JP2005054014A - Polyester composition, method for producing the same and polyester fiber - Google Patents

Polyester composition, method for producing the same and polyester fiber Download PDF

Info

Publication number
JP2005054014A
JP2005054014A JP2003284767A JP2003284767A JP2005054014A JP 2005054014 A JP2005054014 A JP 2005054014A JP 2003284767 A JP2003284767 A JP 2003284767A JP 2003284767 A JP2003284767 A JP 2003284767A JP 2005054014 A JP2005054014 A JP 2005054014A
Authority
JP
Japan
Prior art keywords
polyester
polyester composition
titanium
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284767A
Other languages
Japanese (ja)
Other versions
JP2005054014A5 (en
Inventor
Toru Takase
透 高瀬
Ryoji Tsukamoto
亮二 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2003284767A priority Critical patent/JP2005054014A/en
Publication of JP2005054014A publication Critical patent/JP2005054014A/en
Publication of JP2005054014A5 publication Critical patent/JP2005054014A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polyester composition having an excellent color tone, exhibiting excellent heat stability, a slight rise in pack pressure and a small amount of foreign matter at a nozzle even by continuous spinning and having an improved hue, and a fiber. <P>SOLUTION: The polyester composition comprises (1) 0.01-5 wt.% based on the total weight of the polyester composition of titanium dioxide particles having 0.1-0.5 μm average particle diameter and 0.5-2 wt.% weight fraction of particles with >1 μm particle diameters and containing 0.1-0.5 wt.% of at least one kind of an element selected from Li, etc., and (2) a phosphonate compound represented by general formula (I): R<SB>1</SB>O-C(=O)-X-P(=O)-(OR<SB>2</SB>)<SB>2</SB>[R<SB>1</SB>and R<SB>2</SB>are each a 1-4C alkyl group; X is -CH<SB>2</SB>- or -CH(Y) (Y is a benzene ring)] as a phosphorus compound in a polyester having at least 80 mol% of ethylene terephthalate in all the repeating units. (3) The concentration Ti (ppm) of titanium metal element of a titanium compound soluble in a polyester and the concentration P (ppm) of phosphorus element of the phosphorus compound satisfy 0.65≤P/Ti≤5 and 10≤Ti+P≤200. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はポリエステル組成物、その製造方法及びその組成物を溶融紡糸してなるポリエステル繊維に関する。さらに詳しくは、特定の金属を含む二酸化チタンを一定割合で含み、カラー値、熱安定性ともに良好なポリエステル組成物、その製造方法及びポリエステル繊維に関する。   The present invention relates to a polyester composition, a method for producing the same, and a polyester fiber obtained by melt spinning the composition. More specifically, the present invention relates to a polyester composition containing titanium dioxide containing a specific metal in a certain ratio and having good color value and thermal stability, a method for producing the same, and a polyester fiber.

ポリエチレンテレフタレート(以下、単にポリエステルと称することがある)は、その機械的、物理的、化学的性能が優れているため、繊維、フィルム、その他の成形物に広く利用されている。しかしながら、該ポリエステルを製造する際に使用する触媒の種類によって、得られるポリエステルの品質が大きく作用され、従来広く用いられているアンチモン化合物では次のような問題がある。   Polyethylene terephthalate (hereinafter sometimes simply referred to as polyester) is widely used in fibers, films and other molded articles because of its excellent mechanical, physical and chemical performance. However, depending on the type of catalyst used in producing the polyester, the quality of the resulting polyester is greatly affected, and conventionally used antimony compounds have the following problems.

すなわち、アンチモン化合物を重縮合触媒としたポリエステルを長時間にわたって連続的に溶融紡糸すると、還元されたアンチモン金属が異物となって紡糸濾過部の圧力(以下、単にパック圧と称することがある)が上昇する問題を発生することがある。また、口金孔周辺に異物(以下、単に口金異物と称することがある)が付着堆積して、溶融ポリマー流れの曲がり現象(ベンディング)が発生し、これが原因となって紡糸、延伸工程において毛羽及び/又は断糸などの問題を発生することもある。これらの問題が、生産性を著しく低下させる原因となっている。   That is, when a polyester having an antimony compound as a polycondensation catalyst is continuously melt-spun for a long time, the reduced antimony metal becomes a foreign substance, and the pressure of the spinning filtration section (hereinafter, sometimes simply referred to as pack pressure) is increased. May cause rising problems. In addition, foreign matter (hereinafter sometimes referred to simply as “base foreign matter”) adheres and accumulates around the mouthpiece hole, causing a bending phenomenon (bending) of the molten polymer flow, and this causes fluff and spinning in the spinning and drawing processes. Problems such as broken yarn may occur. These problems cause a significant reduction in productivity.

このような問題を解消するため、アンチモン化合物以外のポリエステル重縮合触媒として、チタンテトラブトキシドのようなチタン化合物を用いることが提案されている。しかし、このようなチタン化合物を使用した場合、上記のような口金異物堆積に起因する問題は解決できるが、得られるポリエステル自身が黄色く着色され、また、溶融熱安定性も不良であるという新たな問題が発生する。   In order to solve such problems, it has been proposed to use a titanium compound such as titanium tetrabutoxide as a polyester polycondensation catalyst other than the antimony compound. However, when such a titanium compound is used, the above-mentioned problems caused by the deposition of foreign matter in the die can be solved, but the obtained polyester itself is colored yellow, and the new melt heat stability is poor. A problem occurs.

上記の着色問題を解消するため、一般的にはコバルト化合物を添加して黄味を抑えることが行われている。確かにこの方法によれば、ポリエステルの黄色味(b値)は改善することができる。しかし、コバルト化合物を添加することによってポリエステルの溶融熱安定性が低下し、ポリエステルの分解がさらに起こりやすくなるという問題がある。   In order to solve the above-mentioned coloring problem, generally a cobalt compound is added to suppress yellowing. Certainly, according to this method, the yellowness (b value) of the polyester can be improved. However, there is a problem that the addition of a cobalt compound lowers the heat stability of the polyester and further facilitates the decomposition of the polyester.

チタンテトラブトキシド以外のチタン化合物として、水酸化チタン(特許文献2参照)やα−チタン酸(特許文献3参照)をポリエステル製造用触媒として用いる方法も提案されている。しかし、前者の方法では水酸化チタンの粉末化が容易でない。一方、後者の方法ではα−チタン酸が変質し易いため、その保存・取り扱いが容易でない。したがって、これらいずれの方法も工業的に採用するには適当ではなく、また良好な色調(b値)のポリマーも得られていない。   As a titanium compound other than titanium tetrabutoxide, a method using titanium hydroxide (see Patent Document 2) or α-titanic acid (see Patent Document 3) as a catalyst for producing polyester has also been proposed. However, it is not easy to powder titanium hydroxide by the former method. On the other hand, in the latter method, α-titanic acid is likely to be deteriorated, so that storage and handling thereof are not easy. Accordingly, none of these methods is suitable for industrial use, and a polymer having a good color tone (b value) has not been obtained.

また、チタン化合物とトリメリット酸とを反応させて得られた生成物(特許文献4参照)やチタン化合物と亜リン酸エステルとを反応させて得られた生成物(特許文献5参照)をポリエステル製造用触媒として使用する方法も提案されている。確かにこれらの方法によれば、ポリエステルの溶融熱安定性はある程度向上するものの、色調が未だ十分ではなく、さらなる改善が望まれている。   In addition, a product obtained by reacting a titanium compound and trimellitic acid (see Patent Document 4) or a product obtained by reacting a titanium compound and phosphite (see Patent Document 5) is polyester. A method of using it as a production catalyst has also been proposed. Certainly, according to these methods, although the melt heat stability of the polyester is improved to some extent, the color tone is not yet sufficient, and further improvement is desired.

