JP2005054130A - Adsorptive silica filler and its manufacturing method and resin composition for sealing - Google Patents

Adsorptive silica filler and its manufacturing method and resin composition for sealing Download PDF

Info

Publication number
JP2005054130A
JP2005054130A JP2003288533A JP2003288533A JP2005054130A JP 2005054130 A JP2005054130 A JP 2005054130A JP 2003288533 A JP2003288533 A JP 2003288533A JP 2003288533 A JP2003288533 A JP 2003288533A JP 2005054130 A JP2005054130 A JP 2005054130A
Authority
JP
Japan
Prior art keywords
less
silica filler
viscosity
silica gel
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003288533A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yougen
康裕 溶原
Hajime Sato
一 佐藤
Takashi Mihashi
隆史 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003288533A priority Critical patent/JP2005054130A/en
Publication of JP2005054130A publication Critical patent/JP2005054130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorptive silica filler which exhibits a low viscosity when compounded with a resin and exhibits good moldability. <P>SOLUTION: The adsorptive silica filler satisfies the following requirements: (a) an average particle size of at least 2.5 μm and less than 6 μm; (b) a specific surface area of at least 100 m<SP>2</SP>/g and at most 300 m<SP>2</SP>/g; and (c) a viscosity of at most 36,000 mPa s as measured at a revolution number of a viscometer of 2.5 rpm at 50°C in the viscosity measurement of a mixture of the adsorptive silica filler with a bisphenol A liquid epoxy resin in a mass ratio of 60:40. The manufacturing method of the adsorptive silica filler is also provided. The resin composition for sealing is obtained by using the adsorptive silica filler. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は吸着性シリカ充填材及びその製造方法に関する。さらに詳しくは、IC封止材用樹脂等に適するシリカ充填材及び封止用樹脂組成物に関する。   The present invention relates to an adsorptive silica filler and a method for producing the same. More specifically, the present invention relates to a silica filler and a sealing resin composition suitable for IC sealing resin and the like.

近年、電子産業の急速な発展につれて電子材料用や半導体製造用などに高純度のシリカが使用されるようになった。特に封止材用途では樹脂封止用の充填材としてシリカは欠かせない材料となっている。樹脂封止はセラミック封止に比べ、封止の信頼性に劣ると考えられていたが、シリカ充填率を上げることで実用に耐えられるレベルまで信頼性を向上させることができた。樹脂封止はセラミック封止に比べ、封止コストが安価であるため、信頼性の向上に伴い急速に普及していった。しかし、一部のデバイスでは水分の透過性の問題でセラミック封止が使用されている。例えば、CCD(画像素子)デバイスでは内部に光を受光するためレンズに結露等が起こることは致命的であり、封止後のパッケージ内部に水分が浸入することは問題となる。   In recent years, with the rapid development of the electronic industry, high-purity silica has been used for electronic materials and semiconductor manufacturing. In particular, in sealing materials, silica is an indispensable material as a filler for resin sealing. Resin sealing was thought to be inferior in sealing reliability compared to ceramic sealing, but the reliability could be improved to a level that could withstand practical use by increasing the silica filling rate. Resin sealing has spread rapidly with the improvement of reliability because the sealing cost is lower than that of ceramic sealing. However, ceramic sealing is used in some devices due to moisture permeability issues. For example, in a CCD (image element) device, it is fatal that dew condensation occurs in the lens because light is received inside, and it is problematic that moisture enters the package after sealing.

樹脂封止においても水分の透過を防止する方法の1つとしてシリカ充填材に吸着性を付与することが考えられる。充填材に吸着性を付与するためには多孔質にする必要があるが、多孔質のシリカ充填材は樹脂に配合した際に極めて樹脂配合粘度が高くなるため、成形性に問題があった。(例えば、特許文献1参照)
特開平9−208809号公報
In resin sealing, it is conceivable to impart adsorptivity to the silica filler as one of the methods for preventing moisture permeation. In order to impart adsorbability to the filler, it is necessary to make the filler porous. However, since the porous silica filler has a very high resin compounding viscosity when blended with the resin, there is a problem in moldability. (For example, see Patent Document 1)
JP-A-9-208809

本発明の課題は、上記従来技術の問題点を解決し、樹脂配合粘度が低く成形性が良い吸着性シリカ充填材を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art and provide an adsorptive silica filler having a low resin compounding viscosity and good moldability.

本発明者らは上記課題を解決するため鋭意検討した結果、従来技術によるシリカと比較して同等の吸着量を有する場合の樹脂配合粘度が低い吸着性充填材を見出した。さらに、吸着性シリカ充填材は比表面積を制御することにより、吸着性と樹脂配合粘度を制御することができ、必要な吸着性に合わせて比表面積を適宜選択することで種々の比表面積を有する吸着性シリカ充填材を有用に使い分けができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found an adsorptive filler having a low resin compounding viscosity when it has an equivalent adsorption amount as compared with silica according to the prior art. Furthermore, the adsorptive silica filler can control the adsorptivity and the resin blending viscosity by controlling the specific surface area, and has various specific surface areas by appropriately selecting the specific surface area according to the required adsorptivity. The present invention has been completed by finding that the adsorptive silica filler can be used effectively.

すなわち、本発明の第1の発明は「以下の項目を満足する吸着性シリカ充填材。   That is, the first invention of the present invention is “adsorptive silica filler satisfying the following items.

(a)平均粒径2.5μm以上6μm未満
(b)比表面積100m2/g以上300m2/g以下
(c)吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が36000mPa・s以下」を要旨とする。
(a) Average particle size of 2.5 μm or more and less than 6 μm
(b) Specific surface area of 100 m 2 / g or more and 300 m 2 / g or less
(c) Viscosity measurement when adsorbing silica filler and bisphenol A type liquid epoxy resin are mixed at a mass ratio of 60:40, viscosity at viscometer rotation speed of 2.5rpm is 36000mPa · s or less at 50 ℃ " And

本発明の第2の発明は「以下の項目を満足する吸着性シリカ充填材。   The second invention of the present invention is “adsorptive silica filler satisfying the following items.

(a)平均粒径2.5μm以上6μm未満
(b)比表面積50m2/g以上100m2/g未満
(c)吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比で60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が12000mPa・s以下」を要旨とする。
(a) Average particle size of 2.5 μm or more and less than 6 μm
(b) Specific surface area of 50 m 2 / g or more and less than 100 m 2 / g
(c) In the viscosity measurement when adsorbing silica filler and bisphenol A liquid epoxy resin are mixed at a mass ratio of 60:40, the viscosity of the viscometer at 2.5 rpm is less than 12000 mPa · s at 50 ° C " The gist.

本発明の第3の発明は「以下の項目を満足する吸着性シリカ充填材。   The third invention of the present invention is “adsorptive silica filler satisfying the following items.

(a)平均粒径2.5μm以上6μm未満
(b)比表面積15m2/g以上50m2/g未満
(c)吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が6000mPa・s以下」を要旨とする。
(a) Average particle size of 2.5 μm or more and less than 6 μm
(b) Specific surface area of 15 m 2 / g or more and less than 50 m 2 / g
(c) Viscosity measurement when adsorbing silica filler and bisphenol A-type liquid epoxy resin are mixed at a mass ratio of 60:40, the viscosity of the viscometer at 2.5 rpm is less than 6000 mPa · s at 50 ° C And

本発明では吸着性シリカ充填材の真球度と表面平滑性を向上させ、比表面積を制御することにより、該充填材を樹脂に配合した際、吸着性を付与しながらも、樹脂配合時の成形性を保持することを可能とした。特に珪酸アルカリと鉱酸水溶液の反応により得られる球状シリカゲルを所定の条件で焼成することにより吸着能と樹脂配合時の流動特性が制御された吸着性シリカ充填材を提供することができる。特に、本発明の吸着性シリカ充填材はCCD(画像解析素子)デバイス等の水分の浸入を防止する封止用樹脂組成物に好適に用いることができる。   In the present invention, by improving the sphericity and surface smoothness of the adsorptive silica filler, and controlling the specific surface area, when the filler is blended with the resin, while providing the adsorptivity, The moldability can be maintained. In particular, by adsorbing spherical silica gel obtained by the reaction of alkali silicate and aqueous mineral acid under predetermined conditions, it is possible to provide an adsorptive silica filler whose adsorptive capacity and flow characteristics at the time of resin blending are controlled. In particular, the adsorptive silica filler of the present invention can be suitably used for a sealing resin composition that prevents intrusion of moisture such as a CCD (image analysis element) device.

本発明の吸着性シリカ充填材は、平均粒径2.5μm以上6μm未満且つ比表面積が15m2/g以上300m2/g以下と大きく、ガス吸着性を有するにもかかわらず、吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が6000〜36000mPa・sと比較的低い樹脂配合粘度を示す。 The adsorptive silica filler of the present invention has an average particle size of 2.5 μm or more and less than 6 μm and a large specific surface area of 15 m 2 / g or more and 300 m 2 / g or less. In a viscosity measurement when mixing bisphenol A type liquid epoxy resin with a mass ratio of 60:40, the viscosity of the viscometer at a rotational speed of 2.5 rpm is 6000 to 36000 mPa · s at 50 ° C., indicating a relatively low resin blending viscosity.

本発明の吸着性シリカ充填材は種々のガス吸着性を有するが、特に水分の吸着に対し有用である。本発明の吸着性シリカ充填材を配合し、硬化させた樹脂組成物は水分の吸着性を有しており、任意の吸着能に制御することが可能である。   The adsorbing silica filler of the present invention has various gas adsorbing properties, but is particularly useful for moisture adsorption. The resin composition blended and cured with the adsorptive silica filler of the present invention has a moisture adsorptivity and can be controlled to an arbitrary adsorption capacity.

本発明の吸着性シリカ充填材は吸着性を有するにもかかわらず、樹脂配合粘度が36000mPa・s以下に抑えられている理由は真球度が高く、極めて表面平滑性が良好であるためと考えられる。また、平均細孔径が0.05〜1nm、細孔容積が0.01〜1.0ml/g程度であることから、粒子内の空隙率が小さいことも樹脂配合粘度が低く抑えられている理由として挙げられる。   Although the adsorptive silica filler of the present invention has adsorptivity, the reason why the resin blending viscosity is suppressed to 36000 mPa · s or less is considered to be due to its high sphericity and extremely good surface smoothness. It is done. Moreover, since the average pore diameter is 0.05 to 1 nm and the pore volume is about 0.01 to 1.0 ml / g, the reason why the resin blending viscosity is kept low is that the porosity in the particles is small.

