JP2005054200A - Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal - Google Patents

Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal Download PDF

Info

Publication number
JP2005054200A
JP2005054200A JP2003205277A JP2003205277A JP2005054200A JP 2005054200 A JP2005054200 A JP 2005054200A JP 2003205277 A JP2003205277 A JP 2003205277A JP 2003205277 A JP2003205277 A JP 2003205277A JP 2005054200 A JP2005054200 A JP 2005054200A
Authority
JP
Japan
Prior art keywords
metal
molten
inclusions
active
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205277A
Other languages
Japanese (ja)
Inventor
Kyoko Wasai
京子 和才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003205277A priority Critical patent/JP2005054200A/en
Publication of JP2005054200A publication Critical patent/JP2005054200A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing inclusions and impurities in metal using inexpensive surfactant components, and to provide deoxidization and desulfurization methods. <P>SOLUTION: Solidified metal including inclusions is immersed into molten active metal so as to be fused, and the inclusions in the fused metal are moved to the side of the active metal by an interfacial tension gradient produced between the fused metal and the active metal so as to be removed. Alternatively, impurities made into solid solution in the metal are precipitated by heat treatment for the metal into inclusions, thereafter, the inclusions are immersed into molten active metal so as to be fused, and the inclusions in the fused metal are moved to the side of the active metal by an interfacial tension gradient produced between the fused metal and the active metal so as to be removed. In the deoxidization method for metal, these methods are used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタル中異相粒子(以下、介在物と称する。)を除去する方法に関し、さらには、この介在物除去方法を用いるメタル中不純物の除去方法およびメタルの脱酸、脱硫方法に関するものである。
【0002】
【従来の技術】
従来、メタル中の介在物(異相粒子)を除去し或はその生成を抑える手段として、メタル中の介在物やメタルの凝固温度域で介在物を生成する溶鉄等メタル中の不純物をスラグ中に捕捉するか或は、溶鉄といった溶融メタル中へArガス等のガスを吹き込むことによって介在物を浮上させて分離・除去する方法が採られている(たとえば、非特許文献1,2参照)。かかるメタル中の介在物の除去或はその生成防止方法は、多くの手間とコストを要するにもかかわらず、凝固メタル中には種種の介在物や不純物が残存している。また、電磁力や旋回流を利用した、溶鋼からの介在物の除去方法も検討されている(たとえば、非特許文献3,4参照)。しかし、この先行技術も未だ実用化には至っていない。さらに、一旦凝固したメタル中の介在物の除去手段は、これまでに存しない。
【0003】
【非特許文献1】
日本学術振興会製鋼第19委員会鋼中非金属介在物小委員会「鋼中非金属介在物研究の最近の展開」(平成6年9月)
【0004】
【非特許文献2】
日本鉄鋼協会高温プロセス部会超清浄鋼研究会「超清浄鋼研究の最近の展開」(平成11年5月20日)
【0005】
【非特許文献3】
日本鉄鋼協会高温プロセス部会革新的高効率混合・分離リアクター創出研究会報告
【0006】
【非特許文献4】
日本鉄鋼協会高温プロセス部会高度電磁力利用マテリアル・プロセッシング研究会報告
【0007】
しかしながら、上記各文献に開示されているメタル中介在物除去手段は、何れも実用には至っていない。このように、溶鋼からの介在物の除去は、鉄鋼業界にとって重要な問題であり、多くの研究者がその実現に心血を注いでいるけれども、未だ完全なメタル中介在物除去手段は確立されていない。
【0008】
一方、溶鋼中の酸素を除去する手段としてアルミニウムが主として用いられており、マンガン、シリコン、カルシウム、マグネシウムが補助的に用いられる。
しかしながら、これら金属元素を用いる脱酸は、アルミナやアルミナスピネルなどの非金属介在物を鋼中に残存せしめる。非金属介在物を生成させない溶鋼の脱酸手段は、現在の処、存しない。
【0009】
【発明が解決しようとする課題】
本発明は、上記従来技術における問題を解決したメタル中の介在物除去手段を提供することを目的とする。また、本発明の他の目的は、メタル中の不純物を熱処理によって介在物として析出させ、これを前記介在物除去手段によって除去する方法を提供することにある。本発明のさらに他の目的は、メタル中の不純物を、メタル酸化物または硫化物中に溶解させ、上記介在物除去手段によって除去する方法を提供することにある。本発明のさらに他の目的は、メタルの脱酸、脱硫方法を提供することである。
【0010】
【課題を解決するための手段】
上記課題を解決するための、請求項1に記載の発明は、介在物を含む凝固メタルを、溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の介在物を活性メタル側に移動せしめて除去するようにしたメタル中介在物の除去方法である。この発明によれば、従来の介在物除去手段とは原理的に全く異なる方法によって、どのような種類の介在物をも除去できる。