さらに、チタン化合物と特定のホスホン酸化合物を反応させて得られた生成物(特許文献6参照)をポリエステル製造用触媒として用いる方法も提案されている。確かにこの方法によれば、色調及び溶融安定性に優れたポリエステルが得られる。しかしながら、われわれの研究によれば、ポリエステルにダル光沢や成形時の加工安定性を付与する目的で通常行われている酸化チタン粒子の添加を行うと、ポリマーの溶融熱安定性が低下する場合があるという問題があることが判明した。
特開平11−335542号公報 特公昭48−2229号公報 特公昭47−26597号公報 特公昭59−46258号公報 特開昭58−38722号公報 国際公開第03/27166号パンフレット
Furthermore, a method has also been proposed in which a product obtained by reacting a titanium compound with a specific phosphonic acid compound (see Patent Document 6) is used as a polyester production catalyst. Certainly, according to this method, a polyester excellent in color tone and melt stability can be obtained. However, according to our research, the addition of titanium oxide particles, which is usually performed for the purpose of imparting dull luster and processing stability at the time of molding, may decrease the melt heat stability of the polymer. It turns out that there is a problem.
JP 11-335542 A Japanese Patent Publication No. 48-2229 Japanese Patent Publication No. 47-26597 Japanese Patent Publication No.59-46258 JP 58-38722 A International Publication No. 03/27166 Pamphlet

本発明の目的は、上記のような従来技術が有する問題点を解消し、色調に優れ、長時間連続的に紡糸しても熱安定性が良いためにパック圧上昇及び口金異物の発生量が非常に少なく、高い生産性を具備した、色相の改善されたポリエステル組成物、及びその製造方法を提供することにある。また別の目的は、該組成物からなる色調及び品質に優れたポリエステル繊維を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems of the prior art, to improve the color pressure, and to improve the thermal stability even when spinning continuously for a long time. An object of the present invention is to provide a polyester composition having an improved hue and a very low productivity, and a method for producing the same. Another object is to provide a polyester fiber excellent in color tone and quality comprising the composition.

本発明者は、上記課題を達成するために鋭意検討した結果、本発明を完成するに至ったものである。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has completed the present invention.

すなわち、本発明は、「全繰り返し単位のうち少なくとも80モル%がエチレンテレフタレートであるポリエステル中に、
(1)平均粒径が0.1〜0.5μmで、粒径が1μmを超える粒子の重量分率が0.5〜2重量%であり、Li、Na、K及びAlの群から選択される少なくとも1種の元素を0.1〜0.5重量%含有する二酸化チタン粒子を、ポリエステル組成物の全重量を基準として0.01〜5重量%、及び、
(2)リン化合物として、下記一般式(I)で表されるホスホネート化合物を含有しており、
That is, the present invention is “in a polyester in which at least 80 mol% of all repeating units are ethylene terephthalate,
(1) The average particle size is 0.1 to 0.5 μm, the weight fraction of particles having a particle size exceeding 1 μm is 0.5 to 2% by weight, and is selected from the group of Li, Na, K and Al Titanium dioxide particles containing 0.1 to 0.5% by weight of at least one element, 0.01 to 5% by weight, based on the total weight of the polyester composition, and
(2) As a phosphorus compound, it contains a phosphonate compound represented by the following general formula (I),

Figure 2005054014
[上記式中、R1及びR2は、同一又は異なって炭素数1〜4のアルキル基を示し、Xは、−CH2−又は−CH(Y)を示す(Yは、ベンゼン環を示す)。]
(3)下記数式(ア)及び(イ)を同時に満足している、
Figure 2005054014
[In the above formula, R 1 and R 2 are the same or different and each represent an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents a benzene ring. ). ]
(3) The following mathematical formulas (a) and (b) are satisfied at the same time.

Figure 2005054014
[上記数式中、Tiはポリエステル組成物中に含有されるポリエステルに可溶なチタン化合物のチタン金属元素の濃度(ppm)を、Pはポリエステル組成物中に含有されるリン化合物のリン元素の濃度(ppm)を表す。]
ことを特徴とするポリエステル組成物。」である。
Figure 2005054014
[In the above formula, Ti is the concentration (ppm) of the titanium metal element of the titanium compound soluble in the polyester contained in the polyester composition, and P is the concentration of the phosphorus element of the phosphorus compound contained in the polyester composition. (Ppm). ]
The polyester composition characterized by the above-mentioned. It is.

本発明のポリエステル組成物は、熱安定性に優れているため、例えば長時間連続的に紡糸してもパック圧上昇や口金異物の発生量が非常に少なく、安定に紡糸することができ、色調及び品位に優れた繊維等の成形物を高い生産性の下に提供することができる。   Since the polyester composition of the present invention is excellent in thermal stability, for example, even if it is continuously spun for a long time, the pack pressure rises and the amount of foreign matter generated in the die is very small, and it can be spun stably and has a color tone. Further, it is possible to provide a molded product such as a fiber having excellent quality with high productivity.

本発明にかかるポリエステルは、全繰り返し単位のうち少なくとも80モル%がエチレンテレフタレートであるポリエステルを主たる対象とし、特にポリエチレンテレフタレートが好ましい。該エチレンテレフタレートの割合が80モル%未満の場合には、最終的に得られるポリエステル繊維等の成形物の機械的性能が低下するので好ましくない。   The polyester according to the present invention mainly includes a polyester in which at least 80 mol% of all repeating units is ethylene terephthalate, and polyethylene terephthalate is particularly preferable. When the proportion of the ethylene terephthalate is less than 80 mol%, the mechanical performance of the finally obtained molded product such as polyester fiber is lowered, which is not preferable.

20モル%以下の割合、好ましくは5モル%以下の割合で共重合してもよい共重合成分としては、例えばナフタレンジカルボン酸、オルトフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ベンゾフェノンジカルボン酸、フェニルインダンジカルボン酸、5−スルホキシイソフタル酸金属塩、5−スルホキシイソフタル酸ホスホニウム塩等の芳香族ジカルボン酸成分、アジピン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸成分、トリメチレングリコール、テトラメチレングリコール、ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、o−キシリレングリコール、m−キシリレングリコール、p−キシリレングリコール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニル、4,4’−ビス(2−ヒドロキシエトキシエトキシ)ビフェニル、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、2,2−ビス[4−(2−ヒドロキシエトキシエトキシ)フェニル]プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,3−ビス(2−ヒドロキシエトキシエトキシ)ベンゼン、1,2−ビス(2−ヒドロキシエトキシ)ベンゼン、1,2−ビス(2−ヒドロキシエトキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ジフェニルスルホン、4,4’−ビス(2−ヒドロキシエトキシエトキシ)ジフェニルスルホン等の芳香族グリコール成分、ヒドロキノン、2,2−ビス(4−ヒドロキシフェニル)プロパン、レゾルシン、カテコール、ジヒドロキシナフタレン、ジヒドロキシビフェニル、ジヒドロキシジフェニルスルホン等のジフェノール類等が挙げられる。これらは1種を単独で用いても2種以上を併用してもどちらでもよい。   Examples of copolymer components that may be copolymerized at a ratio of 20 mol% or less, preferably 5 mol% or less include naphthalene dicarboxylic acid, orthophthalic acid, isophthalic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid. Acid, benzophenone dicarboxylic acid, phenylindane dicarboxylic acid, 5-sulfoxyisophthalic acid metal salt, 5-sulfoxyisophthalic acid phosphonium salt and other aromatic dicarboxylic acid components, adipic acid, sebacic acid, decanedicarboxylic acid and other aliphatic dicarboxylic acids Acid component, trimethylene glycol, tetramethylene glycol, hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol and other aliphatic glycols, o-xylylene glycol, m-xylylene Coal, p-xylylene glycol, 1,4-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxyethoxyethoxy) benzene, 4,4′-bis (2-hydroxyethoxy) biphenyl, 4 , 4′-bis (2-hydroxyethoxyethoxy) biphenyl, 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane, 2,2-bis [4- (2-hydroxyethoxyethoxy) phenyl] propane 1,3-bis (2-hydroxyethoxy) benzene, 1,3-bis (2-hydroxyethoxyethoxy) benzene, 1,2-bis (2-hydroxyethoxy) benzene, 1,2-bis (2-hydroxy) Ethoxyethoxy) benzene, 4,4′-bis (2-hydroxyethoxy) diphenylsulfone, 4,4′- Aromatic glycol components such as bis (2-hydroxyethoxyethoxy) diphenylsulfone, diphenols such as hydroquinone, 2,2-bis (4-hydroxyphenyl) propane, resorcin, catechol, dihydroxynaphthalene, dihydroxybiphenyl, dihydroxydiphenylsulfone Etc. These may be used alone or in combination of two or more.