一般に樹脂配合粘度は充填材の比表面積により変化する。本発明の吸着性シリカ充填材についても比表面積が小さい程、樹脂配合粘度が小さくなる。但し、従来の吸着性シリカに比べ、比表面積に対する樹脂配合粘度が小さく、樹脂配合後の成形性が確保できる。   In general, the resin blending viscosity varies depending on the specific surface area of the filler. Also for the adsorptive silica filler of the present invention, the smaller the specific surface area, the smaller the resin compounding viscosity. However, compared with the conventional adsorptive silica, the resin compounding viscosity with respect to a specific surface area is small, and the moldability after resin compounding can be secured.

封止材等の充填材として用いる場合、粒径分布において平均粒径に対し、最大粒径がより小さい充填材が好まれる。本発明の吸着性シリカ充填材は最大粒径が平均粒径の4倍以下という粗粒切れの良い分布にすることができる。また、封止材用充填材として用いる場合は粒度分布の広さを示す粒子径の変動係数が15%以上であることが望ましい。これは単に分布が狭いということではなく、平均粒径より小さな粒子群をある程度含みながらも、平均粒径より大きな粗粒側の含有量が少ない分布であることが樹脂配合時の低粘度化の点で望ましい。   When used as a filler such as a sealing material, a filler having a smaller maximum particle size than the average particle size in the particle size distribution is preferred. The adsorptive silica filler of the present invention can have a good distribution of coarse grain breakage such that the maximum particle size is 4 times or less than the average particle size. Further, when used as a filler for a sealing material, it is desirable that the variation coefficient of the particle diameter indicating the breadth of the particle size distribution is 15% or more. This does not mean that the distribution is narrow, but it is a distribution that contains a small amount of particles smaller than the average particle size but has a small content on the coarse particle side larger than the average particle size. Desirable in terms.

本発明の吸着性シリカ充填材に関し、粒径分布は所定の範囲にあることが望ましい。粒度分布を示す指標の1つとして変動係数が挙げられる。本発明における粒子径の変動係数(Cv)は標準偏差σと平均粒径d[μm]との比で式(I)で表される。   Regarding the adsorptive silica filler of the present invention, the particle size distribution is desirably within a predetermined range. A variation coefficient is mentioned as one of the indexes indicating the particle size distribution. The variation coefficient (Cv) of the particle diameter in the present invention is represented by the formula (I) as a ratio of the standard deviation σ and the average particle diameter d [μm].

Cv=100×σ/d・・・・・・(I)
最大粒径が平均粒径の4倍以下の粒子群は変動係数が大きいことは微粉を多く含むことを意味する。微粉を多く含むことにより、樹脂配合粘度が増加する。そのため、変動係数は15〜100%の範囲が望ましい。流動特性の面から、変動係数は特に25〜60%の範囲が望ましい。
Cv = 100 × σ / d (I)
A particle group having a maximum particle size of 4 times or less of the average particle size has a large coefficient of variation means that it contains a lot of fine powder. By containing a large amount of fine powder, the resin compounding viscosity increases. Therefore, the variation coefficient is desirably in the range of 15 to 100%. From the viewpoint of flow characteristics, the coefficient of variation is particularly preferably in the range of 25 to 60%.

本発明ではシリカとビスフェノールA型液状エポキシ樹脂を質量比で60:40で混合した際の粘度が吸着性シリカ充填材の比表面積に対応している。比表面積が100m2/g以上300m2/g以下の場合、樹脂配合粘度は36000mPa・s以下を示す。比表面積が50m2/g以上100m2/g未満の場合、樹脂配合粘度は12000mPa・s以下を示す。比表面積が15m2/g以上50m2/g未満の場合、樹脂配合粘度は6000mPa・s以下を示す。 In the present invention, the viscosity when silica and bisphenol A type liquid epoxy resin are mixed at a mass ratio of 60:40 corresponds to the specific surface area of the adsorptive silica filler. When the specific surface area is 100 m 2 / g or more and 300 m 2 / g or less, the resin compounding viscosity is 36000 mPa · s or less. When the specific surface area is 50 m 2 / g or more and less than 100 m 2 / g, the resin compounding viscosity is 12000 mPa · s or less. When the specific surface area is 15 m 2 / g or more and less than 50 m 2 / g, the resin compounding viscosity is 6000 mPa · s or less.

樹脂配合時の粘度は低い程、成形性の面で望ましいため、シリカとビスフェノールA型液状エポキシ樹脂を質量比で60:40で混合した際の粘度は比表面積が100m2/g以上300m2/g以下の場合、樹脂配合粘度は15000mPa・s以下を示すことが望ましい。また、比表面積が50m2/g以上100m2/g未満の場合、樹脂配合粘度は4000mPa・s以下を示すことが望ましい。さらには比表面積が15m2/g以上50m2/gの場合は粘度は3000mPa・s以下を示すことが望ましい。 The lower the viscosity at the time of blending the resin, the better in terms of moldability. Therefore, the viscosity when mixing silica and bisphenol A type liquid epoxy resin at a mass ratio of 60:40 has a specific surface area of 100 m 2 / g or more and 300 m 2 / In the case of g or less, the resin compounding viscosity is desirably 15000 mPa · s or less. Further, when the specific surface area is 50 m 2 / g or more and less than 100 m 2 / g, the resin compounding viscosity is desirably 4000 mPa · s or less. Furthermore, when the specific surface area is 15 m 2 / g or more and 50 m 2 / g, the viscosity is desirably 3000 mPa · s or less.

粘度測定に使用されるビスフェノールA型液状エポキシ樹脂としては、ビスフェノールA型液状エポキシ樹脂とブチルグリシジルエーテルの混合物(質量比89:11の混合物)であり、エポキシ当量が181〜191、25℃の粘度が9〜12ポイズのモノが使用される。工業的には油化シェルエポキシ株式会社製のエピコート815(商品名)が該当する。粘度は測定温度50℃、回転数2.5rpmの値である。本発明において粘度計はE型粘度計(東機産業製RE80R型)が使用した。封止材用に使用する場合、低いチキソ比を示す方が望ましい。チキソ比とは粘度計の回転数0.5rpmの粘度値をη1、2.5rpmをη2とした場合、η1/η2を意味する。封止材用に使用する場合、η1/η2は1.0未満を示すことが望ましい。   The bisphenol A type liquid epoxy resin used for viscosity measurement is a mixture of bisphenol A type liquid epoxy resin and butyl glycidyl ether (a mixture with a mass ratio of 89:11), with an epoxy equivalent of 181 to 191 and a viscosity of 25 ° C. 9 to 12 poise is used. Industrially, Epicoat 815 (trade name) manufactured by Yuka Shell Epoxy Co., Ltd. is applicable. The viscosity is a value at a measurement temperature of 50 ° C. and a rotation speed of 2.5 rpm. In the present invention, an E-type viscometer (RE80R type manufactured by Toki Sangyo) was used as the viscometer. When used for a sealing material, it is desirable to exhibit a low thixo ratio. The thixo ratio means η1 / η2 when the viscosity value at a rotational speed of 0.5 rpm of the viscometer is η1 and 2.5 rpm is η2. When used for a sealing material, η1 / η2 is desirably less than 1.0.

本発明の吸着性シリカ充填材は比表面積を制御することにより吸着能を任意に制御することができる。即ち、吸着性シリカ充填材は比表面積を制御することにより、任意の吸湿率に制御することが可能である。比表面積が100m2/g以上300m2/g以下の場合、吸湿率は3質量%以上、15質量%未満を示す。また、比表面積が50m2/g以上100m2/g未満の場合、吸湿率は1.5質量%以上、5質量%未満を示す。さらには比表面積が15m2/g以上50m2/gの場合は、吸湿率は0.5質量%以上、4質量%未満を示す。吸湿率A[%]は式(II)で表される。M1は絶乾状態の吸着性シリカ充填材の質量であり、M2吸湿後の吸着性シリカ充填材の質量を表す。吸湿性の測定は絶乾状態の吸着性シリカ充填材をトレーに0.1g入れ(M1)、そのトレーを容量50mlテフロン(登録商標)(登録商標)容器(金網で上下に仕切り、下部に純水15ml、上部にサンプルを置く)に入れ、テフロン(登録商標)容器を、SUS密封容器に入れ121℃恒温槽に24時間放置した後、トレーを容器から取り出し、質量を測定し(M2)、式(II)から吸着性シリカ充填材の吸湿率を算出した。 The adsorptive silica filler of the present invention can arbitrarily control the adsorption capacity by controlling the specific surface area. That is, the adsorptive silica filler can be controlled to an arbitrary moisture absorption rate by controlling the specific surface area. When the specific surface area is 100 m 2 / g or more and 300 m 2 / g or less, the moisture absorption rate is 3% by mass or more and less than 15% by mass. Further, when the specific surface area is 50 m 2 / g or more and less than 100 m 2 / g, the moisture absorption rate is 1.5% by mass or more and less than 5% by mass. Furthermore, when the specific surface area is 15 m 2 / g or more and 50 m 2 / g, the moisture absorption rate is 0.5% by mass or more and less than 4% by mass. The moisture absorption A [%] is expressed by the formula (II). M1 is the mass of the adsorptive silica filler in the absolutely dry state, and represents the mass of the adsorbable silica filler after moisture absorption by M2. Hygroscopicity is measured by placing 0.1 g of dry dry adsorbent silica filler in a tray (M1), and then separating the tray into a 50 ml capacity Teflon (registered trademark) container (up and down with a metal mesh, with pure water at the bottom. 15ml, put sample on top), put Teflon (registered trademark) container in SUS sealed container and let stand in 121 ° C constant temperature bath for 24 hours, take out tray from container, measure mass (M2), formula The moisture absorption rate of the adsorptive silica filler was calculated from (II).

