JP2005053808A - Method for producing organic compound with metallosilicate photocatalyst - Google Patents

Method for producing organic compound with metallosilicate photocatalyst Download PDF

Info

Publication number
JP2005053808A
JP2005053808A JP2003284674A JP2003284674A JP2005053808A JP 2005053808 A JP2005053808 A JP 2005053808A JP 2003284674 A JP2003284674 A JP 2003284674A JP 2003284674 A JP2003284674 A JP 2003284674A JP 2005053808 A JP2005053808 A JP 2005053808A
Authority
JP
Japan
Prior art keywords
metallosilicate
diameter
water
reaction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284674A
Other languages
Japanese (ja)
Inventor
Takayuki Hirai
隆之 平井
Yasuhiro Shiraishi
康浩 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2003284674A priority Critical patent/JP2005053808A/en
Publication of JP2005053808A publication Critical patent/JP2005053808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for selectively converting a reactant having a specific molecular diameter into an objective substance in the presence of a metallosilicate having a specific average pore diameter in a liquid phase, concretely to provide a method for selectively converting an organic compound having approximately the same molecular diameter (minor axis) as the average pore diameter of the metallosilicate in the presence of the porous metallosilicate as a photocatalyst in a water-containing solvent into the compound having a smaller size. <P>SOLUTION: This method is characterized by adding a metallosilicate having approximately the same average molecular diameter (minor axis) as the average pore diameter to a solution of an organic compound in a water-containing solvent and irradiating the mixture with light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液相にて、特定の細孔径を有する多孔性メタロシリケートを光触媒として用い、有機化合物をより小さなサイズの化合物に選択的に変換する光触媒反応に関する。   The present invention relates to a photocatalytic reaction in which a porous metallosilicate having a specific pore size is used as a photocatalyst in a liquid phase, and an organic compound is selectively converted into a smaller size compound.

酸化チタンに代表される半導体光触媒は、強い酸化力を有しているため、水中の有害物質の分解に広く用いられている。この半導体光触媒は、不均一系で反応を行えるため、触媒の回収・再使用が簡単であることや、有害な有機化合物を水や二酸化炭素にまで完全に分解できるなど様々なメリットを有している。   Semiconductor photocatalysts typified by titanium oxide are widely used for decomposing harmful substances in water because of their strong oxidizing power. Since this semiconductor photocatalyst can react in a heterogeneous system, it has various merits such as easy recovery and reuse of the catalyst and complete decomposition of harmful organic compounds into water and carbon dioxide. Yes.

また、これらの半導体光触媒を、有機合成反応に応用する研究も盛んに行われてきている。しかし、その強い酸化力のため反応を制御することが困難であり、限られた反応にしか応用できないというデメリットがある。   In addition, research on applying these semiconductor photocatalysts to organic synthesis reactions has been actively conducted. However, due to its strong oxidizing power, it is difficult to control the reaction, and there is a demerit that it can be applied only to limited reactions.

一方、近年、酸化チタンと同じように、チタンを構造内に含む固体触媒として、チタノシリケートが注目されてきている。このチタノシリケートは、多孔質シリカの骨格内に、高分散にチタンを含んだ構造を有しており、熱触媒(酸化触媒)として優れた機能を発現することが見出されている。   On the other hand, in recent years, titanosilicate has attracted attention as a solid catalyst containing titanium in its structure, as with titanium oxide. This titanosilicate has a structure containing titanium in a highly dispersed manner in the skeleton of porous silica, and has been found to exhibit an excellent function as a thermal catalyst (oxidation catalyst).

しかし、チタノシリケートを光触媒として用いた研究は気相反応が主流であり、液相反応で用いられた報告例は少ない。液相反応の例としては、チタノシリケートと二酸化チタンからなる触媒に光照射することにより、芳香族化合物から芳香族ヒドロキシ化合物を製造する方法や(特許文献1)、チタニウムシリカライト−2触媒による4−クロロフェノールなどの光分解反応(非特許文献1)などが報告されているにすぎない。   However, studies using titanosilicate as a photocatalyst are mainly gas phase reactions, and few reports have been used for liquid phase reactions. Examples of the liquid phase reaction include a method of producing an aromatic hydroxy compound from an aromatic compound by irradiating light on a catalyst composed of titanosilicate and titanium dioxide (Patent Document 1), and a titanium silicalite-2 catalyst. Only a photodecomposition reaction such as 4-chlorophenol (Non-Patent Document 1) has been reported.

