown in FIG. It is unlikely that the upper portion of the compressor is greatly swung. Therefore, it is easier to reduce the amplitude of the upper part of the compressor provided with the connection pipe 2 than in the examples of FIGS. However, in the case shown in FIG. 13, since the connection pipe 2 is far away from the center R of the support point, the rotation direction amplitude can be reduced at the position of the connection pipe 2 around the center R of the support point. That's not true.
[0012]
As described above, in the above-described conventional compressor, the increase in vibration of the refrigeration cycle due to the propagation of vibration from the connection pipe and the increase in noise have been factors. Furthermore, vibrations in the refrigeration cycle piping and the entire refrigeration cycle resulting from the propagation of vibration from the connecting piping may repeatedly generate stress in the pipe joint and the like, leading to deterioration of the joint.
[0013]
The object of the present invention is to reduce the vibration generated during the operation of the compressor at the joint pipe portion connecting the refrigerant pipe, thereby reducing the vibration of the refrigerant pipe and the propagation from the refrigerant pipe to the entire refrigeration cycle. Another object of the present invention is to provide a compressor and a refrigeration / air-conditioning apparatus that can reduce vibration and noise.
[0014]
[Means for Solving the Problems]
As a first means for achieving the above object, a hermetic electric compressor according to the present invention is an electric element housed in a hermetic container and a compressor constituted by a compression element connected to the electric element by a rotating shaft. The natural frequency of the plurality of connection pipes attached to the sealed container and connected to the refrigerant pipes of the refrigeration cycle is higher than the natural frequency of the refrigerant pipes, and the connection parts of the plurality of connection pipes and the refrigerant pipes Is achieved by having the height substantially the same as the position of the vibration mode node of the compressor.
[0015]
As a second means for achieving the above object, a hermetic electric compressor according to the present invention includes a motor element housed in a hermetic container and a compression element connected to the motor element and a rotating shaft. In the machine, the natural frequency of the plurality of connection pipes attached to the sealed container and connected to the refrigerant pipe of the refrigeration cycle is higher than the natural frequency of the refrigerant pipe, and the plurality of the connection pipes and the refrigerant pipes This is achieved by the fact that the connecting portion is substantially the same as the axial center of the rotary shaft of the compressor.
[0016]
By the above means, the vibration caused by the operation of the compressor is reduced in the joint pipe portion connecting the refrigerant pipe, and the vibration energy transmitted to the refrigerant pipe connected to the connection pipe is suppressed, so the pipe vibration In addition, the stress applied to the piping can be reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a vertical hermetic electric compressor. The vertical hermetic electric compressor of FIG. 1 is configured by disposing an electric element 10, a compression element 11, and a rotating shaft 14 that couples both 10 and 11 in the hermetic container 1. An oil reservoir 13 for storing lubricating oil 12 is formed at the bottom of the sealed container 1. Here, the compression element 11 has a scroll type or rotary type structure, and the rotary type may be a two-stage compression method. Here, the rotary type includes an integrated structure of a roller and a vane.
[0018]
Next, the sealed electric compressor and the piping system of the refrigeration cycle will be described. In the hermetic electric compressor, a connection pipe 2 connected to the refrigerant pipe 3 (3a, 3b) of the refrigeration cycle main body is attached to the cylindrical surface of the hermetic container 1, and one side is a suction pipe 2a and the other side is a discharge pipe 2b. It is formed with. The connection pipe 2 is bent so as to be close to the wall surface of the sealed container 1, and extends to a pipe joint 5 that is a joint between the connection pipe 2 and the refrigerant pipe 3. The position of the pipe joint portion 5 is located at substantially the same height as a portion where the amplitude of vibration in the sealed container is minimized (hereinafter referred to as a vibration mode node F). Further, regarding the natural frequencies of the pipes of the connection pipe 2 and the refrigerant pipe 3, the natural frequency of the connection pipe 2 is set higher than the natural frequency of the refrigerant pipe 3. For increasing the natural frequency of the pipe connection 2, when the material of the refrigerant pipe 3 is made of copper (a common material in the refrigeration cycle), the material of the connection pipe 2 itself (for example, SUS pipe, carbon steel) Steel pipe), the shape of the connection pipe 2 (for example, change of pipe diameter and pipe thickness), or the connection pipe 2 is directly fixed to the hermetic electric compressor.