A[%]=100×(M2−M1)/M1・・・・・・(II)
半導体に使用される材料は一般に高純度が要求される。特にNa、K、Liなどのアルカリ金属、Ca、Mgなどのアルカリ土類金属およびClなどのイオン性不純物は、アルミニウム配線を腐食する原因となるので、本発明の吸着性シリカ充填材では、これらの不純物を実質的に含有しないことが望ましい。また、ソフトエラー発生を抑制するため、放射性元素が厳しく制限されている。封止材用シリカでは放射性元素が2ppbを越えると、ソフトエラー発生の原因となり好ましくなく、本製法では実質的にアルカリ金属、アルカリ土類金属を1ppm以下、放射性不純物の含有量を2ppb以下に抑制することができる。ここでの放射性元素とはUおよびThを示す。即ち、UおよびThの含有量の合計が2ppb以下であることが望ましい。さらにはUおよびThの含有量の合計が1ppb以下であることが望ましい。これらの不純物の含有率は、適宜の分析手段により直接測定することができるが、本発明ではシリカを弗化水素水溶液で加熱溶解し、シリカ分をSiF4として気化させ、残分をICP−MSで分析することにより不純物濃度の特定を行った。ICP−MSは横河電機株式会社製ModelPMS−2000を用いた。
A [%] = 100 x (M2-M1) / M1 (II)
High purity is generally required for materials used in semiconductors. In particular, alkali metals such as Na, K and Li, alkaline earth metals such as Ca and Mg, and ionic impurities such as Cl cause corrosion of aluminum wiring. It is desirable that substantially no impurities are contained. In addition, radioactive elements are severely restricted to suppress the occurrence of soft errors. If the radioactive element exceeds 2 ppb in silica for sealing materials, it may cause a soft error, which is not preferable. In this method, alkali metals and alkaline earth metals are substantially suppressed to 1 ppm or less, and the content of radioactive impurities is suppressed to 2 ppb or less. can do. The radioactive elements here are U and Th. That is, it is desirable that the total content of U and Th is 2 ppb or less. Furthermore, it is desirable that the total content of U and Th is 1 ppb or less. The content of these impurities can be directly measured by an appropriate analysis means. In the present invention, silica is heated and dissolved in an aqueous hydrogen fluoride solution, the silica content is vaporized as SiF 4 , and the residue is ICP-MS. The impurity concentration was specified by analyzing the above. For ICP-MS, ModelPMS-2000 manufactured by Yokogawa Electric Corporation was used.

本発明において規定する粒径分布は最大粒径が平均粒径の4倍以下であることが望ましいが、これはレーザー回折散乱方式(Coulter株式会社製LS-130)により測定された粒径分布である。また、平均粒径はメディアン径を意味する。   The particle size distribution defined in the present invention desirably has a maximum particle size of 4 times or less of the average particle size. This is a particle size distribution measured by a laser diffraction scattering method (LS-130 manufactured by Coulter Inc.). is there. Moreover, an average particle diameter means a median diameter.

吸着性の尺度として、比表面積SAを用いる。一般に、直径がd(μm)であり、細孔を有しない真球体の比表面積SAは、その真比重がDであるとき、式(II)によって表すことができる。また、吸着特性は細孔径及び細孔容積に強く影響される。本発明における吸着性シリカ充填材は平均細孔径が0.05〜1nm、細孔容積が0.01〜1.0ml/gであることが望ましい。特に樹脂配合粘度を抑えるために細孔容積は0.1〜0.3ml/gが望ましい。   Specific surface area SA is used as a measure of adsorptivity. In general, the specific surface area SA of a true sphere having a diameter of d (μm) and having no pores can be expressed by the formula (II) when the true specific gravity is D. Adsorption characteristics are strongly influenced by pore diameter and pore volume. The adsorptive silica filler in the present invention preferably has an average pore diameter of 0.05 to 1 nm and a pore volume of 0.01 to 1.0 ml / g. In particular, the pore volume is preferably 0.1 to 0.3 ml / g in order to suppress the resin compounding viscosity.

本発明における吸着性シリカ充填材は真球度が0.9以上である粒子含有率が90%以上である。真球度は粒子の最大直径(d1)と最小直径(d2)の比であり、式(III)により表される。   The adsorptive silica filler in the present invention has a sphericity of 0.9 or more and a particle content of 90% or more. The sphericity is a ratio between the maximum diameter (d1) and the minimum diameter (d2) of the particle, and is expressed by the formula (III).

真球度=d2/d1・・・・・・(III)
真球度が0.9以上である粒子含有率は、吸着性シリカ充填材粒子の電子顕微鏡写真において、ランダムに20個の粒子を選び、それぞれの最大直径と最小直径を測定し、真球度が0.9以上である粒子の割合を算出した。即ち、ランダムに選ばれた20個の粒子の中で18個以上が真球度0.9以上であることを意味する。
Sphericality = d2 / d1 (III)
For the particle content with a sphericity of 0.9 or more, in the electron micrograph of the adsorptive silica filler particles, randomly select 20 particles, measure the maximum diameter and the minimum diameter, and the sphericity is 0.9. The ratio of the above particles was calculated. That is, 18 or more of 20 randomly selected particles have a sphericity of 0.9 or more.

本発明の吸着性シリカ充填材は表面平滑性に優れ、真球状の球状シリカゲル粒子を調製し、所定の条件で焼成することにより調製できる。表面平滑性に優れ、真球状の球状シリカゲル粒子は種々の液相反応により調製することができるが、特に珪酸アルカリと鉱酸水溶液の反応により得られる球状シリカゲルは真球度が高く、表面平滑性に優れている。珪酸アルカリと鉱酸水溶液の反応により球状シリカゲルを調製し、それを用いて吸着性シリカ充填材を調整する法として、以下の方法が挙げられる。   The adsorptive silica filler of the present invention is excellent in surface smoothness and can be prepared by preparing true spherical silica gel particles and firing them under predetermined conditions. Spherical silica gel particles with excellent surface smoothness can be prepared by various liquid phase reactions. In particular, spherical silica gel obtained by the reaction of alkali silicate and mineral acid aqueous solution has high sphericity and surface smoothness. Is excellent. Examples of a method for preparing a spherical silica gel by reaction of an alkali silicate and a mineral acid aqueous solution and adjusting an adsorbent silica filler using the spherical silica gel include the following methods.

<含水球状シリカゲル粒子の調製及び不純物抽出除去工程>
アルカリ珪酸塩水溶液を分散相として含むエマルションと鉱酸水溶液とを接触させて反応させ、平均粒径3μm以上7μm未満の含水球状シリカゲル粒子を生成させ、中和反応が終了した後、固液分離することなく、50℃以上に加熱することにより、不純物を抽出除去して、高純度で多孔質の平均粒径3μm以上7μm未満の含水球状シリカゲル粒子を得る工程。
<Preparation of water-containing spherical silica gel particles and impurity extraction and removal step>
An emulsion containing an aqueous alkali silicate solution as a dispersed phase and a mineral acid aqueous solution are brought into contact with each other to react to produce hydrous spherical silica gel particles having an average particle size of 3 μm or more and less than 7 μm. After the neutralization reaction is completed, solid-liquid separation is performed. Without removing impurities by heating to 50 ° C. or higher to obtain water-containing spherical silica gel particles having a high purity and a porous average particle size of 3 μm or more and less than 7 μm.

<含水球状シリカゲル粒子の乾燥、解砕、焼成工程>
<含水球状シリカゲル粒子の調製及び不純物抽出除去工程>で得られた含水球状シリカゲル粒子を乾燥した後、もしくは乾燥時に、解砕し、焼成することにより、本発明で規定した物性を賦与する工程。
<Drying, crushing, firing process of hydrous spherical silica gel particles>
A step of imparting the physical properties defined in the present invention by crushing and firing the hydrous spherical silica gel particles obtained in <Preparation of hydrous spherical silica gel particles and impurity extraction and removal step> or at the time of drying.

以下、前記各工程について順次説明する。 Hereinafter, the respective steps will be sequentially described.

<含水球状シリカゲル粒子の調製及び不純物抽出除去工程>
(1)アルカリ珪酸塩水溶液を分散相として細粒状に分散させた油中水滴型(W/O型)エマルションを調製する乳化工程
アルカリ珪酸塩水溶液を分散相として含むエマルションを調製する。すなわち、アルカリ珪酸塩水溶液と混和しない液体を連続相とし、この中にアルカリ珪酸塩水溶液を分散相として細粒状に分散させた、油中水滴型(W/O型)エマルションを生成させる。
<Preparation of water-containing spherical silica gel particles and impurity extraction and removal step>
(1) Emulsification step of preparing a water-in-oil (W / O) emulsion in which an aqueous alkali silicate solution is dispersed finely as a dispersed phase. An emulsion containing an aqueous alkali silicate solution as a dispersed phase is prepared. That is, a water-in-oil type (W / O type) emulsion is produced in which a liquid immiscible with an aqueous alkali silicate solution is used as a continuous phase, and an aqueous alkali silicate solution is dispersed in the form of fine particles.

アルカリ珪酸塩水溶液と連続相形成用液体及び乳化剤を混合し、乳化機などを用いて乳化させ、アルカリ珪酸塩水溶液を分散相として含むW/O型のエマルションを調製する。乳化時の乳化機回転数を変化させることにより、粒径を制御することができる。また、アルカリ珪酸塩水溶液を水で希釈することにより、粒径をより微細にすることができる。逆に濃縮により、粘度を増加させることにより、粒径を大きくすることができる。   An aqueous alkali silicate solution, a liquid for forming a continuous phase, and an emulsifier are mixed and emulsified using an emulsifier or the like to prepare a W / O type emulsion containing the aqueous alkali silicate solution as a dispersed phase. By changing the rotation speed of the emulsifier during emulsification, the particle size can be controlled. Further, the particle diameter can be made finer by diluting the aqueous alkali silicate solution with water. Conversely, the particle size can be increased by increasing the viscosity by concentration.

使用されるアルカリ珪酸塩は、珪酸ナトリウム・珪酸カリウム・珪酸リチウムなどを包含するが、珪酸ナトリウムが一般的に用いられる。アルカリ珪酸塩水溶液のシリカ濃度(SiO2として)は1〜40質量%の範囲が好ましく、さらに好ましくは5〜35%の範囲である。市販されているJIS3号の珪酸アルカリが扱いやすい。 The alkali silicate used includes sodium silicate, potassium silicate, lithium silicate and the like, and sodium silicate is generally used. The silica concentration (as SiO 2 ) of the alkali silicate aqueous solution is preferably in the range of 1 to 40% by mass, and more preferably in the range of 5 to 35%. Commercially available JIS No. 3 alkali silicate is easy to handle.