しかし、将来的にチタノシリケートをはじめとするメタロシリケートの光触媒反応は、これを汎用性のある有機合成反応のツールとして用いようとする観点から見ると、反応性の制御や目的化合物の選択性の面で到底満足できるものではない。
特開平9-208511号公報 Chemistry Letters, 1999, 885
However, in the future, the photocatalytic reaction of metallosilicates such as titanosilicate will be used as a versatile tool for organic synthesis reactions, controlling reactivity and selectivity of target compounds. It is not satisfactory at all.
JP-A-9-208511 Chemistry Letters, 1999, 885

本発明の目的は、液相にて、特定の平均細孔径を有するメタロシリケートを光触媒として用い、特定の分子径を有する反応基質を選択的に目的物に変換させる方法を提供することである。具体的には、含水溶媒中、多孔性メタロシリケートを光触媒に用いて、該メタロシリケートの平均細孔径とほぼ同程度の分子径(短径)を有する有機化合物を、より小さな化合物に選択的に変換する方法を提供することである。例えば、芳香族ハロゲン化物を選択的に芳香族水酸化物に変換する方法などである。   An object of the present invention is to provide a method for selectively converting a reaction substrate having a specific molecular diameter into a target product using a metallosilicate having a specific average pore diameter as a photocatalyst in a liquid phase. Specifically, in a hydrous solvent, a porous metallosilicate is used as a photocatalyst, and an organic compound having a molecular diameter (short diameter) approximately equal to the average pore diameter of the metallosilicate is selectively selected as a smaller compound. It is to provide a way to convert. For example, there is a method of selectively converting an aromatic halide into an aromatic hydroxide.

本発明の発明者らは、上記の問題点を解決すべく、まず非特許文献1に記載のチタニウムシリカライト−2(以下「TS-2」とも表記する)触媒を用いた光分解反応のメカニズムについて検討を行った。   In order to solve the above problems, the inventors of the present invention firstly have a mechanism of a photolysis reaction using a titanium silicalite-2 (hereinafter also referred to as “TS-2”) catalyst described in Non-Patent Document 1. Was examined.

非特許文献1によれば、基質(4−クロロフェノール等)の水溶液中の光分解反応において、基質の分解速度はTS-2触媒の表面へ吸着し易い基質ほど大きいことが記載されている。すなわち、TS-2存在下における水溶液中の基質の分配比D(基質の触媒への吸着のしやすさ;実施例1(1)を参照)が大きくなると、初期反応速度も速くなるとされている。   According to Non-Patent Document 1, it is described that in a photolysis reaction of a substrate (such as 4-chlorophenol) in an aqueous solution, the decomposition rate of the substrate is larger as the substrate is more easily adsorbed on the surface of the TS-2 catalyst. That is, when the distribution ratio D of the substrate in the aqueous solution in the presence of TS-2 (easiness of adsorption of the substrate to the catalyst; see Example 1 (1)) is increased, the initial reaction rate is also increased. .

しかし、本発明の発明者らは、非特許文献1の結果を詳細に検証した結果、チタノシリケート表面への基質の吸着のしやすさは、基質の分解されやすさの支配的因子ではなく、チタノシリケートの細孔形状(平均細孔径)と基質の分子径(短径)が近似する場合に、基質の分解が促進されることをつきとめた。つまり、特定の細孔径を有するチタノシリケートが基質の分子径を認識し、基質選択的な光触媒反応を促進しうることを見出した。   However, the inventors of the present invention have examined the results of Non-Patent Document 1 in detail, and as a result, the ease of adsorption of the substrate on the titanosilicate surface is not the dominant factor of the ease of decomposition of the substrate. It was found that decomposition of the substrate was promoted when the pore shape (average pore size) of titanosilicate approximated the molecular size (short diameter) of the substrate. That is, it was found that titanosilicate having a specific pore diameter can recognize the molecular diameter of the substrate and promote the substrate-selective photocatalytic reaction.