[0019]
First, the compression operation of the compression element 11 will be described. When the electric element 10 is energized and the rotor 15 rotates, the rotating shaft 14 is provided with an eccentric action so that the compression mechanism part revolves. The refrigerant gas is sucked into the compression element 11 from the suction pipe 2a, the volume change is repeated in the compression mechanism section, and the refrigerant gas is compressed and discharged from the refrigerant discharge pipe 2b to the outside of the sealed container 1.
[0020]
As a result of the compression operation, the hermetic electric compressor generates a rotational vibration in the rotating shaft 14 as a reaction of the rotation of the rotor 15 and the compression operation of the compression element 11, and this rotational vibration propagates to the sealed container 1 through the compression element 11. As a result, circumferential vibrations are generated in the sealed container 1. For this reason, in the axial direction of the rotary shaft 14 of the hermetic electric compressor, a node F that is a portion where the amplitude of vibration in the hermetic container 1 is minimum and a belly H that is a portion where the amplitude of vibration is maximum are generated. It will be.
[0021]
With the above structure, when the hermetic electric compressor vibrates, the vibration is propagated from the hermetic container 1 to the connection pipe 2, but the connection pipe 2 has a higher natural frequency than the refrigerant pipe 3 and the hermetic container. Since the connection pipe 2 and the pipe joint 5 are extended from the height approximately the same as the node F which is the node of the vibration mode 1, the pipe joint 5 is located at the time of rotational vibration of the hermetic electric compressor. , The vibration energy of the refrigerant pipe 3 and the vibration energy transmitted from the refrigerant pipe 3 to the entire refrigeration cycle are suppressed, and the pipe vibration and the stress applied to the pipe can be reduced. 2 and 3, the node F has different positions depending on the structure of the compression element 11, the unbalance amount of the rotor 15, and the like. The same effect can be obtained even in places. Moreover, although the said Example has described about the vertical hermetic electric compressor, the same effect is acquired also with respect to a horizontal hermetic electric compressor.
[0022]
Next, an embodiment of a horizontal hermetic electric compressor shown in FIG. 4 will be described. The horizontal hermetic electric compressor shown in FIG. 4 is configured by disposing an electric element 10, a compression element 11, and a rotating shaft 14 that couples both 10 and 11 in the hermetic container 1. An oil reservoir 13 for storing lubricating oil 12 is formed at the bottom of the sealed container 1. Here, the compression element 11 has a scroll type or rotary type structure, and the rotary type may be a two-stage compression method. Here, the rotary type includes an integrated structure of a roller and a vane.
[0023]
Next, the sealed electric compressor and the piping system of the refrigeration cycle will be described. In the hermetic electric compressor, a connection pipe 2 connected to the refrigerant pipe 3 (3a, 3b) of the refrigeration cycle main body is attached to the cylindrical surface of the hermetic container 1, and one side is a suction pipe 2a and the other side is a discharge pipe 2b. It is formed with. The connection pipe 2 is bent so as to be close to the wall surface of the sealed container 1, and extends to a pipe joint 5 that is a joint between the connection pipe 2 and the refrigerant pipe 3. The position of the pipe joint portion 5 is set so as to be substantially the same as the axial center of the rotating shaft in the sealed container. Further, regarding the natural frequencies of the pipes of the connection pipe 2 and the refrigerant pipe 3, the natural frequency of the connection pipe 2 is set higher than the natural frequency of the refrigerant pipe 3.