原料に使用する珪酸アルカリ水溶液はアルカリ金属、Siを除く他の金属含有量の合計が0.1質量%以下のアルカリ珪酸塩水溶液(以下、高純度水ガラスとも言う)を用いることで極めて高純度な吸着性シリカ充填材を製造することができる。アルカリ金属、Siを除く他の金属含有量の合計が0.1質量%以下のアルカリ珪酸塩水溶液は高純度の天然珪石または合成シリカをアルカリ水溶液で溶解させることにより、調製することができる。合成シリカは特に限定しないが、珪酸アルカリを原料とした高純度シリカが製造コストの面で望ましい。アルカリ水溶液は水酸化ナトリウム水溶液が後の不純物抽出の際に有利である。高純度の珪石または合成シリカをアルカリ水溶液に溶解させる際は加熱により溶解時間が短縮できる。また、オートクレーブ等で加圧することも有効である。なお、電子材料等の原料として使用する場合はアルカリ金属、Siを除く他の金属含有量の合計が0.01%以下であることが望ましい。また、放射性元素の含有量も少ないほど好ましく、U及びThの合計が10ppbであることが望ましい。   The alkali silicate aqueous solution used as a raw material is an alkali silicate aqueous solution (hereinafter also referred to as high-purity water glass) whose total content of other metals excluding alkali metals and Si is 0.1% by mass or less. Silica filler can be produced. An alkali silicate aqueous solution having a total content of metals other than alkali metals and Si of 0.1% by mass or less can be prepared by dissolving high-purity natural silica or synthetic silica with an alkaline aqueous solution. Synthetic silica is not particularly limited, but high-purity silica using alkali silicate as a raw material is desirable in terms of production cost. An aqueous alkali solution is advantageous in the subsequent extraction of impurities with an aqueous sodium hydroxide solution. When high purity silica or synthetic silica is dissolved in an alkaline aqueous solution, the dissolution time can be shortened by heating. It is also effective to pressurize with an autoclave or the like. In addition, when using as raw materials, such as an electronic material, it is desirable that the sum total of other metal content except an alkali metal and Si is 0.01% or less. Further, the content of radioactive elements is preferably as small as possible, and the total of U and Th is desirably 10 ppb.

連続相形成用液体としては、アルカリ珪酸塩水溶液および鉱酸水溶液と反応せず、かつ、混和しない液体を用いる。その種類は、特に限定しないが、解乳化処理の面からは、沸点が100℃以上であり、比重が1.0以下であるオイルを使用することが望ましい。アルカリ珪酸塩水溶液とオイルの質量比は8:2〜2:8である。好ましくは8:2〜6:4である。   As the liquid for forming the continuous phase, a liquid that does not react with the aqueous alkali silicate solution and the mineral acid aqueous solution and is immiscible is used. The type is not particularly limited, but from the viewpoint of demulsification treatment, it is desirable to use an oil having a boiling point of 100 ° C. or higher and a specific gravity of 1.0 or lower. The mass ratio of the alkali silicate aqueous solution to the oil is 8: 2 to 2: 8. Preferably it is 8: 2 to 6: 4.

上記の連続相形成用液体としてのオイルは、たとえば、n-オクタン、ガソリン、灯油、イソパラフィン系炭化水素油などの脂肪族炭化水素類、シクロノナン、シクロデカンなどの脂環族炭化水素類、トルエン、キシレン、エチルベンゼン、テトラリンなどの芳香族炭化水素類などを用いることができる。乳化安定性の観点からイソパラフィン系飽和炭化水素類が望ましい。   The oil as the liquid for forming the continuous phase is, for example, n-octane, gasoline, kerosene, isoparaffinic hydrocarbon oil and other aliphatic hydrocarbons, cyclononane, cyclodecane and other alicyclic hydrocarbons, toluene, xylene Aromatic hydrocarbons such as ethylbenzene and tetralin can be used. Isoparaffinic saturated hydrocarbons are desirable from the viewpoint of emulsion stability.

乳化剤としては、W/O型エマルションの安定化機能を有するものであれば特に限定はなく、脂肪酸の多価金属塩・水難溶性セルローズエーテルなどの親油性の強い界面活性剤を用いることができる。後処理の点からは、非イオン性界面活性剤を用いることが望ましい。具体例として、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレートなどのソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレートなどのポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノパルミテート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレートなどのポリオキシエチレン脂肪酸エステル類、ステアリン酸モノグリセリド、オレイン酸モノグリセリドなどのグリセリン脂肪酸エステル類などを挙げることができる。   The emulsifier is not particularly limited as long as it has a function of stabilizing a W / O emulsion, and a highly lipophilic surfactant such as a polyvalent metal salt of fatty acid or a poorly water-soluble cellulose ether can be used. From the viewpoint of post-treatment, it is desirable to use a nonionic surfactant. Specific examples include sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan mono Polyoxyethylene such as stearate, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monooleate, polyoxyethylene monolaurate, polyoxyethylene monopalmitate, polyoxyethylene monostearate, polyoxyethylene monooleate Examples include fatty acid esters, glycerin fatty acid esters such as stearic acid monoglyceride and oleic acid monoglyceride.

乳化剤の添加量は、乳化対象であるアルカリ珪酸塩水溶液に対して、0.05〜5質量%の範囲が適量である。また、各工程での処理を考慮すると0.5〜1質量%が望ましい。   An appropriate amount of the emulsifier is 0.05 to 5% by mass with respect to the aqueous alkali silicate solution to be emulsified. Moreover, when the process in each process is considered, 0.5-1 mass% is desirable.

(2) (1)で調製した油中水滴型(W/O型)エマルションを鉱酸水溶液と混合し、平均粒径2.9μm以上7μm未満の含水球状シリカゲル粒子を生成させる凝固工程
上記で調製されたアルカリ珪酸塩水溶液を分散相として含むエマルションと鉱酸水溶液とを攪拌下で混合する。鉱酸とアルカリ珪酸塩との中和反応によって、平均粒径2.9μm以上7μm未満の含水球状シリカゲル粒子が生成する。混合方法の順序については限定しないが、鉱酸水溶液をアルカリ珪酸塩水溶液を含むエマルションへ加える場合は、反応時の極端な鉱酸濃度の低下を招く恐れがあり、アルカリ珪酸塩水溶液を含むエマルションを鉱酸水溶液へ加えることが望ましい。反応時の鉱酸/アルカリ分(水ガラス中のNa2O分)のモル比は2以上で所望の含水球状シリカゲル粒子が得られるが、生産性を考慮すると該モル比は5以下が望ましい。
(2) A coagulation step in which the water-in-oil (W / O) emulsion prepared in (1) is mixed with a mineral acid aqueous solution to produce hydrous spherical silica gel particles having an average particle size of 2.9 μm to less than 7 μm. An emulsion containing an aqueous alkali silicate solution as a dispersed phase and an aqueous mineral acid solution are mixed with stirring. Water-containing spherical silica gel particles having an average particle size of 2.9 μm or more and less than 7 μm are generated by the neutralization reaction between the mineral acid and the alkali silicate. The order of the mixing method is not limited. However, when adding a mineral acid aqueous solution to an emulsion containing an alkali silicate aqueous solution, there is a risk of causing an extreme decrease in mineral acid concentration during the reaction. It is desirable to add to an aqueous mineral acid solution. The molar ratio of mineral acid / alkaline content (Na 2 O content in water glass) during the reaction is 2 or more to obtain the desired hydrous spherical silica gel particles, but the molar ratio is preferably 5 or less in consideration of productivity.

鉱酸は硫酸、硝酸、塩酸等を用いることができるが、脱水作用が強く、コストの面でも安価な硫酸が最も望ましい。アルカリ珪酸塩水溶液は15質量%以上の鉱酸と接触することが望ましい。より好ましくは20質量%以上の硫酸と接触することがよい。アルカリ珪酸塩水溶液を含むエマルションを15質量%未満の鉱酸水溶液と接触させた場合、本発明が目的とする粗粒切れの良い粒径分布の含水球状シリカゲル粒子は得られない。鉱酸水溶液の濃度の上限としては50質量%が望ましい。真球度、単分散度を考慮すると、鉱酸濃度は15〜35質量%が望ましい。また、アルカリ珪酸塩水溶液との反応が完全に終了した後、水相の反応液のフリー鉱酸濃度は10質量%以上であることが望ましい。フリー鉱酸濃度とは実質的に金属イオン等と塩を形成していない鉱酸の濃度である。   As the mineral acid, sulfuric acid, nitric acid, hydrochloric acid and the like can be used, but sulfuric acid is most desirable because it has a strong dehydrating action and is inexpensive. The aqueous alkali silicate solution is preferably in contact with 15% by mass or more of mineral acid. More preferably, contact with 20% by mass or more of sulfuric acid is preferable. When an emulsion containing an aqueous alkali silicate solution is brought into contact with an aqueous mineral acid solution of less than 15% by mass, the water-containing spherical silica gel particles having a particle size distribution with a good coarse grain cut intended by the present invention cannot be obtained. The upper limit of the concentration of the mineral acid aqueous solution is preferably 50% by mass. Considering sphericity and monodispersity, the mineral acid concentration is preferably 15 to 35% by mass. In addition, after the reaction with the aqueous alkali silicate solution is completely completed, it is desirable that the free mineral acid concentration of the aqueous phase reaction liquid is 10% by mass or more. The free mineral acid concentration is a concentration of a mineral acid that does not substantially form a salt with a metal ion or the like.

攪拌方法によって異なるが、アルカリ珪酸塩水溶液を含むエマルションと鉱酸水溶液との中和反応は5〜120分間でほぼ終了する。中和反応の終了は反応液の温度が下降傾向を示した時点で終了したものとする。   Although it depends on the stirring method, the neutralization reaction between the emulsion containing the alkali silicate aqueous solution and the mineral acid aqueous solution is almost completed in 5 to 120 minutes. The neutralization reaction is completed when the temperature of the reaction solution shows a downward trend.

中和反応終了後、反応液を分離することなくそのまま昇温する。この昇温により、エマルション状の反応液はオイル相とシリカゲル粒子分散系硫酸水溶液相に層別に分離する解乳化処理とともに不純物の抽出除去も併せて行うことができる。温度は50℃以上が必要である。好ましくは50〜120℃、さらに好ましくは80〜100℃の範囲で行い、処理時間は1分〜5時間で適宜選定すればよい。通常30分〜1時間程度で処理することができる。前記高純度水ガラスを原料として使用した場合は加熱による抽出を行わなくとも、高純度な含水球状シリカゲル粒子を得ることができる。   After completion of the neutralization reaction, the temperature is increased as it is without separating the reaction solution. By this temperature rise, the emulsion-like reaction liquid can be extracted and removed together with the demulsification treatment in which the emulsion phase is separated into an oil phase and a silica gel particle-dispersed sulfuric acid aqueous solution phase. The temperature should be 50 ° C or higher. The treatment is preferably performed in the range of 50 to 120 ° C, more preferably 80 to 100 ° C, and the treatment time may be appropriately selected from 1 minute to 5 hours. Usually, it can be processed in about 30 minutes to 1 hour. When the high-purity water glass is used as a raw material, high-purity water-containing spherical silica gel particles can be obtained without performing extraction by heating.