【0011】
請求項2に記載の発明は、メタル中に固溶している不純物を、メタルの熱処理によって析出させて介在物とした後、溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の介在物を活性メタル側に移動せしめて除去するようにしたメタル中不純物の除去方法である。この発明によるときは、簡潔なプロセスでメタル中不純物の除去が可能となる。
【0012】
請求項3に記載の発明は、溶融メタルに界面活性成分を添加して凝固させた後熱処理を施してメタルの酸化物又は硫化物を生成させ、該メタルの酸化物又は硫化物等にメタル中の介在物又は不純物を溶解させた後、該凝固メタルを溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の、介在物および/または不純物を溶解したメタルの酸化物または硫化物を活性メタル側に移動せしめて除去するようにしたメタル中介在物および/または不純物の除去方法である。
【0013】
請求項4に記載の発明は、溶融メタルに界面活性成分を添加して凝固させた後熱処理を施してメタルの酸化物を生成させ、該メタルの酸化物にメタル中の硫黄を溶解させた後、該凝固メタルを溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の、硫黄を溶解したメタルの酸化物を活性メタル側に移動せしめて除去するようにしたことを特徴とするメタル中硫黄の除去方法である。
【0014】
請求項5に記載の発明は、酸素を含有する溶鉄を凝固させて含有酸素をFeOとして生成せしめ、該凝固鉄を溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中のFeOを活性メタル側に移動せしめて除去するようにした溶鉄の脱酸方法である。
この発明によるときは、金属アルミニウムなどの添加による脱酸におけるような、非金属介在物の生成が全くない。
【0015】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に則して説明する。
本発明のメタル中介在物の除去方法は、介在物を含む凝固メタルを、溶融状態にある、酸素、硫黄といった界面活性成分を含んでいるメタル(以下、活性メタルと称する。)中に浸漬、融解させて融解したメタルと活性メタルの間に発生する界面張力勾配によって、介在物を界面張力の小さな活性メタルの方へ移動させ、融解メタルから取り除く方法である。
【0016】
而して、常温にまで冷却したメタルを融解させるには高いコストを必要とする。従って、本発明の、メタル中介在物除去方法を実施するに際しては、メタルの精錬プロセスにおいてこれを行う。即ち、溶融状態にある未精製メタルの凝固直後或は未精製メタルを不純物の析出に適した温度にまで降温させた後かつ、高温状態にあるときに溶融状態にある活性メタル中に浸漬、融解させるプロセスを採る。
【0017】
活性メタルは特別に作成する必要はなく、溶融状態にあるメタルに酸素、硫黄といった界面活性成分を含有せしめればよい。即ち、被処理溶融メタル中に界面活性成分を添加し、そのメタルの一部分を一旦凝固させた後、再び界面活性成分を含む被処理溶融メタル中に戻して融解して介在物或は析出した不純物を介在物を界面張力の小さな活性メタルの方へ移動させ、融解メタルから取り除く。然る後、その部分を再度凝固させる。
【0018】
従来技術においては、転炉で精錬された、酸素を高濃度に含有している溶鋼に対して脱酸を含む様々な精錬技術が適用される。これに対して本発明においては、転炉からの溶鋼を一旦凝固させ、固相の鋼を溶鋼中にフィードバックして融解させ、そのとき生じる界面張力勾配によって介在物除去、脱酸、脱硫等の精錬操作を一段階で行う。
【0019】
界面張力勾配は、介在物を含む凝固メタルを溶融状態にある活性メタル中に浸漬し融解させることによって生じる。従って、凝固メタルを活性メタル中にどのように浸漬させるかによって、水平方向或は鉛直方向いずれの方向に界面張力勾配が生じるかが決まる。たとえば、凝固メタルを活性メタルの底の部分に浸漬させれば、鉛直方向において界面張力勾配が生じる。鉛直方向に界面張力勾配が生じれば、介在物がメタルよりも比重が小さい場合には浮力が働き、介在物を界面張力勾配と相俟って効果的に上方に移動させることができる。
【0020】
界面張力勾配を鉛直方向に生じさせ、介在物を上方に浮上させるときは、介在物微粒子が除去されたメタル部分のみを下方の低温部に移動させて凝固させる。
次いで、介在物を含んでいる新たな凝固メタルを上方に移動させ、活性メタル中に浸漬、融解させる。このような操作を繰り返すことによって、介在物の除去とクリーンとなったメタルの凝固を連続的に行う。その際、上方に浮上した介在物の除去ならびに活性メタル中への酸素、硫黄といった界面活性成分の補充を定期的に行う。
【0021】
界面張力勾配を鉛直方向に生じさせ、介在物を上方に浮上させる場合、精製されたメタル部分を横(水平)方向の部位に準備された低温部に移動させ、凝固させる方法もある。その場合、同時に、介在物を含んでいる凝固メタルを逆の方向から活性メタル中へ浸漬、融解させながら介在物の除去を行い、凝固時に上部の活性メタル中へ混入することを防ぐ。この場合も同様な操作の繰り返しを行うことによってメタル中介在物の除去および凝固を連続的に遂行することができる。
【0022】
凝固メタルが薄膜である場合、或は板状凝固メタル表面の介在物のみを除去する場合、薄膜或は板状凝固メタルの上部表面に接した一部分に溶融活性メタルのプールを設け、溶融メタルプールに接している薄膜或は板状凝固メタルの表面部分を前記溶融メタルプールの熱で融解させ、介在物を溶融メタルプール上部に移動、除去せしめる。この溶融メタルプールを薄膜或は板状凝固メタル表面上で移動させることにより薄膜或は板状凝固メタル表面全ての介在物を除去できる。
【0023】
介在物の比重がメタルのそれよりも大である場合は、界面張力勾配を水平方向に生じさせるようにすれば介在物は側面下方に集積する。この部分を取り除き、介在物が除去されたメタル部分を優先的に凝固させる。
【0024】
介在物の比重がメタルのそれよりも大であって、介在物が集積した側面下方部分を取り除くこと、或は介在物が除去されたメタル部分を界面活性成分を混入させることなく凝固させることが困難である場合は、介在物を溶解し得る比重の小さな別の介在物たとえばメタル酸化物や硫化物などを生成させ、介在物をこれに溶解させる。これによって比重の大きな介在物を小さな比重のものに変え、鉛直方向の界面張力勾配下に、介在物を浮力と併せ効果的に上方に移動させる。前記比重の小さな別の介在物としては、メタル酸化物が適している。その場合、界面活性成分としても酸素を用いるとよい。
【0025】
【実施例】
本発明は、次に示すように、従来ほとんど考慮が払われていなかった高酸素濃度における溶鉄の挙動に着目し、溶融メタルの脱酸、脱硫を行うようにしたものである。
(1)溶鉄は2300ppm(1600℃)という高濃度の酸素を溶解し得るが、固体鉄の酸素溶解度は低く、Kubacewskiによれば、最も低いもので、γ鉄の1ppm以下、最も高いものでδ鉄の300ppm程度である。しかし、このKubacewskiによるδ鉄の300ppmという酸素溶解度も、経験から判断すれば高過ぎる可能性があり、δ鉄の酸素溶解度はさらに低いと考えられる。