本発明においては、上記のポリエステル中に、平均粒径が0.1〜0.5μmである二酸化チタン粒子をポリエステル組成物の全重量を基準として、0.01〜5重量%含有している必要がある。該平均粒径が0.1μm未満では、粒子の比表面積が大きすぎ、ポリエステル組成物を製造する際に凝集粒子を形成しやすくなるため好ましくない。一方、平均粒径が0.5μmを超えると、紡糸時のパック圧上昇や断糸が多くなるので好ましくない。また、ポリエステル組成物の全重量を基準として二酸化チタン粒子が5重量%を超える場合には、最終的に得られる繊維等の成形物の強度や耐熱性、耐光性が低下するので好ましくない。なお、該粒子の含有量が0.01重量%未満の場合には、酸化チタン粒子中の金属元素量を後述するように規定しなくともポリマーの溶融安定性は良好となる。この二酸化チタン粒子含有量の好ましい範囲は0.03〜3重量%であり、特に好ましい範囲は0.05〜2.7重量%である。   In the present invention, the above polyester needs to contain 0.01 to 5% by weight of titanium dioxide particles having an average particle diameter of 0.1 to 0.5 μm based on the total weight of the polyester composition. There is. When the average particle size is less than 0.1 μm, the specific surface area of the particles is too large, and it becomes easy to form aggregated particles when producing the polyester composition, which is not preferable. On the other hand, if the average particle size exceeds 0.5 μm, it is not preferable because an increase in pack pressure during spinning and yarn breakage increase. Further, when the titanium dioxide particles exceed 5% by weight based on the total weight of the polyester composition, the strength, heat resistance and light resistance of the finally obtained molded article such as fiber are lowered, which is not preferable. When the content of the particles is less than 0.01% by weight, the polymer has good melt stability even if the amount of metal element in the titanium oxide particles is not specified as described later. A preferable range of the titanium dioxide particle content is 0.03 to 3% by weight, and a particularly preferable range is 0.05 to 2.7% by weight.

さらに、本発明における二酸化チタン粒子は、粒径が1μmを超える粒子の重量分率が0.5〜2重量%である必要がある。1μmを超える粒子の割合が2重量%を超えると、例えばポリエステル組成物を製糸化する際に断糸の原因となったり、熱劣化が大きくなり、溶融時の着色が著しくなる等の成形時の成形性に問題を生じる。また製糸後アルカリ減量する際に、繊維表面に形成される微細孔が大きくなって染色時の発色性が低下するので好ましくない。一方、1μmを超える粒子の割合の下限は小さいほど好ましいが、このような粗大粒子の少ない二酸化チタン粒子を製造することは困難であり、またコストも増大するため、該粒子の割合は0.5重量%以上とするのが好ましい。   Furthermore, the titanium dioxide particles in the present invention are required to have a weight fraction of particles having a particle size exceeding 1 μm of 0.5 to 2% by weight. When the proportion of particles exceeding 1 μm exceeds 2% by weight, for example, when forming a polyester composition, it may cause thread breakage, heat deterioration will increase, and coloring at the time of melting will become significant. This causes a problem in formability. Further, when reducing the alkali after spinning, it is not preferable because the fine pores formed on the fiber surface are enlarged and the color developability at the time of dyeing is lowered. On the other hand, the lower limit of the proportion of particles exceeding 1 μm is preferable, but it is difficult to produce such titanium dioxide particles with few coarse particles and the cost increases. It is preferable to set it as weight% or more.

本発明における二酸化チタン粒子は、さらに、Li、Na、K及びAlの群から選択される少なくとも1種の元素を、二酸化チタン粒子の全重量を基準として0.1〜0.5重量%含有する必要がある。これらの元素は単一であっても複数であってもよい。これらの元素の含有量が0.1重量%未満の場合には、ポリエステル組成物の溶融安定性が低下するので好ましくない。一方0.5重量%を超える場合には、ポリエステル組成物の色相が低下するので好ましくない。より好ましくは0.1〜0.3重量%の範囲である。   The titanium dioxide particles in the present invention further contain 0.1 to 0.5% by weight of at least one element selected from the group of Li, Na, K and Al based on the total weight of the titanium dioxide particles. There is a need. These elements may be single or plural. When the content of these elements is less than 0.1% by weight, the melt stability of the polyester composition is lowered, which is not preferable. On the other hand, when it exceeds 0.5% by weight, the hue of the polyester composition is lowered, which is not preferable. More preferably, it is 0.1 to 0.3% by weight.

次に、本発明のポリエステル組成物に含有させているリン化合物は、下記一般式(I)で表されるホスホネート化合物である必要がある。   Next, the phosphorus compound contained in the polyester composition of the present invention needs to be a phosphonate compound represented by the following general formula (I).

Figure 2005054014
〔上記式中、R5及びR6は、同一又は異なって炭素数1〜4のアルキル基を示し、Xは、−CH2−又は―CH(Y)を示す(Yは、ベンゼン環を示す)。〕
Figure 2005054014
[In the above formula, R 5 and R 6 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents a benzene ring. ). ]

かかるホスホネート化合物としては、以下のホスホン酸のジメチル−、ジエチル−、ジプロピル−及びジブチルエステルを例示することができる。すなわち、カルボメトキシメタンホスホン酸、カルボエトキシメタンホスホン酸、カルボプロポキシメタンホスホン酸、カルボプトキシメタンホスホン酸、ホスホノ−フェニル酢酸メチル、ホスホノ−フェニル酢酸エチル、ホスホノ−フェニル酢酸プロピル、ホスホノ−フェニル酢酸ブチルのジエステルである。具体的には、トリメチルホスホノアセテート、トリエチルホスホノアセテート、トリブチルホスホノアセテート等が挙げられる。   Examples of such phosphonate compounds include the following dimethyl-, diethyl-, dipropyl- and dibutyl esters of phosphonic acid. Carbomethoxymethanephosphonic acid, carboethoxymethanephosphonic acid, carbopropoxymethanephosphonic acid, carboptoxymethanephosphonic acid, phosphono-phenylacetic acid methyl, phosphono-phenylacetic acid ethyl, phosphono-phenylacetic acid propyl, phosphono-phenylacetic acid butyl Diester. Specific examples include trimethylphosphonoacetate, triethylphosphonoacetate, tributylphosphonoacetate and the like.

上記のホスホネート化合物は、ポリエステル製造の際に通常安定剤として使用されるリン化合物と比較して、チタン化合物との反応が比較的緩やかに進行する。そのため、反応中における、チタン化合物の触媒活性持続時間が長く、結果として該チタン化合物のポリエステルへの添加量を少なくすることができる。また、本発明のように触媒に対して多量にリン化合物を添加する場合であっても、ポリエステルの熱安定性を損ない難いという特徴を有している。このホスホネート化合物の添加時期は特に限定する必要はないが、ポリエステル製造時における、エステル交換反応又はエステル化反応が実質的に終了した後から、重合反応初期までの任意の段階で添加することが好ましい。   The phosphonate compound proceeds relatively slowly with the titanium compound as compared with a phosphorus compound usually used as a stabilizer in the production of polyester. Therefore, the duration of the catalytic activity of the titanium compound during the reaction is long, and as a result, the amount of the titanium compound added to the polyester can be reduced. Further, even when a large amount of a phosphorus compound is added to the catalyst as in the present invention, the thermal stability of the polyester is hardly impaired. The addition time of the phosphonate compound is not particularly limited, but it is preferably added at any stage from the transesterification reaction or esterification reaction substantially after the polyester production to the initial stage of the polymerization reaction. .

さらに本発明のポリエステル組成物は、下記数式(ア)及び(イ)を同時に満足する必要がある。   Furthermore, the polyester composition of the present invention must satisfy the following mathematical formulas (a) and (b) at the same time.