不純物の抽出においては反応前または反応後にキレートを添加することも有効である。キレートは特に限定しないが、酸性下で効力を発揮するキレートが望ましい。また、反応前後において硝酸を添加することにより冷却後におけるTh等の不純物の再析出を防止することができる。硝酸の添加量は全添加酸量に対して0.1〜5%で再析出抑制効果が得られる。好ましくは0.5〜3%の範囲が良い。前記高純度水ガラスを原料として使用した場合、キレートの添加は不要である。   In extraction of impurities, it is also effective to add a chelate before or after the reaction. The chelate is not particularly limited, but a chelate that exhibits efficacy under acidic conditions is desirable. Moreover, reprecipitation of impurities such as Th after cooling can be prevented by adding nitric acid before and after the reaction. The amount of nitric acid added is 0.1 to 5% with respect to the total amount of added acid, and an effect of suppressing reprecipitation is obtained. A range of 0.5 to 3% is preferable. When the high-purity water glass is used as a raw material, addition of a chelate is unnecessary.

本発明において(6)(7)の焼成工程で細孔の閉塞に伴い粒径が約85%に収縮する。平均粒径2.5μm以上6μm未満の吸着性シリカ充填材を調製するためには、本工程では2.9μm以上7μm未満の含水球状シリカゲル粒子を生成する必要がある。   In the present invention, the particle size shrinks to about 85% as the pores are blocked in the firing steps (6) and (7). In order to prepare an adsorptive silica filler having an average particle size of 2.5 μm or more and less than 6 μm, it is necessary to produce hydrous spherical silica gel particles having a particle size of 2.9 μm or more and less than 7 μm in this step.

(3) (2)で含水球状シリカゲル粒子を洗浄する洗浄工程
(2)で得られた含水球状シリカゲル粒子は抽出後に粒子内に反応及び抽出に用いた硫酸水溶液を多量に含んでいる。この硫酸水溶液中には多量の金属不純物が含まれているため、純水で洗浄する必要がある。洗浄の方法は特に限定しないが、リパルプリンス、もしくはケーキリンスが有効である。洗浄の際は洗浄初期に純水を使用するとpHが急激に増加するため、一旦抽出した金属不純物が含水球状シリカゲル粒子に吸着する。そのため、洗浄初期は極希薄な酸性水溶液を用いて洗浄することが望ましい。酸性水溶液としては硫酸、硝酸、塩酸などの鉱酸がpHの面で望ましい。酸濃度については酸性水溶液で洗浄した後、用いた酸を純水で洗浄するため、0.001〜5質量%が望ましい。洗浄後は遠心分離機等でできるだけ含水球状シリカゲル粒子から脱液することが望ましい。
(3) Washing step for washing hydrous spherical silica gel particles in (2) The hydrous spherical silica gel particles obtained in (2) contain a large amount of sulfuric acid aqueous solution used for reaction and extraction in the particles after extraction. Since this sulfuric acid aqueous solution contains a large amount of metal impurities, it must be washed with pure water. The washing method is not particularly limited, but repulp rinse or cake rinse is effective. At the time of washing, when pure water is used at the initial stage of washing, the pH increases rapidly, so that the extracted metal impurities are adsorbed on the hydrous spherical silica gel particles. Therefore, it is desirable to perform cleaning using an extremely dilute acidic aqueous solution at the initial stage of cleaning. As the acidic aqueous solution, mineral acids such as sulfuric acid, nitric acid and hydrochloric acid are desirable in terms of pH. The acid concentration is preferably 0.001 to 5% by mass in order to wash the acid used with pure water after washing with an acidic aqueous solution. After washing, it is desirable to remove the water-containing spherical silica gel particles as much as possible with a centrifuge.

アルカリ金属、アルカリ土類金属の不純物金属は次の工程の焼成で粒子間焼結の原因となるため、洗浄時に各金属濃度を1ppm以下にすることが望ましい。特にアルカリ金属に関してはシリカの融点を低下させやすいため、0.5ppm以下にすることが望ましい。   Since impurity metals such as alkali metals and alkaline earth metals cause inter-particle sintering during firing in the next step, the concentration of each metal is preferably 1 ppm or less during cleaning. Particularly for alkali metals, the melting point of silica tends to be lowered, so 0.5 ppm or less is desirable.

<含水球状シリカゲル粒子の乾燥、解砕、焼成工程>
(4) (3)で洗浄した含水球状シリカゲル粒子を乾燥させる乾燥工程
前工程で不純物を抽出除去した含水球状シリカゲル粒子の中には、なお水分が保持されている。この水分は、付着水と結合水とに分けられる。通常、付着水は100℃前後の温度で加熱すれば容易に除けるが、結合水は400℃以上の温度でも完全に除去することは困難である。付着水を除去するために乾燥処理を行い、そして、結合水を除去し、かつ、球状シリカゲル粒子を任意のレベルにまで緻密化させるために焼成処理を行う。
<Drying, crushing, firing process of hydrous spherical silica gel particles>
(4) Drying step of drying the hydrous spherical silica gel particles washed in (3) Moisture is still retained in the hydrous spherical silica gel particles from which impurities have been extracted and removed in the previous step. This moisture is divided into adhering water and bound water. Usually, adhering water can be easily removed by heating at a temperature of about 100 ° C., but it is difficult to completely remove bound water even at a temperature of 400 ° C. or higher. A drying process is performed to remove the adhering water, and a baking process is performed to remove the bound water and to densify the spherical silica gel particles to an arbitrary level.

乾燥及び焼成の工程において、乾燥時に静置状態で乾燥し、その状態で焼成した場合、一部の粒子間で焼結が生じ、粒径を増大させる原因となっていた。乾燥時もしくは乾燥後に解砕し、焼成することで粒子間の焼結を抑制することができ、焼成後においても粒径分布は最大粒子径が平均粒径の4倍以下である粗粒切れの良い粒径分布が維持できる。   In the drying and firing steps, when drying is performed in a stationary state during drying and firing is performed in that state, sintering occurs between some particles, which increases the particle size. Sintering between particles can be suppressed by crushing and firing at the time of drying or after drying, and even after firing, the particle size distribution is a coarse particle with a maximum particle size of 4 times the average particle size or less. Good particle size distribution can be maintained.

流動乾燥機は乾燥しながら、解砕されるため、さらに有効である。付着水を除去するための乾燥処理条件は、温度50〜500℃、実用的には100〜300℃の範囲とするのがよい。処理時間は、乾燥温度に応じて、1分間〜40時間の範囲で適宜選定すればよい。通常、10〜30時間で乾燥できる。   Since the fluid dryer is crushed while drying, it is more effective. The drying treatment conditions for removing the adhering water are preferably 50 to 500 ° C., and practically 100 to 300 ° C. What is necessary is just to select processing time suitably in the range of 1 minute-40 hours according to drying temperature. Usually, it can be dried in 10 to 30 hours.

(5) (4)の乾燥時もしくは乾燥後に乾燥球状シリカゲル粒子を解砕する解砕工程
乾燥後に解砕を行うことにより、乾燥及び焼成処理の際にシリカを流動状態に保たなくても、粒子同士が焼結することなく焼成できる。平均粒径2.5μm以上6μm未満の吸着性シリカ充填材まで焼成するにあたり、乾燥後の解砕が粒子間焼結を防止するために有効である。
(5) Crushing step of crushing dry spherical silica gel particles at the time of drying or after drying of (4) By performing crushing after drying, even if the silica is not kept in a fluid state during drying and firing treatment, The particles can be fired without sintering. When firing to an adsorptive silica filler having an average particle size of 2.5 μm or more and less than 6 μm, crushing after drying is effective for preventing interparticle sintering.

焼成前の解砕には最大粒径の10倍以下の目開きを有するスクリーンが用いられる。好ましくは1〜5倍の目開きを有するスクリーンを使用することがよい。さらに好ましくは1〜3倍の目開きを有するスクリーンを使用することがよい。スクリーンを使用した解砕の仕方は特に限定しないが、振動篩や超音波篩を用いる方法や水平円筒状のスクリーンの内部に原料をフィードし、スクリーン内部に取り付けられたブレードを高速回転させることにより、連続的に解砕させる方法(例えば、ターボ工業製ターボスクリーナー)などが挙げられる。篩の材質は金属による汚染が無いものが望ましい。これを満足するために樹脂製の篩が望ましい。樹脂の種類は特に限定しないが、ポリエチレン、ポリプロピレン、ナイロン、カーボン、アクリル、ポリエステル、ポリイミド、フッ素系樹脂等が使用できる。解砕時の静電気を抑制するために、帯電性を抑制した樹脂が有効である。また、高湿下で作業することも可能である。また、若干の水分を添加することも可能である。   For crushing before firing, a screen having an opening of 10 times or less the maximum particle size is used. It is preferable to use a screen having an opening of 1 to 5 times. More preferably, a screen having an opening of 1 to 3 times may be used. The method of crushing using a screen is not particularly limited, but by using a vibrating sieve or an ultrasonic sieve or by feeding the raw material into a horizontal cylindrical screen and rotating the blade attached inside the screen at high speed And a continuous crushing method (for example, a turbo screener manufactured by Turbo Industry). The material of the sieve is preferably free from metal contamination. In order to satisfy this, a resin sieve is desirable. The type of resin is not particularly limited, but polyethylene, polypropylene, nylon, carbon, acrylic, polyester, polyimide, fluorine resin, and the like can be used. In order to suppress static electricity during crushing, a resin with suppressed chargeability is effective. It is also possible to work under high humidity. It is also possible to add some moisture.

また、解砕前原料シリカの最大粒径以下の篩目を有するスクリーンを用いることにより、解砕と分級を同時に行うことも出来る。原料シリカの粒径分布から篩上が10%に相当する粒径と同じ目開き、もしくはそれ以上の目開き有する篩が工業的に有用である。   Moreover, crushing and classification can be performed simultaneously by using a screen having a sieve having a maximum particle size of the raw silica before crushing. From the particle size distribution of the raw silica, a sieve having an opening equal to or larger than the particle size corresponding to 10% on the sieve is industrially useful.

(6) (5)で解砕した乾燥球状シリカゲル粒子を300〜700℃で焼成する1次焼成工程
解砕後の焼成方法は300〜700℃、700〜1150℃のそれぞれの範囲で2段階の焼成が必要である。1次焼成工程では反応時に油、界面活性剤等を使用するため、これらの有機物を除去することを目的としている。1次焼成は300〜700℃の範囲が最適である。通常、シリカの比表面積、細孔容積の制御は焼成温度を制御することで可能であるが、多孔質シリカの比表面積を低減させる場合、700℃以上の温度が必要となる。有機物が残った状態での焼成は有機物の蒸発潜熱や燃焼による発熱で温度制御が困難となるため、1次焼成で有機物を予め除去することが重要である。
(6) Primary firing step of firing the dried spherical silica gel particles crushed in (5) at 300 to 700 ° C The firing method after pulverization is in two stages in each range of 300 to 700 ° C and 700 to 1150 ° C. Firing is necessary. In the primary firing step, oil, a surfactant, and the like are used during the reaction, and therefore the purpose is to remove these organic substances. The primary firing is optimally in the range of 300 to 700 ° C. Normally, the specific surface area and pore volume of silica can be controlled by controlling the calcination temperature. However, in order to reduce the specific surface area of porous silica, a temperature of 700 ° C. or higher is required. Firing with the organic matter remaining makes it difficult to control the temperature due to the latent heat of vaporization of the organic matter and heat generated by combustion, so it is important to remove the organic matter beforehand by primary firing.