(2)溶鉄と固体鉄間の大きな酸素溶解度差により、高酸素濃度の溶鉄を凝固させると、凝固鉄中に多量の液体FeOが生成する(FeOの融点:1371℃)。このFeO中に鉄中の硫黄が溶解しやすく、この硫黄を溶解したFeOを除去することができれば、溶鉄の脱酸素、脱硫黄を効果的に遂行することができる。
(3)転炉から出鋼された直後の溶鉄は多量の酸素を含有しており、上記凝固鉄中の多量の液体FeOを精錬に利用することができれば、脱酸、脱硫等多くの精錬プロセスを削減できる。
【0026】
上記3点を考慮して、図1に示す装置を用いて実験を行った。図1に示す実験装置は、ランタンクロマイト発熱体10によって加熱されるアルミナ炉心管11と、その下部取り付けられた水冷ボックス15によって構成されている。アルミナ炉心管11の上下には、水冷ジャケット9が取り付けられ、アルミナ炉心管11上部は上部水冷ジャケット9によってシールされている。この上部水冷ジャケット9を通して、アルミナ坩堝8(内径:9mm、外径:13mm、長さ:1000mm)、熱電対用保護管7がアルミナ炉心管11内に挿入されている。アルミナ炉心管11と上下の水冷ジャケット9は、それぞれO−リング5によってシールされている。
【0027】
上部水冷ジャケット9と、アルミナ坩堝8および熱電対用保護管7の間もO−リング5によってシールされている。アルミナ坩堝8上部には、試料添加装置2がO−リング5を介して接続され、試料添加装置2には圧力計1、アルゴンガス導入口3、およびアルゴンガス排出口4がそれぞれ取り付けられている。アルミナ坩堝8は、実験前の真空ポンプによる排気、その後のアルゴンガスの導入によって実験中は99.999%の高純度アルゴンガス雰囲気に保たれる。熱電対6はB−タイプであり、アルミナ炉心管11中心部均熱帯の測温を行う。アルミナ炉心管11下部の水冷ジャケット9は、水冷ボックス15に接続している。アルミナ炉心管11内部の昇温時或は高温保持時にはシャッター12を閉じ、水冷ボックス15内への熱輻射を防止する。
【0028】
アルミナ坩堝8内の試料を水冷する直前に、冷却水入口13から水冷ボックス15内に水を導入して冷却水出口14まで水を満たし、冷却水入口13および冷却水出口14のバルブを閉じた後、アルミナ坩堝8を下降させアルミナ坩堝8下端を水冷ボックス15内の冷却水中に浸漬させて試料の水冷を行う。なお、実験中、水冷ボックス15に付設されているアルゴンガス導入口3からアルゴンガスを導入するとともにアルミナ炉心管11上部のアルゴンガス排出口4から排気し、水冷ボックス15およびアルミナ炉心管11の内部空間が高純度アルゴンガス雰囲気に保たれている。
【0029】
実験は、以下のようにして遂行された。即ち、アルミナ坩堝8内に装入された50mm高さの溶鉄の下端が溶鉄の融点となるようにして溶鉄を保持した後、5mmだけアルミナ坩堝8の位置を降下させて低温部に移動させて降下させた部分を凝固させて5分間保持した。その後、アルミナ坩堝8を2.5mm上昇させ、一旦凝固させた部分を再融解して5分間保持し、次いで、アルミナ坩堝8を5mm降下させて凝固させるという操作を繰り返して行い、最終的に試料を30mm凝固させた後、試料全体を水冷した。
【0030】
図2に、図1に示す実験装置におけるアルミナ炉心管11の高さ方向中心点から鉛直方向下方へ5mm間隔の位置における温度を示す。図2に示すように、アルミナ炉心管11の高さ方向中心点の温度が1580℃であり、下方へいくに従って温度が漸次低くなっている。
【0031】
実験試料を装入されたアルミナ坩堝8の下端がアルミナ炉心管11の高さ方向中心点よりも上方となるようにアルミナ坩堝8の位置をセットし、アルミナ炉心管11内部が昇温された後も試料が融解しないようにしてアルミナ炉心管11内部を昇温し、アルミナ炉心管11の高さ方向中心点の温度が1580℃となるまで昇温した後、アルミナ坩堝8を降下させてアルミナ炉心管11の高さ方向中心点に位置させて5分間保持してアルミナ坩堝8内の試料(5cm高さ)全体を融解した。
【0032】
その後、アルミナ坩堝8をさらに降下させ、アルミナ坩堝8の下端が鉄の融点となる位置に30分間保持した。この時点で試料を水冷して分析した処、試料は、図2でみて縦方向にほぼ均一な濃度、800ppmおよび700ppmを示した。上記のように、アルミナ坩堝8内の試料を融解しアルミナ坩堝8を降下させ、アルミナ坩堝8の下端が鉄の融点となる位置に30分間保持した後、アルミナ坩堝8を5mm降下させて低温部に移動、降下させた部分を凝固させて5分間保持した。然る後、アルミナ坩堝8を2.5mm上昇させ、一旦凝固させた部分を再融解して5分間保持し、次いで、アルミナ坩堝8を5mm降下させて凝固させるという操作を繰り返して行い、最終的に試料を30mm凝固させた。この時点のアルミナ坩堝8の下端位置がプロセスの最終位置である。その後、アルミナ坩堝8を水冷ボックス15内に移動させ、試料全体を水冷した。
【0033】
水冷した凝固鉄試料を横断面において4分割しさらに、長さ方向において6mm間隔で切断して、酸素、硫黄の分析を行った結果を図3に示す。図3において、横軸は試料下端部からの距離(mm)を、縦軸は酸素、硫黄の濃度(mass ppm)を示す。約800ppmおよび700ppmを含む溶鉄試料で上記実験を行った結果、図3に示すように、試料下部30mmの部分の固溶酸素は56ppmであり、大きく減少した。また、固溶硫黄は、最低値355ppmであって半減している。また、試料上部の硫黄濃度は上昇しており、硫黄がFeO中に溶解しFeOと共に浮上したことが分かる。
【0034】
試料下部30mmの部分の酸素濃度は、当初約800ppmであったものが56ppmと大きく減少している。これは、硫黄を溶解したFeOが凝固時に生成し、鉄母相が再融解するときに浮力および界面張力勾配による力を受け試料上部に浮上したためであると考えられる。而して、試料の30mmよりも上の部分の酸素、硫黄の濃度が急激に上昇している。
【0035】
以上の実験結果から、次のことが明らかになった。
即ち、溶鉄中の高い酸素溶解度にもかかわらず、再融解した凝固鉄中のFeOは溶鉄中に溶け込むことなく溶鉄上部に浮上した。SEMによる観察結果から、FeO介在物の大きさは数μmであり、Stokesの式から計算したFeOの浮上速度はきわめて遅く、FeOの浮上はFeOの浮力だけでは説明できない。一方、溶鉄上部の酸素濃度は800ppmであるのに対し、再融解した鉄の酸素濃度は、FeO分を除けばきわめて低い。従って、溶鉄の上部と下部で酸素濃度の濃淡が生じ、この界面活性成分である酸素の濃淡によって界面張力勾配が生じたと考えられる。界面張力勾配下にある微粒子は、界面活性成分方向への力を受ける。
このため、FeOが溶鉄上部に向かう力を受け速やかに上昇したと判断される。
【0036】
本発明のメタル中介在物及び不純物の除去方法ならびにメタルの脱酸、脱硫方法は、ゾーンメルティングによるメタルの高純化法とは異なる。高酸素濃度の溶鉄は凝固の際、最終的に偏晶点に到達して凝固するため凝固鉄中にFeOが生成する。而して、本発明による酸素濃度の低減は、FeOという鉄とは異相の介在物の浮上によるものであって、ゾーンメルティングによるメタルの高純化とは原理的に異なる。また、高純化対象メタルの昇降を何度も繰り返しているけれども、一旦凝固した部分に着目してみると、その後の一度の融解と再凝固だけで酸素濃度が低減しており、メタルの純度向上のため何度も溶解、凝固を繰り返すゾーンメルティングとは操作方法も異なっている。本発明が対象としているFeOという鉄とは異相の介在物はゾーンメルティング法では取り除けない。このように、本発明は、ゾーンメルティング法では取り除けない不純物、介在物の除去方法として有効である。