Figure 2005054014
[上記数式中、Tiはポリエステル組成物中に含有されるポリエステル可溶チタン化合物のチタン金属元素の濃度(ppm)を、Pはポリエステル組成物中に含有されるリン化合物のリン元素の濃度(ppm)を表す。]
Figure 2005054014
[In the above formula, Ti is the concentration (ppm) of titanium metal element in the polyester-soluble titanium compound contained in the polyester composition, and P is the concentration of phosphorus element in the phosphorus compound (ppm) contained in the polyester composition. ). ]

ここで、(P/Ti)が0.65未満の場合には、ポリエステル組成物の色相が黄味を帯び好ましくない。一方、(P/Ti)が5を越える場合にはポリエステル組成物の重合反応性が大幅に低下し、目的とするポリエステル組成物を得ることができない。本発明のポリエステル組成物においては、この(P/Ti)の適正範囲は通常の金属触媒よりも狭いが、この適正範囲にある場合には、従来にない効果が得られることが本発明の特徴である。また(Ti+P)が10未満の場合には、製糸等の成形プロセスにおける生産性が大きく低下し、満足な性能が得られなくなる。一方、(Ti+P)が200を越える場合には、触媒に起因する異物が少量ではあるが発生するので好ましくない。なお、(P/Ti)の好ましい範囲は1.0〜4.5、特に2.0〜4.0の範囲であり、(Ti+P)は12〜150、特に15〜100の範囲である。   Here, when (P / Ti) is less than 0.65, the hue of the polyester composition is unfavorably yellowish. On the other hand, when (P / Ti) exceeds 5, the polymerization reactivity of the polyester composition is significantly lowered, and the desired polyester composition cannot be obtained. In the polyester composition of the present invention, the proper range of (P / Ti) is narrower than that of a normal metal catalyst, but when it is within this proper range, it is possible to obtain an unprecedented effect. It is. On the other hand, when (Ti + P) is less than 10, the productivity in a forming process such as yarn production is greatly reduced, and satisfactory performance cannot be obtained. On the other hand, when (Ti + P) exceeds 200, a small amount of foreign matter due to the catalyst is generated, which is not preferable. In addition, the preferable range of (P / Ti) is 1.0 to 4.5, particularly 2.0 to 4.0, and (Ti + P) is 12 to 150, particularly 15 to 100.

ここでいう「ポリエステルに可溶なチタン」とは、二酸化チタン粒子に含まれるチタンは含まないことを意味し、ポリエステル製造時に使用されるエステル交換反応触媒、エステル化反応触媒、重縮合反応触媒等に使用されたチタン化合物の合計量を示す。   “Titanium soluble in polyester” as used herein means that titanium contained in the titanium dioxide particles is not included, and transesterification reaction catalyst, esterification reaction catalyst, polycondensation reaction catalyst, etc. used during polyester production Shows the total amount of titanium compound used.

本発明のポリエステル組成物は、上記の要件に加えて、ポリエステル組成物中に含有されるリン化合物と、Li、Na、K及びAlの群から選択される少なくとも1種の元素の含有量とが、下記数式(オ)を満たすことが好ましい。   In addition to the above-mentioned requirements, the polyester composition of the present invention has a phosphorus compound contained in the polyester composition and a content of at least one element selected from the group of Li, Na, K and Al. The following mathematical formula (e) is preferably satisfied.

Figure 2005054014
[上記数式中、Pはポリエステル組成物中に含有されるリン化合物のリン元素の濃度(ppm)を、MはLi、Na、K及びAlの群から選択される少なくとも1種の元素のポリエステル組成物中の濃度(ppm)を示す。]
(オ)式中のM/Pが0.1未満であると、重合反応速度に劣り生産性が十分でなくなることがあり、10を超えると色調が悪化しやすくなるので好ましくない。
Figure 2005054014
[In the above formula, P represents the concentration (ppm) of the phosphorus element of the phosphorus compound contained in the polyester composition, and M represents the polyester composition of at least one element selected from the group consisting of Li, Na, K and Al. The concentration (ppm) in the product is indicated. ]
(E) If M / P in the formula is less than 0.1, the polymerization reaction rate is inferior and the productivity may be insufficient. If it exceeds 10, the color tone tends to deteriorate, which is not preferable.

上記要件を満足する本発明のポリエステル組成物は、溶融保持時の熱安定性に優れる特徴を有しているが、特に常圧下285℃で溶融保持したとき、ポリエステル組成物106g当りの分子鎖の見かけ切断数速度が下記数式(ウ)の範囲にあることが好ましい。 The polyester composition of the present invention that satisfies the above requirements has a feature of excellent thermal stability at the time of melting and holding, but particularly when melted and held at 285 ° C. under normal pressure, the molecular weight per 10 6 g of the polyester composition. It is preferable that the apparent number of strand breaks is in the range of the following mathematical formula (c).

Figure 2005054014
[上記数式中、Δnは分子鎖の見かけ切断数(ケ/T)を、t1は溶融保持時間(分)を表す。ただし0≦t1≦30である。]
Figure 2005054014
[In the above formula, Δn represents the apparent number of molecular chain breaks (ke / T), and t 1 represents the melt retention time (minutes). However, 0 ≦ t 1 ≦ 30. ]

ここでΔn/t1を0.1未満にするのは技術上非常に困難であり、一方、1を超えると溶融保持時の溶融粘度減少が大きくなりすぎ、長時間安定に製糸できない等の成形性に問題が生じることがある。なおΔnは後述のように溶融保持前後の固有粘度の変化から算出することができる。 Here, it is very difficult in terms of technology to make Δn / t 1 less than 0.1. On the other hand, if it exceeds 1, the decrease in melt viscosity at the time of melting and holding becomes too large, and it is impossible to form yarn stably for a long time. May cause problems with sex. Note that Δn can be calculated from a change in intrinsic viscosity before and after melting and holding as described later.

また、本発明のポリエステル組成物は、その生産性にも優れるという特徴を有するが、285℃で溶融保持し、固有粘度0.600に保った組成物を133Paの減圧下反応させたとき、固有粘度の上昇が下記数式(エ)の範囲にあることが好ましい。   In addition, the polyester composition of the present invention has a characteristic that it is excellent in productivity. However, when the composition kept melted at 285 ° C. and maintained at an intrinsic viscosity of 0.600 is reacted under a reduced pressure of 133 Pa, the polyester composition is inherent. The increase in viscosity is preferably in the range of the following mathematical formula (d).

Figure 2005054014
[上記数式中、IVは反応最終固有粘度(dL/g)を、t2は反応時間(秒)(300≦t≦2400)を、Tはポリマーの反応最終温度(℃)をそれぞれ表す。]
上記数式を満たさない場合には、ポリエステル組成物の生産性が低下する場合がある。
Figure 2005054014
[In the above formula, IV represents the final reaction intrinsic viscosity (dL / g), t 2 represents the reaction time (seconds) (300 ≦ t ≦ 2400), and T represents the final reaction temperature (° C.) of the polymer. ]
When the above mathematical formula is not satisfied, the productivity of the polyester composition may decrease.

さらに本発明のポリエステル組成物は色調に優れているが、L***表色系におけるカラーL値が70.0以上で、b値が1.0〜10.0であることが好ましい。特にカラーL値は73〜95、さらに75〜90の範囲がより好ましい。またカラーb値は5〜9、さらに6〜8の範囲がより好ましい。カラーL値が70未満若しくはb値が1.0〜10.0の範囲外である場合には、ポリエステル組成物の色相は不十分となり、溶融紡糸により得られる繊維等の成形物の色相が悪くなって実用に供しがたくなる場合がある。 Furthermore, although the polyester composition of the present invention is excellent in color tone, it is preferable that the color L value in the L * a * b * color system is 70.0 or more and the b value is 1.0 to 10.0. . In particular, the color L value is more preferably in the range of 73 to 95, and more preferably 75 to 90. The color b value is more preferably in the range of 5-9, and more preferably 6-8. When the color L value is less than 70 or the b value is out of the range of 1.0 to 10.0, the hue of the polyester composition becomes insufficient, and the hue of a molded article such as fiber obtained by melt spinning is poor. It may be difficult to put to practical use.

以上に説明した本発明のポリエステル組成物中のポリエステルの製造方法については特に限定する必要はなく、例えばテレフタル酸をエチレングリコールと直接エステル化せしめた後に重合せしめる方法と、テレフタル酸のエステル形成性誘導体をエチレングリコールとエステル交換反応せしめた後に重合せしめる方法のいずれを採用してもよい。その際、少なくとも重縮合反応の触媒として、後述するチタン化合物を用いることが好ましい。   The method for producing the polyester in the polyester composition of the present invention described above is not particularly limited. For example, a method in which terephthalic acid is directly esterified with ethylene glycol and then polymerized, and an ester-forming derivative of terephthalic acid are used. Any of the methods of polymerizing after the ester exchange reaction with ethylene glycol may be employed. At that time, it is preferable to use a titanium compound described later as at least a catalyst for the polycondensation reaction.