[0024]
First, the compression operation of the compression element 11 will be described. When the electric element 10 is energized and the rotor 15 rotates, the rotating shaft 14 is provided with an eccentric action so that the compression mechanism part revolves. The refrigerant gas is sucked into the compression element 11 from the suction pipe 2a, the volume change is repeated in the compression mechanism section, and the refrigerant gas is compressed and discharged from the refrigerant discharge pipe 2b to the outside of the sealed container 1.
[0025]
As a result of the compression operation, the hermetic electric compressor generates a rotational vibration in the rotating shaft 14 as a reaction of the rotation of the rotor 15 and the compression operation of the compression element 11, and this rotational vibration propagates to the sealed container 1 through the compression element 11. As a result, circumferential vibrations are generated in the sealed container 1. Further, the rotor 15 and the compression element 11 have an unbalance amount of the rotor 15, and the centrifugal force acting in the outer circumferential direction of the sealed container 1 is partially generated by the rotation of the unbalance amount. By this centrifugal force, the hermetic electric compressor rotates around the rotating shaft 14. Further, as a reaction between the rotational movement of the rotor 15 and the rotational movement of the compression element 11, the rotor 16 and the sealed container 1 rotate about the rotation shaft 14 by a slight angle corresponding to the magnitude of the reaction. By repeating these turning motion and rotation motion, vibration is generated around the axis of the rotary shaft 14 in the hermetic electric compressor.
[0026]
With the above structure, when the hermetic electric compressor vibrates, the vibration is propagated from the hermetic container 1 to the connection pipe 2, but the connection pipe 2 has a higher natural frequency than the refrigerant pipe 3 and the hermetic container. Since the connection pipe 2 and the pipe joint 5 are extended so as to be substantially the same as the axial center of the rotary shaft 14 of 1, vibration at the position of the pipe joint 5 accompanying rotational vibration of the hermetic electric compressor Is reduced, vibration of the refrigerant pipe 3 and vibration energy transmitted from the refrigerant pipe 3 to the entire refrigeration cycle are suppressed, and pipe vibration and stress on the pipe can be reduced. In the present invention, for example, as shown in FIGS. 6, 7, and 8, the connection pipe 2 and the pipe joint 5 are extended so as to be substantially the same as the axial center of the rotary shaft 14 of the sealed container 1. If there is, the same effect can be obtained. In addition, the same effect can be obtained regardless of where the support member 6 is attached to the sealed container 1.
[0027]
【The invention's effect】
As described above in detail, according to the present invention, even when the vibration level of the compressor increases depending on the operating conditions, the propagation of vibration to the refrigeration cycle main body is suppressed, and the reliability of the pipe protruding from the compressor is improved. It is possible to provide a hermetic electric compressor that can be sufficiently secured and has low power consumption, low vibration, low noise, and high reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a vertical hermetic electric compressor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of another vertical hermetic electric compressor according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of another vertical hermetic electric compressor according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a horizontal hermetic electric compressor according to an embodiment of the present invention.
5 is an arrow view from A in FIG. 4;
FIG. 6 is a cross-sectional view of another horizontal hermetic electric compressor according to an embodiment of the present invention.
7 is a view taken in the direction of arrow A in FIG.
8 is a view taken in the direction of arrow B in FIG. 6;
FIG. 9 is a diagram showing a conventional vertical hermetic electric compressor.
FIG. 10 is a diagram showing a conventional horizontal hermetic electric compressor.
FIG. 11 is a view taken in the direction of arrow A in FIG.
FIG. 12 is a diagram showing a conventional horizontal hermetic electric compressor.
13 is a view taken in the direction of arrow A in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sealed container, 2 ... Connection piping, 3 ... Refrigerant piping, 5 ... Pipe junction part, 6 ... Support member, 7 ... Elastic support member, 10 ... Electric element, 11 ... Compression element, 12 ... Lubricating oil, 13 ... Oil Reservoir, 14 ... rotating shaft, 15 ... rotor, 16 ... stator.