【0037】
【発明の効果】
本発明は、介在物(異相微粒子)を含んだ凝固メタルを界面活性成分を含有するメタル中へ浸漬、融解させることによって介在物を界面活性成分リッチな方向へ移動させメタル母相から除去するという、従来にない発想の介在物除去方法である。本発明によれば、界面活性成分として安価な酸素、硫黄等を用いることができ、メタルの精錬コストを大きく低減せしめ得る。
【0038】
請求項2に記載の発明によれば、凝固メタル中の不純物を熱処理によって析出させ、請求項1に記載の発明によって低コスト下に除去することができる。
【0039】
請求項3に記載の発明によるときは、メタルの脱硫を行うに際し、母相メタル中に生成させた酸化物或は硫化物中に不純物を溶解させて請求項1に記載の発明によって容易に除去することができる。この発明によれば、不純物除去のために他の物質を添加する必要がない。
【0040】
請求項4に記載の発明によれば、溶融メタルの脱酸を行うに際して、金属アルミニウムなどの添加による脱酸におけるような、非金属介在物の生成が全くない。
【図面の簡単な説明】
【図1】本発明の実施例において用いた装置の縦断面図
【図2】図1に示す実験装置におけるアルミナ炉心管11の高さ方向中心点から鉛直方向下方へ5mm間隔の位置における温度を示す縦断面図
【図3】本発明の一実施例によって得られた試料の酸素および硫黄の濃度分布を示すグラフ
【符号の説明】
1 圧力計
2 試料添加装置
3 アルゴンガス導入口
4 アルゴンガス排出口
5 O−リング
6 熱電対
7 熱電対保護管
8 アルミナ坩堝
9 水冷ジャケット
10 ランタンクロマイト発熱体
11 アルミナ炉心管
12 シャッター
13 冷却水入口
14 冷却水出口
15 水冷ボックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing foreign phase particles in metal (hereinafter referred to as inclusions), and further relates to a method for removing impurities in metal and a method for deoxidation and desulfurization of metal using this inclusion removal method. is there.
[0002]
[Prior art]
Conventionally, as a means of removing inclusions (heterophasic particles) in metal or suppressing their formation, impurities in the metal such as inclusions in the metal and molten iron that generate inclusions in the solidification temperature range of the metal are contained in the slag. A method has been employed in which inclusions are floated and separated and removed by blowing a gas such as Ar gas into a molten metal such as molten iron (for example, see Non-Patent Documents 1 and 2). Although this method of removing inclusions or preventing their formation requires a lot of labor and cost, various inclusions and impurities remain in the solidified metal. Moreover, the removal method of the inclusion from molten steel using an electromagnetic force or a swirl flow is also examined (for example, refer nonpatent literatures 3 and 4). However, this prior art has not yet been put into practical use. Furthermore, there has been no means for removing inclusions in the once solidified metal.
[0003]
[Non-Patent Document 1]
Japan Society for the Promotion of Science, 19th Committee of Steel, Nonmetallic Inclusions Subcommittee, “Recent Development of Nonmetallic Inclusions in Steel” (September 1994)
[0004]
[Non-Patent Document 2]
Japan Iron and Steel Institute High Temperature Process Subcommittee, Ultra Clean Steel Research Group “Recent Developments in Ultra Clean Steel Research” (May 20, 1999)
[0005]
[Non-Patent Document 3]
Japan Iron and Steel Institute High-temperature Process Committee
[Non-Patent Document 4]
Japan Iron and Steel Institute High Temperature Process Subcommittee Report on Advanced Electromagnetic Force Utilization Material Processing [0007]
However, none of the metal inclusion removal means disclosed in the above documents has been put into practical use. In this way, the removal of inclusions from molten steel is an important issue for the steel industry, and many researchers are devoted to its realization, but there are still complete means for removing inclusions in metal. Absent.