(7)(6)で1次焼成した球状シリカゲル粒子を700〜1100℃(700℃は含まない)で焼成する2次焼成工程
700〜1150℃での焼成は粒子内部の細孔を任意のレベルまで閉塞させることを目的としている。そのため、300〜700℃の温度で10分間〜30時間程度焼成を行い、続いて700〜1150℃で10分間〜30時間程度焼成することで任意の比表面積に制御することができる。焼成時間はシリカ自体が設定温度で2時間以上保持されていれば問題無い。1段焼成でも昇温速度を極めて遅くすることで比表面積及び細孔の制御は可能であるが、生産性を考慮すると2段階で焼成することが望ましい。
(7) Secondary firing step of firing the spherical silica gel particles primarily fired in (6) at 700 to 1100 ° C (excluding 700 ° C)
Firing at 700 to 1150 ° C. aims to block the pores inside the particles to an arbitrary level. Therefore, the specific surface area can be controlled by baking at a temperature of 300 to 700 ° C. for about 10 minutes to 30 hours and then baking at 700 to 1150 ° C. for about 10 minutes to 30 hours. The firing time is not a problem as long as the silica itself is held at the set temperature for 2 hours or more. Although it is possible to control the specific surface area and pores by extremely slowing the temperature rising rate even in one-stage firing, it is desirable to fire in two stages in consideration of productivity.

焼成の手段は台車式焼成炉、流動焼成炉、ロータリーキルン、火炎焼成炉などが使用できる。場合によって、焼成後に極弱い凝集が見られることもあるが、再度スクリーンを用いて解砕することにより、粒子間焼結および凝集のない吸着性シリカ充填材が得られる。   As the firing means, a cart-type firing furnace, a fluid firing furnace, a rotary kiln, a flame firing furnace, or the like can be used. In some cases, extremely weak agglomeration may be observed after firing, but an adsorbable silica filler free from inter-particle sintering and agglomeration can be obtained by crushing again using a screen.

焼成処理を行う際の雰囲気としては、酸素や炭酸ガスなどでも良いし、必要によっては窒素やアルゴンなどの不活性ガスを用いることもできる。実用的には空気とするのがよい。焼成処理を行う際に用いる装置としては、シリカ粒子を静置した状態で処理する焼成炉を用いることができる。なお、乾燥球状シリカゲル粒子を流動状態に保ちながら焼成処理する装置、たとえば、流動焼成炉・ロータリーキルン・火炎焼成炉などを用いることもできる。加熱源としては、電熱または燃焼ガスなどを用いることができる。焼成前のシリカゲルの水分含有量は特に規定しないが、焼成時の粒子間固結が生じないようにするために、出来る限り含水率を低減した乾燥球状シリカゲル粒子を焼成することが望ましい。   As an atmosphere for performing the baking treatment, oxygen, carbon dioxide gas, or the like may be used, and an inert gas such as nitrogen or argon may be used as necessary. Practically, it is better to use air. As an apparatus used when performing a baking process, the baking furnace which processes in the state which left the silica particle stationary can be used. It is also possible to use an apparatus for firing the dried spherical silica gel particles while maintaining the fluidized state, for example, a fluid firing furnace, a rotary kiln, or a flame firing furnace. As the heating source, electric heat or combustion gas can be used. The moisture content of the silica gel before firing is not particularly defined, but it is desirable to fire the dried spherical silica gel particles with a water content reduced as much as possible in order to prevent interparticle consolidation during firing.

焼成前における乾燥球状シリカゲル粒子の比表面積は特に規定しないが、液相反応等で得られる球状シリカゲルは比表面積400m2/g以上を有する。焼成前の球状シリカゲルの比表面積は350〜700m2/gが望ましい。比表面積が350m2/g未満の場合、焼成後の吸着性が不十分であり、700m2/gを超える場合は焼成時に粒子間の焼結が起こりやすくなるため、樹脂配合時の流動特性が悪化する。 The specific surface area of the dried spherical silica gel particles before firing is not particularly limited, but the spherical silica gel obtained by a liquid phase reaction or the like has a specific surface area of 400 m 2 / g or more. The specific surface area of the spherical silica gel before firing is preferably 350 to 700 m 2 / g. If the specific surface area is less than 350 m 2 / g, the adsorptivity after firing is insufficient, and if it exceeds 700 m 2 / g, sintering between particles is likely to occur during firing, so the flow characteristics at the time of resin blending are Getting worse.

本発明では焼成前に解砕することにより、焼成時に粒子間焼結が生じない。即ち、平均粒径に対する最大粒径が4倍以下である球状シリカゲルを生成させた後、焼成前に解砕することで、平均粒径に対する最大粒径が4倍以下である吸着性シリカ充填材を製造することが可能である。   In the present invention, by crushing before firing, inter-particle sintering does not occur during firing. That is, after forming a spherical silica gel having a maximum particle size of 4 times or less with respect to the average particle size, the adsorbent silica filler having a maximum particle size of 4 times or less with respect to the average particle size is crushed before firing. Can be manufactured.

本発明の吸着性シリカ充填材は水分を吸着しやすいため、乾燥後の冷却は乾燥空気または窒素、アルゴン等の不活性ガス雰囲気下で行うことが望ましく、冷却後は直ちにガスバリア性に優れた梱包袋もしくは容器に保管することが望ましい。ガスバリア性に優れた梱包袋としてはアルミ袋等が使用できる。   Since the adsorptive silica filler of the present invention easily adsorbs moisture, it is desirable that cooling after drying be performed in an atmosphere of an inert gas such as dry air or nitrogen or argon, and immediately after cooling, packaging with excellent gas barrier properties. It is desirable to store it in a bag or container. An aluminum bag etc. can be used as a packaging bag excellent in gas barrier property.

本発明で調製した吸着性シリカ充填材は吸湿性を有しているにもかかわらず、樹脂に混合した際、比較的に粘度が低いため、吸湿性を必要とする封止材の充填材として好適に用いることができる。また、粒径分布の粗粒切れが良いため、樹脂相厚が薄い封止材にも吸着性充填材として好適に用いることができる。特に画像素子デバイス向け封止樹脂の充填材として好適に使用することができる。   Although the adsorptive silica filler prepared in the present invention has hygroscopicity, it has a relatively low viscosity when mixed with a resin, so as a filler for a sealing material that requires hygroscopicity. It can be used suitably. In addition, since the coarse particle size distribution is good, it can be suitably used as an adsorptive filler even in a sealing material having a thin resin phase thickness. In particular, it can be suitably used as a filler for a sealing resin for an image element device.

実施例1
<球状シリカゲル粒子の調製及び不純物抽出除去工程>
(1)アルカリ珪酸塩水溶液を分散相として細粒状に分散させた油中水滴型(W/O型)エマルションを調製する乳化工程
水ガラスとしてJIS3号水ガラスの水分調整を行い25℃で400cpに調整したもの、連続相形成用液体としてイソパラフィン系炭化水素油(日本石油化学工業株式会社製、製品名:アイソゾール400)、乳化剤としてソルビタンモノオレート(花王株式会社製、製品名:レオドールSP−O10」を使用した。水ガラス、アイソゾール400、レオドールSP−O10をそれぞれ20kg、7.5kg、0.18kg秤量した。各原料を混合し、攪拌機で粗攪拌した後、乳化機を用いて2980rpmの回転数で乳化させ、乳化液415gを採取した。
Example 1
<Preparation of spherical silica gel particles and impurity extraction and removal step>
(1) An emulsification process for preparing a water-in-oil (W / O) emulsion in which an aqueous alkali silicate solution is dispersed finely as a dispersed phase. Adjust water content of JIS No. 3 water glass as water glass to 400 cp at 25 ° C. Adjusted, isoparaffinic hydrocarbon oil (manufactured by Nippon Petrochemical Co., Ltd., product name: Isosol 400) as the liquid for forming the continuous phase, and sorbitan monooleate (product name: Leodol SP-O10, manufactured by Kao Corporation) as the emulsifier Weighed 20 kg, 7.5 kg, and 0.18 kg of water glass, Isozol 400, and Rhedol SP-O10, respectively, mixed each raw material, coarsely stirred with a stirrer, and then emulsified at 2980 rpm with an emulsifier. 415 g of the emulsion was collected.

(2) (1)で調製した油中水滴型(W/O型)エマルションを鉱酸水溶液と混合し、平均粒径2.9μm以上7μm未満の球状シリカゲル粒子を生成させる凝固工程
28%硫酸水溶液を575g調製し、室温で攪拌しながら、これに前述の乳化液を添加した。添加終了後、室温下でさらに40分間攪拌を続けた。次いで攪拌下で62%工業用硝酸40gを添加し、さらに20分間攪拌した後、攪拌下で100℃に加熱し、30分間保持した。この処理によって、乳濁状の反応液はオイル相(上層)と球状シリカゲル粒子が分散した水相(下層)とに分離した。
(2) A coagulation step in which the water-in-oil (W / O) emulsion prepared in (1) is mixed with a mineral acid aqueous solution to produce spherical silica gel particles having an average particle size of 2.9 μm or more and less than 7 μm.
575 g of 28% sulfuric acid aqueous solution was prepared, and the above emulsion was added thereto while stirring at room temperature. After the addition was complete, stirring was continued for an additional 40 minutes at room temperature. Next, 40 g of 62% industrial nitric acid was added under stirring, and the mixture was further stirred for 20 minutes, then heated to 100 ° C. with stirring and held for 30 minutes. By this treatment, the emulsion-like reaction liquid was separated into an oil phase (upper layer) and an aqueous phase (lower layer) in which spherical silica gel particles were dispersed.

(3) (2)で含水球状シリカゲル粒子を洗浄する洗浄工程
オイル相を除き、水相中の球状シリカゲル粒子を常法により濾過・洗浄した。洗浄は0.01%硫酸水溶液で反応液を置換洗浄した後、純水を用い、洗液のpHが4以上になるまで繰り返した。ヌッチェを用いて、脱水し、含水球状シリカゲル粒子を得た。
(3) Washing step for washing the hydrous spherical silica gel particles in (2) The spherical silica gel particles in the aqueous phase were filtered and washed by a conventional method except for the oil phase. Washing was carried out by substituting and washing the reaction solution with 0.01% sulfuric acid aqueous solution and then using pure water until the pH of the washing solution became 4 or more. Using Nutsche, dehydration was performed to obtain hydrous spherical silica gel particles.