なかでも、芳香族ジカルボン酸のエステル形成性誘導体を用い、エステル交換反応を経由する製造方法が好ましい。該製造方法は、フリーの芳香族ジカルボン酸を用いる方法と比較し、重縮合反応中に安定剤として添加するリン化合物の飛散が少ないという利点がある。   Among these, a production method using an ester-forming derivative of an aromatic dicarboxylic acid and undergoing a transesterification reaction is preferable. The production method has an advantage that the phosphorus compound added as a stabilizer during the polycondensation reaction is less scattered than the method using a free aromatic dicarboxylic acid.

なお、該エステル交換反応は、0.05〜0.20MPaの加圧下にて実施する方法が好ましい。なぜならば、エステル交換反応時の圧力がこの範囲内にあるときには、チタン化合物の触媒作用による反応の促進は十分に進み、ジエチレングリコール等の副生成物のポリマー中の含有量が抑制され、得られるポリエステルの熱安定性等の特性が向上する。   In addition, the method of implementing this transesterification under the pressurization of 0.05-0.20 MPa is preferable. This is because when the pressure during the transesterification reaction is within this range, the promotion of the reaction by the catalytic action of the titanium compound is sufficiently advanced, the content of by-products such as diethylene glycol in the polymer is suppressed, and the resulting polyester The characteristics such as thermal stability of the resin are improved.

また、テレフタル酸ジメチル等の芳香族ジカルボン酸のエステル形成性誘導体を出発原料とする製造方法では、触媒であるチタン化合物の添加量を低減できる。チタン化合物の一部及び/又は全量をエステル交換反応開始前に添加し、エステル交換反応触媒と重縮合反応触媒の二種の触媒を兼用させる製造方法が好ましい。この場合、テレフタル酸ジメチルは使用するテレフタル酸成分の90モル%以上とすることが好ましい。   In addition, in a production method using an ester-forming derivative of an aromatic dicarboxylic acid such as dimethyl terephthalate as a starting material, the amount of titanium compound as a catalyst can be reduced. A production method in which a part and / or the whole amount of the titanium compound is added before the start of the transesterification reaction and the two types of catalysts of the transesterification reaction catalyst and the polycondensation reaction catalyst are used in combination is preferable. In this case, the dimethyl terephthalate is preferably 90 mol% or more of the terephthalic acid component used.

用いる触媒としては、触媒に起因する異物の発生を抑制する観点から、ポリエステルに可溶なチタン化合物が好ましい。特に下記一般式(II)で表される化合物、又は一般式(II)で表される化合物と下記一般式(III)で表される芳香族多価カルボン酸若しくはその無水物とを反応させた生成物がより好ましい。   As a catalyst to be used, a titanium compound that is soluble in polyester is preferable from the viewpoint of suppressing the generation of foreign matters caused by the catalyst. In particular, a compound represented by the following general formula (II) or a compound represented by the general formula (II) was reacted with an aromatic polycarboxylic acid represented by the following general formula (III) or an anhydride thereof. Products are more preferred.

Figure 2005054014
[上記式中、R3,R4,R5,R6はアルキル基及び/又はフェニル基であって、互いに同一であっても異なっていてもよい。pは1〜3の整数を表す。またpが2または3の時、複数あるR4、R5は同一であっても異なっていても良い。]
Figure 2005054014
[In the above formula, R 3 , R 4 , R 5 and R 6 are alkyl groups and / or phenyl groups, which may be the same or different. p represents an integer of 1 to 3. When p is 2 or 3, a plurality of R 4 and R 5 may be the same or different. ]

Figure 2005054014
[上記式中、nは2〜4の整数を表す。]
Figure 2005054014
[In the above formula, n represents an integer of 2 to 4. ]

一般式(II)で表されるポリエステルに可溶なチタン化合物としては、R3、R4、R5、R6がそれぞれ同一もしくは異なっており、アルキル基及び/又はフェニル基であれば特に限定されない。例えば、テトライソプロポキシチタネート、テトラプロポキシチタネート、テトラ−n−ブチルチタネート(TBT)、テトラエトキシチタネート、テトラフェノキシチタネート、オクタアルキルトリチタネート、ヘキサアルキルジチタネートなどが好ましく用いられる。これらの化合物の中で、ジチタネート化合物、トリチタネート化合物はR4とR5が複数存在することになるが、これらのR4とR5は同一であっても異なっていても良い。また、このようなチタネート化合物と反応させる一般式(III)で表される芳香族多価カルボン酸若しくはその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸及びこれらの無水物が好ましく用いられる。上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の一部を溶解し、これに前記チタン化合物を滴下して、0〜200℃の温度で少なくとも30分間反応させればよい。 As the titanium compound soluble in the polyester represented by the general formula (II), R 3 , R 4 , R 5 , and R 6 are the same or different and are particularly limited as long as they are alkyl groups and / or phenyl groups. Not. For example, tetraisopropoxy titanate, tetrapropoxy titanate, tetra-n-butyl titanate (TBT), tetraethoxy titanate, tetraphenoxy titanate, octaalkyl trititanate, hexaalkyl dititanate and the like are preferably used. Among these compounds, Jichitaneto compound, trititanates compound is so that R 4 and R 5 there are a plurality, these R 4 and R 5 may be different even in the same. In addition, the aromatic polyvalent carboxylic acid represented by the general formula (III) to be reacted with such a titanate compound or an anhydride thereof includes phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid, and anhydrides thereof. The product is preferably used. In the case of reacting the titanium compound with an aromatic polyvalent carboxylic acid or an anhydride thereof, a part of the aromatic polyvalent carboxylic acid or an anhydride thereof is dissolved in a solvent, and the titanium compound is added dropwise thereto. The reaction may be performed at a temperature of 0 to 200 ° C. for at least 30 minutes.

かかるポリエステルに可溶なチタン化合物は、ポリエステルを構成する全ジカルボン酸成分を基準として、チタン金属元素として3〜100ミリモル%用いることが好ましい。該チタン金属元素の含有量が3ミリモル%未満ではポリエステルの生産性が低下し、目標とする分子量のポリエステルを得ることが困難になる。一方、該チタン金属元素の含有量が100ミリモル%を越える場合は得られるポリエステルの熱安定性が低下し、繊維製造時等の成形時に分子量低下が起こりやすくなって、品質の優れた繊維等の成形物を得ることが困難になる。チタン金属元素量は4〜80ミリモル%の範囲が好ましく、5〜70ミリモル%の範囲がさらに好ましい。   Such a titanium compound soluble in polyester is preferably used in an amount of 3 to 100 mmol% as a titanium metal element based on all dicarboxylic acid components constituting the polyester. When the titanium metal element content is less than 3 mmol%, the productivity of the polyester is lowered, and it becomes difficult to obtain a polyester having a target molecular weight. On the other hand, when the content of the titanium metal element exceeds 100 mmol%, the thermal stability of the resulting polyester is lowered, the molecular weight is likely to be lowered during molding such as fiber production, etc. It becomes difficult to obtain a molded product. The amount of titanium metal element is preferably in the range of 4 to 80 mmol%, more preferably in the range of 5 to 70 mmol%.

なお、「ポリエステルに可溶なチタン」と「二酸化チタン」とは以下の手法で分離することができ、おのおの定量分析等が可能である。すなわち、ポリエステル組成物を溶解可能な溶媒(例えばオルトクロロフェノール等)に一旦溶解し、得られた溶液を塩酸で抽出操作を行うと、ポリエステルに可溶なチタンを塩酸層に抽出し、定量することができる。一方ポリエステル組成物中の全チタン元素の含有量は、蛍光X線装置等を用いて測定することにより定量評価できる。したがって、「二酸化チタン」の含有量は、全チタン元素の含有量から「ポリエステルに可溶なチタン化合物」元素の含有量を差し引いて求めることができる。   Note that “titanium soluble in polyester” and “titanium dioxide” can be separated by the following method, and quantitative analysis or the like is possible for each. That is, once the polyester composition is dissolved in a solvent (for example, orthochlorophenol) and the resulting solution is extracted with hydrochloric acid, titanium soluble in the polyester is extracted into the hydrochloric acid layer and quantified. be able to. On the other hand, the content of all titanium elements in the polyester composition can be quantitatively evaluated by measurement using a fluorescent X-ray apparatus or the like. Therefore, the content of “titanium dioxide” can be obtained by subtracting the content of the “titanium compound soluble in polyester” element from the content of all titanium elements.