[0008]
On the other hand, aluminum is mainly used as a means for removing oxygen in molten steel, and manganese, silicon, calcium, and magnesium are used supplementarily.
However, deoxidation using these metal elements leaves non-metallic inclusions such as alumina and alumina spinel in the steel. There is currently no deoxidation means for molten steel that does not generate non-metallic inclusions.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a means for removing inclusions in a metal that solves the above-described problems in the prior art. Another object of the present invention is to provide a method for precipitating impurities in the metal as inclusions by heat treatment and removing them by the inclusion removing means. Still another object of the present invention is to provide a method of dissolving impurities in a metal in a metal oxide or sulfide and removing them by the inclusion removal means. Still another object of the present invention is to provide a metal deoxidation and desulfurization method.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a solidified metal containing inclusions is immersed and melted in a molten active metal, and an interfacial tension gradient generated between the molten metal and the active metal. In this method, inclusions in the metal are removed by moving the inclusions in the molten metal to the active metal side. According to the present invention, any kind of inclusions can be removed by a method completely different from the conventional inclusion removal means.
[0011]
According to the second aspect of the present invention, the impurities dissolved in the metal are precipitated by heat treatment of the metal to form inclusions, which are then immersed and melted in the molten active metal, the molten metal and the active In this method, impurities in the metal are removed by moving inclusions in the molten metal to the active metal side due to an interfacial tension gradient generated between the metals. According to the present invention, impurities in the metal can be removed by a simple process.
[0012]
According to the third aspect of the present invention, a surface active component is added to a molten metal and solidified, followed by heat treatment to generate a metal oxide or sulfide, and the metal oxide or sulfide is contained in the metal. After the inclusions or impurities are dissolved, the solidified metal is immersed and melted in the molten active metal, and inclusions and / or in the molten metal are generated by an interfacial tension gradient generated between the molten metal and the active metal. Alternatively, it is a method for removing inclusions and / or impurities in a metal in which an oxide or sulfide of a metal in which impurities are dissolved is moved to the active metal side to be removed.
[0013]
In the invention according to claim 4, after adding a surface active component to the molten metal and solidifying it, heat treatment is performed to form a metal oxide, and sulfur in the metal is dissolved in the metal oxide. The solidified metal is immersed and melted in the molten active metal, and the oxide of the molten metal in the molten metal is moved to the active metal side by the interfacial tension gradient generated between the molten metal and the active metal. This is a method for removing sulfur in a metal, which is characterized by being removed at least.
[0014]
According to the fifth aspect of the present invention, the molten iron containing oxygen is solidified to produce the contained oxygen as FeO, the solidified iron is immersed and melted in a molten active metal, and the molten metal and the active metal are sandwiched. This is a method for deoxidizing molten iron in which FeO in the molten metal is moved to the active metal side to be removed by the generated interfacial tension gradient.
According to the present invention, there is no generation of non-metallic inclusions as in deoxidation by adding metallic aluminum or the like.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described according to preferred embodiments thereof.
In the method for removing inclusions in a metal according to the present invention, a solidified metal containing inclusions is immersed in a molten metal containing surface active components such as oxygen and sulfur (hereinafter referred to as active metal). In this method, inclusions are moved toward an active metal having a low interfacial tension and removed from the molten metal by an interfacial tension gradient generated between the melted metal and the active metal.
[0016]
Therefore, high cost is required to melt the metal cooled to room temperature. Therefore, when carrying out the method for removing inclusions in metal according to the present invention, this is performed in the metal refining process. In other words, immediately after solidification of the unpurified metal in the molten state or after the unrefined metal is cooled to a temperature suitable for the precipitation of impurities and when it is in a high temperature state, it is immersed and melted in the active metal in the molten state. Take the process of
[0017]
The active metal does not need to be specially prepared, and a surface active component such as oxygen or sulfur may be contained in the molten metal. That is, the surface active component is added to the molten metal to be treated, and a part of the metal is once solidified, and then returned to the molten metal to be treated containing the surface active component to melt and inclusions or precipitated impurities. Is moved to the active metal having a low interfacial tension and removed from the molten metal. After that, the part is solidified again.
[0018]
In the prior art, various refining techniques including deoxidation are applied to molten steel containing a high concentration of oxygen refined in a converter. On the other hand, in the present invention, the molten steel from the converter is once solidified, and the solid-phase steel is fed back into the molten steel and melted, and inclusion removal, deoxidation, desulfurization, etc. are caused by the interfacial tension gradient generated at that time. Perform the refining operation in one step.
[0019]
The interfacial tension gradient is generated by immersing and melting a solidified metal containing inclusions in an active metal in a molten state. Therefore, it is determined whether the interfacial tension gradient is generated in the horizontal direction or the vertical direction depending on how the solidified metal is immersed in the active metal. For example, if the solidified metal is immersed in the bottom portion of the active metal, an interfacial tension gradient occurs in the vertical direction. If an interfacial tension gradient occurs in the vertical direction, buoyancy works when the inclusion has a specific gravity smaller than that of the metal, and the inclusion can be effectively moved upward in combination with the interfacial tension gradient.
[0020]
When an interfacial tension gradient is generated in the vertical direction and the inclusions are lifted upward, only the metal portion from which the inclusion fine particles have been removed is moved to the lower low temperature portion and solidified.
Next, a new solidified metal containing inclusions is moved upward and immersed and melted in the active metal. By repeating such an operation, inclusions are removed and the solidified metal is continuously solidified. At that time, the inclusions floating upward are removed and the active metal such as oxygen and sulfur is replenished periodically.
[0021]
When an interfacial tension gradient is generated in the vertical direction and the inclusions float upward, there is also a method in which the refined metal portion is moved to a low-temperature portion prepared in a lateral (horizontal) direction portion and solidified. In this case, at the same time, inclusions are removed while the solidified metal containing inclusions are immersed and melted in the active metal from the opposite direction to prevent mixing into the upper active metal during solidification. Also in this case, by repeating the same operation, inclusions in the metal can be removed and solidified continuously.