<含水球状シリカゲル粒子の乾燥、解砕、焼成工程>
(4) (3)で洗浄した含水球状シリカゲルを乾燥させる乾燥工程
得られた含水球状シリカゲル粒子を温度120℃で20時間乾燥し、100gの乾燥球状シリカゲル粒子を得た。
<Drying, crushing, firing process of hydrous spherical silica gel particles>
(4) Drying step for drying the hydrous spherical silica gel washed in (3) The obtained hydrous spherical silica gel particles were dried at a temperature of 120 ° C. for 20 hours to obtain 100 g of dry spherical silica gel particles.

(5) (4)の乾燥時もしくは乾燥後に乾燥球状シリカゲル粒子解砕する解砕工程
乾燥球状シリカゲル粒子をポリエステル製目開き33μm篩を通過させ、解砕した。
(5) Crushing step of crushing dry spherical silica gel particles during or after drying in (4) Dry spherical silica gel particles were passed through a 33 μm sieve made of polyester and crushed.

(6) (5)で解砕した乾燥球状シリカゲル粒子を300〜700℃で焼成する1次焼成工程
(7)(6)で1次焼成した球状シリカゲル粒子を700〜1100℃(700℃は含まない)で焼成する2次焼成工程
解砕した乾燥シリカゲル粒子を石英製ビーカー(1リットル)に充填し、焼成した。焼成は200℃/hrで昇温させ、700℃で15時間保持した後、さらに850℃まで昇温させ、850℃で8時間保持し、吸着性シリカ充填材を得た。
(6) Primary firing step of firing the dried spherical silica gel particles crushed in (5) at 300 to 700 ° C
(7) Secondary firing process in which spherical silica gel particles primarily fired in (6) are fired at 700 to 1100 ° C (not including 700 ° C). The crushed dry silica gel particles are filled into a quartz beaker (1 liter). Baked. Firing was carried out at 200 ° C./hr, held at 700 ° C. for 15 hours, further heated to 850 ° C. and held at 850 ° C. for 8 hours to obtain an adsorptive silica filler.

焼成して得られた吸着性シリカ充填材のシリカ物性を表1に示す。平均粒径は4.3μm、最大粒径は13μmであり、真比重は2.19であった。BET法で測定した比表面積は155m2/gであった。また、電子顕微鏡写真より真球度が0.9以上である粒子の含有率が90%以上である球状であり、表面の平滑性も良好であった。 Table 1 shows the silica physical properties of the adsorptive silica filler obtained by firing. The average particle size was 4.3 μm, the maximum particle size was 13 μm, and the true specific gravity was 2.19. The specific surface area measured by the BET method was 155 m 2 / g. Further, from the electron micrograph, it was spherical with a content rate of particles having a sphericity of 0.9 or more and 90% or more, and the surface smoothness was also good.

吸湿率Aは式(II)から算出した。M1は絶乾状態の吸着性シリカ充填材の質量であり、M2吸湿後の吸着性シリカ充填材の質量を表す。絶乾状態の吸着性シリカ充填材をトレーに0.1g入れ(M1:精秤する)、テフロン(登録商標)容器を、SUS密封容器に入れ121℃恒温槽に24時間放置した。24時間後トレーを容器から取り出し、質量を測定した(M2)。   The moisture absorption A was calculated from the formula (II). M1 is the mass of the adsorptive silica filler in the absolutely dry state, and represents the mass of the adsorbable silica filler after moisture absorption by M2. 0.1 g of an absolutely dry adsorbent silica filler was placed in a tray (M1: precisely weighed), and a Teflon (registered trademark) container was placed in a SUS sealed container and left in a 121 ° C. constant temperature bath for 24 hours. After 24 hours, the tray was removed from the container and the mass was measured (M2).

A[%]=100×(M2−M1)/M1・・・・・・(II)
また、Na、K、Liなどのアルカリ金属、Ca、Mgなどのアルカリ土類金属及びCr、Fe、Cu等遷移金属の各元素の濃度は1ppm以下であり、また、UおよびThの放射性元素の合計は0.1ppb以下であった。
A [%] = 100 x (M2-M1) / M1 (II)
The concentration of each element of alkali metals such as Na, K and Li, alkaline earth metals such as Ca and Mg, and transition metals such as Cr, Fe and Cu is 1 ppm or less, and the radioactive elements of U and Th The total was less than 0.1 ppb.

得られた吸着性シリカ充填材の樹脂配合時の特性を表2に示す。樹脂配合粘度測定の際にエポキシ樹脂はビスフェノールA型液状エポキシ樹脂とブチルグリシジルエーテルの混合物(質量比89:11の混合物、エポキシ当量が181〜191、25℃の粘度が9〜12ポイズ、ジャパンエポキシレジン株式会社製、商品名:エピコート815)を使用した。を用いた。配合比は:エポキシ樹脂=60:40質量比とした。樹脂配合粘度は東機産業株式会社製RE-80Rを用いて、50℃で測定した。   Table 2 shows the characteristics of the adsorbable silica filler obtained when the resin was blended. The epoxy resin is a mixture of bisphenol A liquid epoxy resin and butyl glycidyl ether (a mixture with a mass ratio of 89:11, an epoxy equivalent of 181 to 191 and a viscosity at 25 ° C of 9 to 12 poise, Japan Epoxy) Resin Co., Ltd., trade name: Epicoat 815) was used. Was used. The blending ratio was: epoxy resin = 60: 40 mass ratio. The resin compounding viscosity was measured at 50 ° C. using RE-80R manufactured by Toki Sangyo Co., Ltd.

なお、得られたサンプルは予め硬化剤を混ぜたエポキシ樹脂に混合し、脱泡した後、硬化促進剤を添加し、硬化させた。配合比はフィラー:エポキシ樹脂:硬化剤=6:2:2(質量%)、硬化促進剤をエポキシ樹脂に対し、0.1質量%添加した。エポキシ樹脂はエピコート815を用いた。硬化剤はリカシッドMT-500(新日本理化株式会社製)を用いた。硬化促進剤はキュアゾール2E4MZCN(四国化成工業株式会社)を用いた。所定配合比で混合した樹脂組成物は直径2cmの円盤状の型枠中に厚さ2mm流し込み、150℃、1時間で硬化させた。   The obtained sample was mixed with an epoxy resin mixed with a curing agent in advance and defoamed, and then a curing accelerator was added and cured. The compounding ratio was filler: epoxy resin: curing agent = 6: 2: 2 (mass%), and a curing accelerator was added at 0.1 mass% with respect to the epoxy resin. Epicoat 815 was used as the epoxy resin. The curing agent used was Ricacid MT-500 (manufactured by Shin Nippon Rika Co., Ltd.). Curazole 2E4MZCN (Shikoku Chemical Industry Co., Ltd.) was used as the curing accelerator. The resin composition mixed at a predetermined compounding ratio was poured into a disk-shaped mold having a diameter of 2 cm and was cured at 150 ° C. for 1 hour.

円盤状に成形した硬化物を容量50mlテフロン(登録商標)容器(金網で上下に仕切り、下部に純水15ml、上部にサンプルを置く)に硬化物サンプルを入れ、テフロン(登録商標)容器を、SUS密封容器に入れ121℃恒温槽に24時間放置した。24時間後硬化物サンプルを容器から取り出し、質量を測定し、吸湿率を算出した。   Put the hardened material in a disk shape into a 50 ml Teflon (registered trademark) container (divided vertically with a metal mesh, 15 ml of pure water at the bottom, put the sample at the top), and place the Teflon (registered trademark) container in the The container was placed in a SUS sealed container and left in a constant temperature bath at 121 ° C. for 24 hours. After 24 hours, the cured product sample was taken out of the container, the mass was measured, and the moisture absorption rate was calculated.

実施例2
焼成温度を700℃で15時間保持した後、さらに950℃まで昇温させ、950℃で15時間保持したことを除き、実施例1と同様にして吸着性シリカ充填材を得た。
Example 2
After maintaining the calcination temperature at 700 ° C. for 15 hours, the temperature was further raised to 950 ° C., and an adsorptive silica filler was obtained in the same manner as in Example 1 except that the temperature was maintained at 950 ° C. for 15 hours.

実施例3
焼成温度を700℃で15時間保持した後、さらに1050℃まで昇温させ、1050℃で8時間保持したことを除き、実施例1と同様にして吸着性シリカ充填材を得た。
Example 3
After maintaining the calcination temperature at 700 ° C. for 15 hours, the temperature was further raised to 1050 ° C., and an adsorbable silica filler was obtained in the same manner as in Example 1 except that the calcination temperature was maintained at 1050 ° C. for 8 hours.

比較例1
焼成温度を700℃で15時間保持した後、さらに1150℃まで昇温させ、1150℃で8時間保持したことを除き、実施例1と同様にしてシリカ充填材を得た。
Comparative Example 1
After maintaining the firing temperature at 700 ° C. for 15 hours, the temperature was further raised to 1150 ° C., and a silica filler was obtained in the same manner as in Example 1 except that the firing temperature was maintained at 1150 ° C. for 8 hours.

比較例2
焼成温度を300℃/hrの昇温速度で850℃まで昇温させ、850℃で8時間保持したことを除き、実施例1と同様にしてシリカ充填材を得た。SEMで観察したところ所々に粒子間の融着が認められた。実施例2と比較し、比表面積が小さいにもかかわらず、樹脂配合時の粘度は高い値を示した。
Comparative Example 2
A silica filler was obtained in the same manner as in Example 1 except that the firing temperature was increased to 850 ° C. at a rate of 300 ° C./hr and held at 850 ° C. for 8 hours. When observed by SEM, fusion between particles was observed in several places. Although the specific surface area was small compared with Example 2, the viscosity at the time of resin compounding showed a high value.

比較例3
焼成温度を700℃で15時間保持した後、冷却後、回収した。その他は実施例1と同様。実施例1と同条件で樹脂配合粘度を測定しようとしたが、所定の比で吸着性シリカ充填材をエポキシ樹脂に混合した際に、該樹脂組成物が流動性を有しなかったため、樹脂配合粘度の測定は出来なかった(<250000mPa・s)。
Comparative Example 3
The firing temperature was maintained at 700 ° C. for 15 hours, and then cooled and recovered. Others are the same as Example 1. An attempt was made to measure the resin compounding viscosity under the same conditions as in Example 1. However, when the adsorbing silica filler was mixed with the epoxy resin at a predetermined ratio, the resin composition did not have fluidity. Viscosity could not be measured (<250000 mPa · s).