本発明にかかるポリエステルの固有粘度については特に限定はないが、オルトクロロフェノール溶媒中35℃で測定した固有粘度が、0.60〜0.80(dL/g)の範囲のものが好ましい。   The intrinsic viscosity of the polyester according to the present invention is not particularly limited, but the intrinsic viscosity measured at 35 ° C. in an orthochlorophenol solvent is preferably in the range of 0.60 to 0.80 (dL / g).

本発明のポリエステル組成物中には、必要に応じて少量の添加剤、例えば滑剤、顔料、染料、酸化防止剤、固相重合促進剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤、艶消剤等を含んでいてもよい。   In the polyester composition of the present invention, if necessary, a small amount of additives such as lubricants, pigments, dyes, antioxidants, solid phase polymerization accelerators, fluorescent whitening agents, antistatic agents, antibacterial agents, UV absorption An agent, a light stabilizer, a heat stabilizer, a light-shielding agent, a matting agent and the like may be contained.

本発明のポリエステル組成物からポリエステル繊維を製造するにあたっては、その紡糸方法に特に制限はなく、従来公知の溶融紡糸方法を任意に採用することができる。なかでも、温度270℃〜300℃、紡糸速度400〜5000m/分の範囲で溶融紡糸することが好ましい。紡糸速度がこの範囲にあれば、十分な強度を有する繊維が得られると共に、安定して巻き取りを行うこともできる。なお、得られた未延伸糸の延伸は、該未延伸糸を一旦を巻き取ってから別工程で行っても、一旦巻き取ることなく連続的に行ってもよい。紡糸時に使用する口金の吐出孔形状についても制限はなく、円形、異形、中実、中空等のいずれも採用することができる。   In producing the polyester fiber from the polyester composition of the present invention, the spinning method is not particularly limited, and a conventionally known melt spinning method can be arbitrarily adopted. Among these, it is preferable to perform melt spinning at a temperature of 270 ° C. to 300 ° C. and a spinning speed of 400 to 5000 m / min. If the spinning speed is within this range, a fiber having sufficient strength can be obtained and winding can be performed stably. The undrawn yarn obtained may be drawn in a separate step after winding the undrawn yarn once or continuously without being wound up. There is no restriction | limiting also about the discharge hole shape of a nozzle | cap | die used at the time of spinning, All can be employ | adopted circular, an irregular shape, a solid, a hollow.

得られたポリエステル繊維は、さらにアルカリ減量処理を施してもよい。かくすることにより、繊維表面に微細孔を形成することができ、風合をより高めることができる。   The obtained polyester fiber may be further subjected to alkali weight loss treatment. By doing so, fine holes can be formed on the fiber surface, and the texture can be further enhanced.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。なお実施例中の部は重量部を示す。また各種値は下記の方法に従って求めた。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention does not receive limitation at all by this. In addition, the part in an Example shows a weight part. Various values were determined according to the following methods.

固有粘度(IV):
オルトクロルフェノールを溶媒として35℃で測定し、その相対粘度から常法により求めた。
Intrinsic viscosity (IV):
It was measured at 35 ° C. using orthochlorophenol as a solvent, and determined from the relative viscosity by a conventional method.

色調(L*値及びb*値):
ポリマーチップを160℃、1時間乾燥結晶化処理後、日本電色工業株式会社製測色色差計ZE−2000を用いて測定した。L*値は明度を示し、その数値が大きいほど明度が高いことを示し、b*値はその値が大きいほど黄色味の度合いが大きいことを示す。また他の詳細な操作はJIS Z−8729に準じて行った。
Color tone (L * value and b * value):
The polymer chip was measured using a colorimetric color difference meter ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. after a dry crystallization treatment at 160 ° C. for 1 hour. The L * value indicates the lightness, and the larger the value, the higher the lightness. The b * value indicates the greater the yellowness, the greater the value. Other detailed operations were performed according to JIS Z-8729.

二酸化チタン、ポリエステルに可溶なチタン、リン、アンチモン、リチウム、カリウム、ナトリウム、及びアルミニウム含有量:
ポリエステル組成物中の全チタン元素の含有量は、リガク株式会社製3270E型蛍光X線装置を用いて測定した。ついで組成物サンプルをオルトクロロフェノールに溶解した後0.5規定塩酸で抽出し、残った溶液層を日立製作所製Z−8100形原子吸光光度計を用いてポリエステル中の可溶性チタン元素の含有量を定量した。二酸化チタン含有量は全チタン元素の含有量からポリエステル中の可溶性チタン元素の含有量を差し引いて求めた。リン、アンチモン濃度は、全チタン元素の含有量と同様な手法により定量した。また二酸化チタン中のリチウム、ナトリウム、カリウム、アルミニウムの含有量は、二酸化チタンを塩酸抽出してICPで分析を行った。ICPはセイコーインスツルメンツ(株)製「Vista−PRO CCD多元素同時型ICP発光分光分析装置」を用いた。
Titanium dioxide, titanium soluble in polyester, phosphorus, antimony, lithium, potassium, sodium, and aluminum content:
The total titanium element content in the polyester composition was measured using a 3270E type fluorescent X-ray apparatus manufactured by Rigaku Corporation. Next, the composition sample was dissolved in orthochlorophenol and extracted with 0.5 N hydrochloric acid, and the remaining solution layer was measured for the content of soluble titanium element in the polyester using a Hitachi Z-8100 atomic absorption spectrophotometer. Quantified. The titanium dioxide content was determined by subtracting the content of soluble titanium element in the polyester from the total titanium element content. Phosphorus and antimony concentrations were quantified in the same manner as the total titanium element content. The contents of lithium, sodium, potassium and aluminum in titanium dioxide were analyzed by ICP after extracting titanium dioxide with hydrochloric acid. For ICP, “Vista-PRO CCD multi-element simultaneous ICP emission spectroscopic analyzer” manufactured by Seiko Instruments Inc. was used.

粒径測定:
微粒子の平均粒径及び粒度分布は、大塚電子製DLS−7000で測定し、粒度分布より0.1μmを超える重量分率として算出した。
Particle size measurement:
The average particle size and particle size distribution of the fine particles were measured with DLS-7000 manufactured by Otsuka Electronics Co., Ltd. and calculated as a weight fraction exceeding 0.1 μm from the particle size distribution.

パック圧上昇評価:
紡糸口金直上に2400メッシュの径25mmの金網を装着した紡糸機に285℃でポリエステル組成物チップを30g/分で7日間連続的に供給した前後のパック圧の上昇度合いを、1日当たりのパック圧昇圧に換算して求めた。
Pack pressure increase evaluation:
The amount of increase in pack pressure before and after the polyester composition chip was continuously supplied at 30 g / min for 7 days at 285 ° C. to a spinning machine equipped with a 2400 mesh 25 mm diameter wire mesh directly above the spinneret. Calculated in terms of pressure increase.

紡糸口金に発生する付着物の層(口金異物量):
ポリエステル組成物をチップとなし、これを285℃で溶融し、孔径0.15mmφ、孔数12個の紡糸口金から吐出し、600m/分で2日間紡糸し、口金の吐出口外縁に発生する付着物の層の高さを測定した。この付着物層の高さが大きいほど吐出されたポリエステルメルトのフィラメント状流にベンディングが発生しやすく、このポリエステル組成物の成形性は低くなる。すなわち、紡糸口金に発生する付着物層の高さは、当該ポリエステル組成物の成形性の指標である。
Deposit layer generated on the spinneret (amount of foreign matter in the die):
The polyester composition is made into chips, melted at 285 ° C., discharged from a spinneret having a hole diameter of 0.15 mmφ and 12 holes, spun at 600 m / min for 2 days, and generated at the outer edge of the discharge outlet of the base. The height of the kimono layer was measured. As the height of the adhered layer increases, bending is more likely to occur in the filamentous flow of the discharged polyester melt, and the moldability of the polyester composition becomes lower. That is, the height of the deposit layer generated in the spinneret is an index of the moldability of the polyester composition.

分子鎖の見かけ切断数:
285℃で10分間溶融保持する前後の固有粘度を測定する。その固有粘度から下記数式(カ)を用いて粘度平均分子量Mvを計算する。さらにMvから下記数式(キ)により計算した値を106gあたりの分子鎖の末端数(ケ/T)とみなした。この値を溶融保持前後について計算し、その差を分子鎖の見かけ切断数Δnとした。
Apparent number of molecular chain breaks:
Measure the intrinsic viscosity before and after melting and holding at 285 ° C. for 10 minutes. The viscosity average molecular weight Mv is calculated from the intrinsic viscosity using the following mathematical formula (f). Further, the value calculated from Mv by the following mathematical formula (ki) was regarded as the number of molecular chain ends (10 / T) per 10 6 g. This value was calculated before and after melting and holding, and the difference was defined as the apparent number of molecular chains Δn.