[0022]
When the solidified metal is a thin film, or when only inclusions on the surface of the plate-like solidified metal are to be removed, a pool of molten active metal is provided at a part in contact with the upper surface of the thin-film or plate-like solidified metal. The surface portion of the thin film or plate-like solidified metal in contact with the molten metal is melted by the heat of the molten metal pool, and the inclusions are moved to and removed from the upper part of the molten metal pool. By moving the molten metal pool on the thin film or plate-like solidified metal surface, all inclusions on the thin film or plate-like solidified metal surface can be removed.
[0023]
When the specific gravity of the inclusion is greater than that of the metal, the inclusion accumulates below the side surface if an interfacial tension gradient is generated in the horizontal direction. This part is removed, and the metal part from which the inclusion is removed is preferentially solidified.
[0024]
The specific gravity of the inclusion is greater than that of the metal, and the lower side portion where the inclusion is accumulated can be removed, or the metal portion from which the inclusion has been removed can be solidified without mixing the surface active component. If it is difficult, another inclusion having a small specific gravity capable of dissolving the inclusion, such as a metal oxide or sulfide, is generated, and the inclusion is dissolved therein. Thus, inclusions having a large specific gravity are changed to those having a small specific gravity, and the inclusions are effectively moved upward together with buoyancy under the interfacial tension gradient in the vertical direction. A metal oxide is suitable as another inclusion having a small specific gravity. In that case, oxygen may be used as a surface active component.
[0025]
【Example】
As described below, the present invention focuses on the behavior of molten iron at a high oxygen concentration, which has hardly been considered in the past, and performs deoxidation and desulfurization of molten metal.
(1) Molten iron can dissolve oxygen at a high concentration of 2300 ppm (1600 ° C.), but solid iron has low oxygen solubility, and according to Kubacewski, it is the lowest, 1 ppm or less of γ-iron, the highest being δ About 300 ppm of iron. However, the oxygen solubility of 300 ppm of δ iron by Kubasewski may also be too high based on experience, and the oxygen solubility of δ iron is considered to be even lower.
(2) Due to a large difference in oxygen solubility between molten iron and solid iron, when molten iron having a high oxygen concentration is solidified, a large amount of liquid FeO is generated in the solidified iron (melting point of FeO: 1371 ° C.). If the sulfur in the iron is easily dissolved in the FeO and the FeO dissolved in the sulfur can be removed, the deoxidation and desulfurization of the molten iron can be effectively performed.
(3) The molten iron immediately after being output from the converter contains a large amount of oxygen, and if a large amount of liquid FeO in the solidified iron can be used for refining, many refining processes such as deoxidation and desulfurization can be performed. Can be reduced.
[0026]
Considering the above three points, an experiment was performed using the apparatus shown in FIG. The experimental apparatus shown in FIG. 1 is composed of an alumina core tube 11 heated by a lanthanum chromite heating element 10 and a water cooling box 15 attached to the lower part thereof. A water cooling jacket 9 is attached above and below the alumina core tube 11, and the upper part of the alumina core tube 11 is sealed by the upper water cooling jacket 9. Through this upper water cooling jacket 9, an alumina crucible 8 (inner diameter: 9 mm, outer diameter: 13 mm, length: 1000 mm) and a thermocouple protection tube 7 are inserted into the alumina core tube 11. The alumina core tube 11 and the upper and lower water cooling jackets 9 are respectively sealed by O-rings 5.
[0027]
The space between the upper water cooling jacket 9, the alumina crucible 8 and the thermocouple protection tube 7 is also sealed by the O-ring 5. A sample addition device 2 is connected to the upper portion of the alumina crucible 8 via an O-ring 5, and a pressure gauge 1, an argon gas introduction port 3, and an argon gas discharge port 4 are attached to the sample addition device 2. . The alumina crucible 8 is maintained in a 99.999% high-purity argon gas atmosphere during the experiment by evacuation by a vacuum pump before the experiment and subsequent introduction of argon gas. The thermocouple 6 is a B-type and measures the temperature of the soaking zone in the center of the alumina core tube 11. The water cooling jacket 9 below the alumina core tube 11 is connected to a water cooling box 15. The shutter 12 is closed when the temperature inside the alumina furnace core tube 11 is increased or when the temperature is maintained, thereby preventing thermal radiation into the water cooling box 15.
[0028]
Immediately before water cooling the sample in the alumina crucible 8, water was introduced from the cooling water inlet 13 into the water cooling box 15 to fill the cooling water outlet 14, and the valves of the cooling water inlet 13 and the cooling water outlet 14 were closed. Thereafter, the alumina crucible 8 is lowered and the lower end of the alumina crucible 8 is immersed in the cooling water in the water cooling box 15 to cool the sample with water. During the experiment, argon gas was introduced from the argon gas inlet 3 attached to the water cooling box 15 and exhausted from the argon gas outlet 4 at the top of the alumina core tube 11, and the inside of the water cooling box 15 and the alumina core tube 11 was exhausted. The space is kept in a high purity argon gas atmosphere.
[0029]
The experiment was performed as follows. That is, after holding the molten iron so that the lower end of the molten iron of 50 mm height inserted in the alumina crucible 8 becomes the melting point of the molten iron, the position of the alumina crucible 8 is lowered by 5 mm and moved to the low temperature part. The lowered part was solidified and held for 5 minutes. Thereafter, the alumina crucible 8 is raised by 2.5 mm, the once solidified portion is re-melted and held for 5 minutes, and then the alumina crucible 8 is lowered by 5 mm and solidified to repeat the process. After solidifying 30 mm, the entire sample was water-cooled.
[0030]
FIG. 2 shows temperatures at 5 mm intervals downward in the vertical direction from the center point in the height direction of the alumina core tube 11 in the experimental apparatus shown in FIG. As shown in FIG. 2, the temperature at the center point in the height direction of the alumina core tube 11 is 1580 ° C., and the temperature gradually decreases as it goes downward.