参考例1
エポキシ樹脂の粘度を50℃で測定した。また、エポキシ樹脂:硬化剤=1:1(質量%)、硬化促進剤をエポキシ樹脂に対し、0.1質量%添加し、フィラーを含まない樹脂硬化物を調製した。得られた樹脂硬化物の吸湿率を測定した。

Figure 2005054130
Figure 2005054130
Reference example 1
The viscosity of the epoxy resin was measured at 50 ° C. Moreover, 0.1 mass% of epoxy resin: curing agent = 1: 1 (mass%) and a curing accelerator were added to the epoxy resin to prepare a cured resin product containing no filler. The moisture absorption rate of the obtained resin cured product was measured.
Figure 2005054130
Figure 2005054130

Claims (8)

以下の項目を満足する吸着性シリカ充填材
(a)平均粒径2.5μm以上6μm未満
(b)比表面積100m2/g以上300m2/g以下
(c)吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が36000mPa・s以下
Adsorbing silica filler that satisfies the following items:
(a) Average particle size of 2.5 μm or more and less than 6 μm
(b) Specific surface area of 100 m 2 / g or more and 300 m 2 / g or less
(c) When measuring the viscosity when adsorbing silica filler and bisphenol A liquid epoxy resin are mixed at a mass ratio of 60:40, the viscosity of the viscometer at 2.5 rpm is 36000 mPa · s or less at 50 ° C.
以下の項目を満足する吸着性シリカ充填材
(a)平均粒径2.5μm以上6μm未満
(b)比表面積50m2/g以上100m2/g未満
(c)吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比で60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が12000mPa・s以下
Adsorbing silica filler that satisfies the following items:
(a) Average particle size of 2.5 μm or more and less than 6 μm
(b) Specific surface area of 50 m 2 / g or more and less than 100 m 2 / g
(c) When measuring the viscosity when adsorbing silica filler and bisphenol A type liquid epoxy resin are mixed at a mass ratio of 60:40, the viscosity of the viscometer at 2.5 rpm is less than 12000 mPa · s at 50 ° C.
以下の項目を満足する吸着性シリカ充填材
(a)平均粒径2.5μm以上6μm未満
(b)比表面積15m2/g以上50m2/g未満
吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比60:40で混合した際の粘度測定において、50℃で粘度計の回転数2.5rpmの粘度が6000mPa・s以下
Adsorbing silica filler that satisfies the following items:
(a) Average particle size of 2.5 μm or more and less than 6 μm
(b) Specific surface area 15m 2 / g or more and less than 50m 2 / g Adsorbable silica filler and bisphenol A type liquid epoxy resin are mixed at a mass ratio of 60:40. Viscosity at 2.5rpm is 6000mPa ・ s or less
吸着性シリカ充填材とビスフェノールA型液状エポキシ樹脂を質量比で60:40混合した際、50℃での粘度測定において、粘度計の回転数1rpmの粘度値をη1、2.5rpmの粘度値をη2とした場合、η1/η2<1.0を満足することを特徴とする請求項1〜3いずれかに記載の吸着性シリカ充填材。   When adsorbing silica filler and bisphenol A type liquid epoxy resin are mixed at a mass ratio of 60:40, viscosity measurement at 50 ° C is η1 for the viscosity of the viscometer and η2 for 2.5rpm. The absorptive silica filler according to claim 1, wherein η1 / η2 <1.0 is satisfied. 放射性元素の合計が2ppb以下である請求項1〜4いずれかに記載の吸着性シリカ充填材。   The adsorptive silica filler according to any one of claims 1 to 4, wherein the total amount of radioactive elements is 2 ppb or less. 以下の(1)〜(7)の工程を含む吸着性シリカ充填材の製造方法。
(1)アルカリ珪酸塩水溶液を分散相として細粒状に分散させた油中水滴型(W/O型)エマルションを調製する乳化工程
(2) (1)で調製した油中水滴型(W/O型)エマルションを鉱酸水溶液と混合し、平均粒径2.9μm以上7μm未満の含水球状シリカゲル粒子を生成させる凝固工程
(3) (2)で含水球状シリカゲル粒子を洗浄する洗浄工程
(4) (3)で洗浄した含水球状シリカゲル粒子を乾燥させる乾燥工程
(5) (4)の乾燥時もしくは乾燥後に乾燥球状シリカゲル粒子を解砕する解砕工程
(6) (5)で解砕した乾燥球状シリカゲル粒子を300〜700℃で焼成する1次焼成工程
(7)(6)で1次焼成した球状シリカゲル粒子を700〜1100℃(700℃は含まない)で焼成する2次焼成工程
A method for producing an adsorptive silica filler comprising the following steps (1) to (7):
(1) An emulsification step of preparing a water-in-oil (W / O) emulsion in which an aqueous alkali silicate solution is dispersed in a fine granular form as a dispersed phase
(2) A coagulation step in which the water-in-oil (W / O) emulsion prepared in (1) is mixed with a mineral acid aqueous solution to produce hydrous spherical silica gel particles having an average particle size of 2.9 μm to less than 7 μm.
(3) Cleaning process for cleaning the hydrous spherical silica gel particles in (2)
(4) Drying step of drying the hydrous spherical silica gel particles washed in (3)
(5) Crushing step of crushing dry spherical silica gel particles during or after drying of (4)
(6) Primary firing step of firing the dried spherical silica gel particles crushed in (5) at 300 to 700 ° C
(7) Secondary firing step of firing the spherical silica gel particles primarily fired in (6) at 700 to 1100 ° C (excluding 700 ° C)
請求項1〜5の少なくとも1つの吸着性シリカ充填材を用いることを特徴とする封止用樹脂組成物。   A sealing resin composition comprising the at least one adsorptive silica filler according to claim 1. 画像素子デバイス用であることを特徴とする請求項7記載の封止用樹脂組成物。   The sealing resin composition according to claim 7, wherein the sealing resin composition is for an image element device.
JP2003288533A 2003-08-07 2003-08-07 Adsorptive silica filler and its manufacturing method and resin composition for sealing Pending JP2005054130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288533A JP2005054130A (en) 2003-08-07 2003-08-07 Adsorptive silica filler and its manufacturing method and resin composition for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288533A JP2005054130A (en) 2003-08-07 2003-08-07 Adsorptive silica filler and its manufacturing method and resin composition for sealing

Publications (1)

Publication Number Publication Date
JP2005054130A true JP2005054130A (en) 2005-03-03

Family

ID=34367153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288533A Pending JP2005054130A (en) 2003-08-07 2003-08-07 Adsorptive silica filler and its manufacturing method and resin composition for sealing

Country Status (1)

Country Link
JP (1) JP2005054130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016139A (en) * 2005-07-08 2007-01-25 Toyo Ink Mfg Co Ltd Composition curable with actinic energy ray and decorative sheet produced by using the same
JP2009137806A (en) * 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd Porous silica particle having surface smoothness, manufacturing process of the porous silica particle, and cosmetic mixed with the porous silica particle
WO2010150818A1 (en) * 2009-06-25 2010-12-29 パナソニック電工株式会社 Liquid epoxy resin composition and process for producing same
WO2014199904A1 (en) * 2013-06-10 2014-12-18 日産化学工業株式会社 Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016139A (en) * 2005-07-08 2007-01-25 Toyo Ink Mfg Co Ltd Composition curable with actinic energy ray and decorative sheet produced by using the same
JP2009137806A (en) * 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd Porous silica particle having surface smoothness, manufacturing process of the porous silica particle, and cosmetic mixed with the porous silica particle
KR101441169B1 (en) * 2007-12-07 2014-09-17 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particle having surface smoothness, method for production of the porous silica particle, and cosmetic comprising the porous silica particle
US9327258B2 (en) 2007-12-07 2016-05-03 Jgc Catalysts And Chemicals Ltd. Porous silica-based particles having smooth surface, method for production thereof and cosmetic comprising such particles
WO2010150818A1 (en) * 2009-06-25 2010-12-29 パナソニック電工株式会社 Liquid epoxy resin composition and process for producing same
WO2014199904A1 (en) * 2013-06-10 2014-12-18 日産化学工業株式会社 Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
KR20160018692A (en) * 2013-06-10 2016-02-17 닛산 가가쿠 고교 가부시키 가이샤 Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
JPWO2014199904A1 (en) * 2013-06-10 2017-02-23 日産化学工業株式会社 Silica-containing resin composition, method for producing the same, and molded article of silica-containing resin composition
US9777141B2 (en) 2013-06-10 2017-10-03 Nissan Chemical Industries, Ltd. Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
KR102172825B1 (en) 2013-06-10 2020-11-02 닛산 가가쿠 가부시키가이샤 Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition

Similar Documents

Publication Publication Date Title
US7070748B2 (en) Non-porous spherical silica and method for production thereof
JP5897043B2 (en) High purity silica granule for quartz glass application and its production method
KR100279083B1 (en) High Purity Spherical Silica And Method Of Manufacturing The Same
Redding et al. Organoclay sorption of benzene as a function of total organic carbon content
US10391433B2 (en) Opaline biogenic silica/expanded perlite composite products
WO2012110995A1 (en) Silica core-shell microparticles
Pizarro et al. Nanomagnetite-zeolite composites in the removal of arsenate from aqueous systems
JP2005054131A (en) Adsorptive silica filler and its manufacturing method and resin composition for sealing
TW201936498A (en) Fused spherical silica powder and manufacturing method therefor
JP6263233B2 (en) Inorganic material for removing harmful substances in wastewater, method for producing the same, and wastewater treatment method
JP2005054130A (en) Adsorptive silica filler and its manufacturing method and resin composition for sealing
JP2005054129A (en) Adsorptive silica filler and its manufacturing method and resin composition for sealing
KR20230150344A (en) Silica powder and method for producing the same
JP4195243B2 (en) Method for producing high purity silica powder
JP4691321B2 (en) Method for producing high-purity silicon oxide powder
JP5417248B2 (en) Method for producing spherical alumina powder
JP2012055807A (en) Adsorbent for trimethylsilanol and chemical filter carrying the adsorbent
JP2005119884A (en) Non-porous spherical silica and method of manufacturing the same
JP4044350B2 (en) Nonporous spherical silica and method for producing the same
CN113365943B (en) Silica powder, resin composition and dispersion
US11857943B2 (en) Activated carbon and production method thereof
WO2024047768A1 (en) Method for producing spherical silica particles
JP2004292250A (en) Surface-modified spherical silica, its production method, and resin composition for semiconductor sealing
JP4006220B2 (en) Surface-modified spherical silica, method for producing the same, and resin composition for semiconductor encapsulant
Wyns et al. Iron (III) removal from acidic solutions using mesoporous titania microspheres prepared by vibrational droplet coagulation