Figure 2005054014
[上記数式中、IVは固有粘度を、Mvは粘度平均分子量を示す。]
Figure 2005054014
[In the above formula, IV represents intrinsic viscosity, and Mv represents viscosity average molecular weight. ]

[実施例1]
テレフタル酸ジメチル100部とエチレングリコール70部との混合物に、テトラ−n−ブチルチタネート(TBT)0.009部を加圧反応が可能なステンレス製容器に仕込み、0.07MPaに加圧し、140℃から昇温しながらエステル交換反応させた。内温が240℃に到達した時点で、カリウム元素を二酸化チタンの全重量を基準として0.12%含有し、表1に示す物性を有する二酸化チタンをポリエステルの全重量を基準として0.4部、テトラ−n−ブチルチタネート0.006部、トリエチルホスホノアセテート0.035部、テラゾールブルー0.000055重量部を添加し、エステル交換反応を終了させた。
[Example 1]
A mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol was charged with 0.009 part of tetra-n-butyl titanate (TBT) in a stainless steel container capable of pressure reaction, pressurized to 0.07 MPa, and 140 ° C. The ester exchange reaction was carried out while raising the temperature. When the internal temperature reaches 240 ° C., 0.12% of potassium element is contained based on the total weight of titanium dioxide, and titanium dioxide having the physical properties shown in Table 1 is 0.4 parts based on the total weight of polyester. Then, 0.006 part of tetra-n-butyl titanate, 0.035 part of triethylphosphonoacetate and 0.000055 part by weight of terazole blue were added to complete the transesterification reaction.

その後、反応生成物を重合容器に移し、285℃まで昇温し、27Pa以下の高真空にて重縮合反応を行った。途中、サンプリングを行い、固有粘度0.600に到達後の固有粘度の上昇を測定しながら反応を継続し、固有粘度0.63であるポリエステルを得た。チップを160℃×4hr乾操後、285℃にて紡糸し、4.0倍に延伸して83dtex/36filのマルチフィラメントを得た。これを常法により筒編みにした後、20%アルカリ減量し、深色染色性評価を実施した。結果を表1に示す。また得られたポリエステル組成物について元素分析、常圧下285℃で保持した時の分子鎖見かけ切断数速度等の評価も行った。結果を表1に示した。   Thereafter, the reaction product was transferred to a polymerization vessel, heated to 285 ° C., and subjected to a polycondensation reaction at a high vacuum of 27 Pa or less. During the sampling, the reaction was continued while measuring the increase in intrinsic viscosity after reaching the intrinsic viscosity of 0.600, and a polyester having an intrinsic viscosity of 0.63 was obtained. The chip was spun at 160 ° C. × 4 hr, spun at 285 ° C., and stretched 4.0 times to obtain a 83 dtex / 36 fil multifilament. After making this into a tubular knitting by a conventional method, the amount of alkali was reduced by 20%, and the deep color dyeability was evaluated. The results are shown in Table 1. The obtained polyester composition was also subjected to elemental analysis and evaluation of the apparent number rate of molecular chains when held at 285 ° C. under normal pressure. The results are shown in Table 1.

[参考例]トリメリット酸チタンの合成方法:
無水トリメリット酸のエチレングリコール溶液(0.2重量%)にテトラ−n−ブチルチタネートを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応させて、その後、常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させ、析出物を濾紙を用いて濾過し、100℃で2時間乾燥させて、目的とする化合物を得た。
[Reference Example] Method for synthesizing titanium trimellitic acid:
Add 1/2 mol of tetra-n-butyl titanate to trimellitic anhydride in ethylene glycol solution (0.2% by weight) with respect to trimellitic anhydride, and hold at 80 ° C under atmospheric pressure for 60 minutes. Then, it was cooled to room temperature, the produced catalyst was recrystallized with 10 times the amount of acetone, the precipitate was filtered using filter paper, and dried at 100 ° C. for 2 hours to obtain the target compound. .

[実施例2]
実施例1において、触媒を表1記載のとおりに変更したこと以外は同様の操作を行った。結果を表1に示す。
[Example 2]
In Example 1, the same operation was performed except that the catalyst was changed as shown in Table 1. The results are shown in Table 1.

[比較例1]
実施例1において触媒としてテトラ−n−ブチルチタネートを使用した代わりに、エステル交換触媒として酢酸マンガン・四水和物を0.03重量部を用い、エステル交換反応終了後に重合反応触媒として三酸化二アンチモンを表1に記載した量を使用した以外は実施例1と同様の操作を行った。結果を表1に示す。
[Comparative Example 1]
Instead of using tetra-n-butyl titanate as the catalyst in Example 1, 0.03 parts by weight of manganese acetate tetrahydrate was used as the transesterification catalyst, and after the transesterification reaction, di-trioxide was used as the polymerization reaction catalyst. The same operation as in Example 1 was performed except that the amount of antimony described in Table 1 was used. The results are shown in Table 1.

[実施例3、4]
実施例1において、二酸化チタン添加量を表1に記載した通り変更したこと以外は同様の操作を行った。結果を表1に示す。
[Examples 3 and 4]
In Example 1, the same operation was performed except that the amount of titanium dioxide added was changed as described in Table 1. The results are shown in Table 1.

[実施例5〜7]
実施例1において、二酸化チタンの性状を表1に記載した通りに変更したこと以外は同様の操作を行った。結果を表1に示す。
[Examples 5 to 7]
In Example 1, the same operation was performed except that the properties of titanium dioxide were changed as described in Table 1. The results are shown in Table 1.

[比較例2]
実施例1において、二酸化チタン粒子として表1記載の性状のものを使用した以外は同様の操作を行った。結果を表1に示す。
[Comparative Example 2]
In Example 1, the same operation was performed except that the titanium dioxide particles having the properties shown in Table 1 were used. The results are shown in Table 1.

Figure 2005054014
Figure 2005054014

本発明によれば、Ti触媒を使用した、二酸化チタン粒子含有のポリエステル組成物が有する溶融熱安定性の問題を解消し、口金異物の少ない安定した紡糸を可能とし、ポリエステルが持つ優れた特性を保持しながら、色調の優れたポリエステル組成物及び繊維を提供することができる。   According to the present invention, the problem of melt heat stability of a polyester composition containing titanium dioxide particles using a Ti catalyst is eliminated, stable spinning with less foreign matter in the die is possible, and the polyester has excellent characteristics. A polyester composition and fiber having excellent color tone can be provided while being held.

Claims (8)