[0031]
After setting the position of the alumina crucible 8 so that the lower end of the alumina crucible 8 charged with the experimental sample is above the center point in the height direction of the alumina core tube 11, the temperature inside the alumina core tube 11 is raised. Also, the temperature inside the alumina core tube 11 was raised so that the sample would not melt, and the temperature was raised until the temperature at the center point in the height direction of the alumina core tube 11 reached 1580 ° C., then the alumina crucible 8 was lowered to lower the alumina core. The entire sample (5 cm height) in the alumina crucible 8 was melted by being held at the center point in the height direction of the tube 11 for 5 minutes.
[0032]
Thereafter, the alumina crucible 8 was further lowered and held at a position where the lower end of the alumina crucible 8 became the melting point of iron for 30 minutes. When the sample was analyzed by cooling with water at this time, the sample showed almost uniform concentrations, 800 ppm O and 700 ppm S in the vertical direction as seen in FIG. As described above, the sample in the alumina crucible 8 is melted and the alumina crucible 8 is lowered, and the lower end of the alumina crucible 8 is held for 30 minutes at a position where the melting point of iron is reached. The part moved and lowered to the solidified position was solidified and held for 5 minutes. Thereafter, the alumina crucible 8 is raised by 2.5 mm, the once solidified portion is re-melted and held for 5 minutes, and then the alumina crucible 8 is lowered by 5 mm and solidified repeatedly. The sample was solidified to 30 mm. The lower end position of the alumina crucible 8 at this time is the final position of the process. Thereafter, the alumina crucible 8 was moved into the water cooling box 15 to cool the entire sample with water.
[0033]
The water-cooled solidified iron sample was divided into four in the cross section and further cut at intervals of 6 mm in the length direction, and the results of analysis of oxygen and sulfur are shown in FIG. In FIG. 3, the horizontal axis indicates the distance (mm) from the lower end of the sample, and the vertical axis indicates the oxygen and sulfur concentrations (mass ppm). As a result of conducting the above experiment with a molten iron sample containing about 800 ppm O and 700 ppm S , as shown in FIG. 3, the solid solution oxygen in the lower 30 mm portion of the sample was 56 ppm, which was greatly reduced. Further, the solid solution sulfur is halved at a minimum value of 355 ppm. In addition, it can be seen that the sulfur concentration in the upper part of the sample is increased, and sulfur is dissolved in FeO and floated together with FeO.
[0034]
Oxygen concentration in the portion of the sample the lower 30mm are those originally was about 800 ppm O are greatly reduced with 56 ppm O. This is thought to be because FeO in which sulfur was dissolved was produced during solidification, and when the iron matrix phase remelted, it was lifted to the upper part of the sample by receiving a force due to buoyancy and an interfacial tension gradient. Thus, the concentration of oxygen and sulfur in the portion above 30 mm of the sample is rapidly increased.
[0035]
From the above experimental results, the following became clear.
That is, despite the high oxygen solubility in the molten iron, FeO in the remelted solidified iron surfaced on the molten iron without dissolving in the molten iron. From the observation result by SEM, the size of the FeO inclusion is several μm, the flying speed of FeO calculated from the Stokes formula is extremely slow, and the floating of FeO cannot be explained only by the buoyancy of FeO. On the other hand, the oxygen concentration in the upper part of the molten iron is 800 ppm, whereas the oxygen concentration in the remelted iron is extremely low except for the FeO content. Therefore, it is considered that the concentration of oxygen occurs at the upper and lower parts of the molten iron, and the interfacial tension gradient is generated by the concentration of oxygen as the surface active component. The fine particles under the interfacial tension gradient receive a force toward the surface active component.
For this reason, it is judged that FeO rose rapidly due to the force toward the upper part of the molten iron.
[0036]
The method for removing inclusions and impurities in metal and the method for deoxidation and desulfurization of metal according to the present invention are different from the metal purification method by zone melting. When the molten iron having a high oxygen concentration is solidified, it finally reaches the crystallizing point and solidifies, so that FeO is generated in the solidified iron. Thus, the reduction of the oxygen concentration according to the present invention is due to the rise of inclusions in a phase different from that of FeO, which is different in principle from the purification of metal by zone melting. In addition, although the metal to be purified has been repeatedly raised and lowered many times, when attention is paid to the solidified part, the oxygen concentration is reduced by only subsequent melting and re-solidification, thereby improving the purity of the metal. Therefore, the operation method is different from zone melting which repeats dissolution and coagulation many times. Inclusions in a phase different from that of Fe, which is the subject of the present invention, cannot be removed by the zone melting method. Thus, the present invention is effective as a method for removing impurities and inclusions that cannot be removed by the zone melting method.
[0037]
【The invention's effect】
According to the present invention, the solidified metal containing inclusions (heterophasic fine particles) is immersed and melted in a metal containing a surface active component, thereby moving the inclusion in a direction rich in the surface active component and removing it from the metal matrix. This is an unintentional inclusion removal method that has never been considered before. According to the present invention, inexpensive oxygen, sulfur or the like can be used as the surface active component, and the metal refining cost can be greatly reduced.
[0038]
According to the second aspect of the present invention, impurities in the solidified metal can be precipitated by heat treatment and removed at low cost by the first aspect of the present invention.
[0039]
According to the third aspect of the present invention, when the metal is desulfurized, impurities are dissolved in the oxide or sulfide generated in the matrix metal and easily removed by the invention of the first aspect. can do. According to the present invention, it is not necessary to add another substance for removing impurities.
[0040]
According to the fourth aspect of the present invention, when the molten metal is deoxidized, there is no generation of non-metallic inclusions as in the deoxidation by adding metallic aluminum or the like.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an apparatus used in an embodiment of the present invention. FIG. 2 shows temperatures at intervals of 5 mm downward from a center point in the height direction of an alumina core tube 11 in the experimental apparatus shown in FIG. FIG. 3 is a graph showing oxygen and sulfur concentration distributions of a sample obtained by an example of the present invention.
DESCRIPTION OF SYMBOLS 1 Pressure gauge 2 Sample addition apparatus 3 Argon gas inlet 4 Argon gas outlet 5 O-ring 6 Thermocouple 7 Thermocouple protective tube 8 Alumina crucible 9 Water cooling jacket 10 Lanthanum chromite heating element 11 Alumina furnace core tube 12 Shutter 13 Cooling water inlet 14 Cooling water outlet 15 Water cooling box

Claims (5)

介在物を含む凝固メタルを、溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の介在物を活性メタル側に移動せしめて除去するようにしたことを特徴とするメタル中介在物の除去方法。The solidified metal containing inclusions is immersed and melted in the molten active metal, and the inclusions in the molten metal are moved to the active metal side and removed by the interfacial tension gradient generated between the molten metal and the active metal. A method for removing inclusions in a metal, characterized in that メタル中に固溶している不純物を、メタルの熱処理によって析出させて介在物とした後、溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の介在物を活性メタル側に移動せしめて除去するようにしたことを特徴とするメタル中不純物の除去方法。The impurities dissolved in the metal are precipitated by heat treatment of the metal to form inclusions, and then immersed and melted in the molten active metal, and the interfacial tension gradient generated between the molten metal and the active metal A method for removing impurities in a metal, wherein inclusions in the molten metal are moved to the active metal side to be removed. 溶融メタルに界面活性成分を添加して凝固させた後熱処理を施してメタルの酸化物又は硫化物を生成させ、該メタルの酸化物又は硫化物等にメタル中の介在物又は不純物を溶解させた後、該凝固メタルを溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の、介在物および/または不純物を溶解したメタルの酸化物または硫化物を活性メタル側に移動せしめて除去するようにしたことを特徴とするメタル中介在物および/または不純物の除去方法。After adding a surface active component to the molten metal and solidifying it, heat treatment was performed to generate a metal oxide or sulfide, and inclusions or impurities in the metal were dissolved in the metal oxide or sulfide. Thereafter, the solidified metal is immersed and melted in the molten active metal, and an oxide of the metal in which inclusions and / or impurities are dissolved in the molten metal due to an interfacial tension gradient generated between the molten metal and the active metal. Alternatively, a method for removing inclusions and / or impurities in a metal, wherein sulfide is moved to the active metal side to be removed. 溶融メタルに界面活性成分を添加して凝固させた後熱処理を施してメタルの酸化物を生成させ、該メタルの酸化物にメタル中の硫黄を溶解させた後、該凝固メタルを溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中の、硫黄を溶解したメタルの酸化物を活性メタル側に移動せしめて除去するようにしたことを特徴とするメタル中硫黄の除去方法。After adding a surface active component to the molten metal and solidifying it, heat treatment is performed to generate a metal oxide. After the sulfur in the metal is dissolved in the metal oxide, the solidified metal is dissolved in the molten active metal. In the molten metal, the oxide of the metal in which the sulfur is dissolved is removed by moving to the active metal side due to the interfacial tension gradient generated between the molten metal and the active metal. A feature of removing sulfur in metal. 酸素を含有する溶鉄を凝固させて含有酸素をFeOとして生成せしめ、該凝固鉄を溶融活性メタル中に浸漬、融解させ、該融解したメタルと前記活性メタル間に生じる界面張力勾配によって前記融解メタル中のFeOを活性メタル側に移動せしめて除去するようにしたことを特徴とする溶鉄の脱酸方法。The molten iron containing oxygen is solidified to produce the contained oxygen as FeO, and the solidified iron is immersed and melted in the molten active metal, and an interfacial tension gradient generated between the molten metal and the active metal causes the molten metal to enter the molten metal. A method for deoxidizing molten iron, characterized in that FeO in the steel is moved to the active metal side for removal.
JP2003205277A 2003-08-01 2003-08-01 Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal Pending JP2005054200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205277A JP2005054200A (en) 2003-08-01 2003-08-01 Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205277A JP2005054200A (en) 2003-08-01 2003-08-01 Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal

Publications (1)

Publication Number Publication Date
JP2005054200A true JP2005054200A (en) 2005-03-03

Family

ID=34362632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205277A Pending JP2005054200A (en) 2003-08-01 2003-08-01 Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal

Country Status (1)

Country Link
JP (1) JP2005054200A (en)

Similar Documents

Publication Publication Date Title
TWI443237B (en) Method for processing silicon powder to obtain silicon crystals
US7682585B2 (en) Silicon refining process
US7727502B2 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
US5037471A (en) Method for manufacturing oxygen-free copper
JP2010534614A5 (en)
Yuge et al. Removal of metal impurities in molten silicon by directional solidification with electron beam heating
Wang et al. Control of silicon solidification and the impurities from an Al–Si melt
CN105738656A (en) Experiment method for realizing in-situ observation on inclusion in bearing steel liquid
CN106011512B (en) Magnesium alloy fused mass level Four purification techniques
US20100178195A1 (en) Method of solidifying metallic silicon
US20090074650A1 (en) Method for the production of silicon suitable for solar purposes
JP5513389B2 (en) Silicon purification method
JP2005054200A (en) Method for removing inclusion and impurity in metal, and deoxidation and desulfurization method for metal
US6210478B1 (en) Refining and analysis of material using horizontal cold-crucible induction levitation melting
JP2017131933A (en) Production method for low-carbon steel thin-walled cast slab, the thin-walled cast slab, and production method for low-carbon thin-walled steel sheet
JP6055100B2 (en) Reactive cover glass on molten silicon during directional solidification.
Arnberg et al. Solvent refining of silicon for solar cells–some practical aspects
JP4102323B2 (en) Continuous casting method for molten steel
JP3263104B2 (en) Purification method of metallic silicon
Mitchell Melting processes and solidification in alloys 718-625
Yuan et al. Local corrosion mechanism of SiO2-based refractories caused by slag movement near solid–liquid–gas interface in different slag systems
JP5100969B2 (en) Method for removing carbon from silicon
JP2009078273A (en) Method for producing ingot by electroslag melting process
CN110724843A (en) Method for removing magnesium oxide inclusion in magnesium or magnesium alloy melt
Li et al. Degassing of Pure Copper Melt by Ultrasonic Cavitation