全繰り返し単位のうち少なくとも80モル%がエチレンテレフタレートであるポリエステル中に、
(1)平均粒径が0.1〜0.5μmで、粒径が1μmを超える粒子の重量分率が0.5〜2重量%であり、Li、Na、K及びAlの群から選択される少なくとも1種の元素を0.1〜0.5重量%含有する二酸化チタン粒子を、ポリエステル組成物の全重量を基準として0.01〜5重量%、及び、
(2)リン化合物として、下記一般式(I)で表されるホスホネート化合物を含有しており、
Figure 2005054014
[上記式中、R1及びR2は、同一又は異なって炭素数1〜4のアルキル基を示し、Xは、−CH2−又は−CH(Y)を示す(Yは、ベンゼン環を示す)。]
(3)下記数式(ア)及び(イ)を同時に満足している、
Figure 2005054014
[上記数式中、Tiはポリエステル組成物中に含有されるポリエステルに可溶なチタン化合物のチタン金属元素の濃度(ppm)を、Pはポリエステル組成物中に含有されるリン化合物のリン元素の濃度(ppm)を表す。]
ことを特徴とするポリエステル組成物。
In a polyester in which at least 80 mol% of all repeating units are ethylene terephthalate,
(1) The average particle size is 0.1 to 0.5 μm, the weight fraction of particles having a particle size exceeding 1 μm is 0.5 to 2% by weight, and is selected from the group of Li, Na, K and Al Titanium dioxide particles containing 0.1 to 0.5% by weight of at least one element, 0.01 to 5% by weight, based on the total weight of the polyester composition, and
(2) As a phosphorus compound, it contains a phosphonate compound represented by the following general formula (I),
Figure 2005054014
[In the above formula, R 1 and R 2 are the same or different and each represent an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents a benzene ring. ). ]
(3) The following mathematical formulas (a) and (b) are satisfied at the same time.
Figure 2005054014
[In the above formula, Ti is the concentration (ppm) of the titanium metal element of the titanium compound soluble in the polyester contained in the polyester composition, and P is the concentration of the phosphorus element of the phosphorus compound contained in the polyester composition. (Ppm). ]
The polyester composition characterized by the above-mentioned.
ポリエステル組成物のカラー(L***表色系における)L値が70.0以上でb値が1.0〜10.0である請求項1記載のポリエステル組成物。 The polyester composition according to claim 1, wherein the polyester composition has an L value of 70.0 or more and a b value of 1.0 to 10.0 (in the L * a * b * color system). 常圧下285℃で溶融保持したとき、ポリエステル組成物106g当りの分子鎖の見かけ切断数速度Δn/t1が、下記数式(ウ)を満足する請求項1又は2記載のポリエステル組成物。
Figure 2005054014
[上記数式中、Δnは分子鎖の見かけ切断数(ケ/T)を、t1は溶融保持時間(分)を表す。ただし0≦t1≦30である。]
3. The polyester composition according to claim 1, wherein, when melt-held at 285 ° C. under normal pressure, the apparent number of molecular chain breakage Δn / t 1 per 10 6 g of the polyester composition satisfies the following mathematical formula (c).
Figure 2005054014
[In the above formula, Δn represents the apparent number of molecular chain breaks (ke / T), and t 1 represents the melt retention time (minutes). However, 0 ≦ t 1 ≦ 30. ]
285℃で溶融保持し、固有粘度0.600に保った組成物を133Paの減圧下で反応させたとき、固有粘度が下記数式(エ)を満足する請求項1〜3のいずれかに記載のポリエステル組成物。
Figure 2005054014
[上記数式中、IVは反応最終固有粘度(dL/g)を、t2は減圧下の反応時間(秒)(300≦t2≦2400)を、Tはポリマーの反応最終温度(℃)をそれぞれ表す。]
The intrinsic viscosity satisfies the following mathematical formula (D) when the composition kept melted at 285 ° C and kept at an intrinsic viscosity of 0.600 is reacted under a reduced pressure of 133 Pa. Polyester composition.
Figure 2005054014
[In the above formula, IV represents the final reaction intrinsic viscosity (dL / g), t 2 represents the reaction time under reduced pressure (seconds) (300 ≦ t 2 ≦ 2400), and T represents the final reaction temperature (° C.) of the polymer. Represent each. ]
下記式(オ)を満たす請求項1〜4のいずれかに記載のポリエステル組成物。
Figure 2005054014
[上記数式中、Pはポリエステル組成物中に含有されるリン化合物のリン元素の濃度(ppm)を、MはLi、Na、K及びAlの群から選択される少なくとも1種の元素のポリエステル組成物中の濃度(ppm)を示す。]
The polyester composition in any one of Claims 1-4 which satisfy | fills following formula (e).
Figure 2005054014
[In the above formula, P represents the concentration (ppm) of the phosphorus element of the phosphorus compound contained in the polyester composition, and M represents the polyester composition of at least one element selected from the group consisting of Li, Na, K and Al. The concentration (ppm) in the product is indicated. ]
請求項1〜5のいずれか1項に記載のポリエステルを製造するに際し、重合触媒として、下記一般式(II)で表される化合物、又は下記一般式(II)で表される化合物と下記一般式(III)で表される芳香族多価カルボン酸若しくはその無水物との反応生成物であるチタン化合物を、
Figure 2005054014
[上記式中、R3,R4,R5,R6はアルキル基及び/又はフェニル基であって、互いに同一であっても異なっていてもよい。pは1〜3の整数を表す。またpが2または3の時、複数あるR4、R5は同一であっても異なっていても良い。]
Figure 2005054014
[上記式中、nは2〜4の整数を表す。]
ポリエステルを構成する全ジカルボン酸成分を基準として、チタン金属元素換算で3〜100ミリモル%用いるポリエステル組成物の製造方法。
In producing the polyester according to any one of claims 1 to 5, as a polymerization catalyst, a compound represented by the following general formula (II), or a compound represented by the following general formula (II) and the following general A titanium compound that is a reaction product of the aromatic polyvalent carboxylic acid represented by formula (III) or an anhydride thereof,
Figure 2005054014
[In the above formula, R 3 , R 4 , R 5 and R 6 are alkyl groups and / or phenyl groups, which may be the same or different. p represents an integer of 1 to 3. When p is 2 or 3, a plurality of R 4 and R 5 may be the same or different. ]
Figure 2005054014
[In the above formula, n represents an integer of 2 to 4. ]
A method for producing a polyester composition using 3 to 100 mmol% in terms of titanium metal element based on all dicarboxylic acid components constituting polyester.
ポリエステルを製造する際の出発原料として、全ジカルボン酸成分の90モル%以上にテレフタル酸ジメチルを用い、0.05〜0.20MPaの加圧下にてエステル交換反応せしめた後に重合反応せしめる請求項6記載のポリエステル組成物の製造方法。   7. A dimethyl terephthalate is used as a starting material in the production of polyester for 90 mol% or more of all dicarboxylic acid components, and a polymerization reaction is carried out after a transesterification reaction under a pressure of 0.05 to 0.20 MPa. The manufacturing method of the polyester composition of description. 請求項1〜5のいずれか1項に記載のポリエステル組成物を溶融紡糸してなるポリエステル繊維。   The polyester fiber formed by melt-spinning the polyester composition of any one of Claims 1-5.
JP2003284767A 2003-08-01 2003-08-01 Polyester composition, method for producing the same and polyester fiber Pending JP2005054014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284767A JP2005054014A (en) 2003-08-01 2003-08-01 Polyester composition, method for producing the same and polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284767A JP2005054014A (en) 2003-08-01 2003-08-01 Polyester composition, method for producing the same and polyester fiber

Publications (2)

Publication Number Publication Date
JP2005054014A true JP2005054014A (en) 2005-03-03
JP2005054014A5 JP2005054014A5 (en) 2006-01-12

Family

ID=34364596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284767A Pending JP2005054014A (en) 2003-08-01 2003-08-01 Polyester composition, method for producing the same and polyester fiber

Country Status (1)

Country Link
JP (1) JP2005054014A (en)

Similar Documents

Publication Publication Date Title
JP3748819B2 (en) Catalyst for producing polyester and method for producing polyester using the same
US20040254331A1 (en) Process for producing poly(ethylene-aromatic dicarboxylate ester) resin and resin product
JP2003238673A (en) Method for producing polyester
JP2007291170A (en) Polyester having excellent fiber-forming property and fiber comprising the same
JP4817654B2 (en) Cationic dyeable polyester and high strength cationic dyeable polyester fiber
JP2004183143A (en) Polyester fiber and method for producing the same
JP3888884B2 (en) Polyester production method
US7462682B2 (en) Orthochromatic polyester resin composition and molding product thereof
JP3998942B2 (en) Catalyst for producing polyester and method for producing polyester using the same
JP2005054014A (en) Polyester composition, method for producing the same and polyester fiber
JP4361387B2 (en) Split polyester composite fiber
JP2003119266A (en) Continuous polymerization method for producing polytrimethylene terephthalate
JP3976539B2 (en) Copolyester and heat-bondable fiber
JP5415878B2 (en) Method for producing polyester composition
JP2004250571A (en) Polyester composition and fiber for deep color dyeing
JP4700336B2 (en) Copolyester composition, method for producing the same, and fiber
JP2004217751A (en) Polyester and its fiber for atmospheric dyeing
JP2007238703A (en) Polyester composition excellent in fiber-forming property, and fiber consisting of the same
JP4673054B2 (en) Polyester composition and method for producing the same
JP2004124004A (en) Manufacturing method of polyester, polyester and fiber
JP2004238553A (en) Polyester for atmospheric pressure dyeing and fiber
JP4181002B2 (en) Split polyester composite fiber
JP2006176917A (en) Polyester monofilament
JP2005272578A (en) Manufacturing process for polyester composition, polyester composition and polyester fiber
JP4216493B2 (en) Polytrimethylene terephthalate polyester having improved light resistance, method for producing the same, and fiber comprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Effective date: 20080208

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318