この知見をもとに、さらに研究を発展させて、本発明を完成するに至った。即ち、本発明は、次の方法を提供する。   Based on this knowledge, further research has been developed to complete the present invention. That is, the present invention provides the following method.

項1 有機化合物を含水溶媒に溶解した溶液に、メタロシリケートを加えて光照射することにより、該メタロシリケートの平均細孔径と同程度の分子径(短径)を有する有機化合物からより小さなサイズの化合物を選択的に製造する方法。   Item 1 By adding a metallosilicate to a solution in which an organic compound is dissolved in a water-containing solvent and irradiating with light, an organic compound having a molecular diameter (short diameter) comparable to the average pore diameter of the metallosilicate is reduced to a smaller size. A method for selectively producing a compound.

項2 メタロシリケートにおけるケイ素(Si)と光触媒活性を有する金属(M)とのモル比(Si/M)が、10〜200程度である項1に記載の方法。   Item 2 The method according to Item 1, wherein the molar ratio (Si / M) of silicon (Si) to the metal having photocatalytic activity (Si / M) in the metallosilicate is about 10 to 200.

項3 メタロシリケートの平均細孔径が0.4〜10 nm程度である項1に記載の方法。   Item 3. The method according to Item 1, wherein the metallosilicate has an average pore size of about 0.4 to 10 nm.

項4 メタロシリケートがチタノシリケートである項1に記載の方法。   Item 4. The method according to Item 1, wherein the metallosilicate is titanosilicate.

項5 含水溶媒が水及び水と混和しうる有機溶媒を含み、含水溶媒中の水の含有量が、1〜100 体積%程度である項1に記載の方法。   Item 5 The method according to Item 1, wherein the hydrous solvent contains water and an organic solvent miscible with water, and the content of water in the hydrous solvent is about 1 to 100% by volume.

項6 有機化合物が芳香族ハロゲン化物である項1〜5のいずれかに記載の方法。   Item 6. The method according to any one of Items 1 to 5, wherein the organic compound is an aromatic halide.

項7 芳香族ハロゲン化物を含水溶媒に溶解した溶液に、該芳香族ハロゲン化物の分子径(短径)と同程度の平均細孔径を有するメタロシリケートを加えて光照射することを特徴とする芳香族水酸化物の製造方法。   Item 7 A fragrance characterized by adding a metallosilicate having an average pore diameter comparable to the molecular diameter (short diameter) of an aromatic halide to a solution in which an aromatic halide is dissolved in a water-containing solvent and irradiating with light. A method for producing a group hydroxide.

項8 芳香族ハロゲン化物が、炭素数6〜30の芳香族化合物上に、塩素原子、臭素原子及びヨウ素原子からなる群から選ばれる少なくとも1種のハロゲン原子を置換基として有している項7に記載の製造方法。   Item 8 The aromatic halide has, as a substituent, at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom on an aromatic compound having 6 to 30 carbon atoms. The manufacturing method as described in.

項9 異なる分子径(短径)を有する2種以上の基質を含水溶媒に溶解した溶液に、メタロシリケートを加えて光照射することにより、該メタロシリケートの平均細孔径と同程度の分子径(短径)を有する反応性基質を選択的に反応させる方法。

以下、本発明について詳細に説明する。
I.本発明方法
本発明は、反応基質である有機化合物を含水溶媒に溶解した溶液に、該有機化合物の分子径(短径)と同程度の平均細孔径を有するメタロシリケートを加え光照射し、該有機化合物をより小さなサイズの化合物に選択的に変換することを特徴とする光触媒反応である。以下、各構成要件について詳細に説明する。
Item 9 By adding a metallosilicate to a solution in which two or more kinds of substrates having different molecular diameters (short diameters) are dissolved in a water-containing solvent and irradiating with light, a molecular diameter comparable to the average pore diameter of the metallosilicate ( A method of selectively reacting a reactive substrate having a short diameter).

Hereinafter, the present invention will be described in detail.
I. Method of the present invention The present invention comprises adding a metallosilicate having an average pore diameter comparable to the molecular diameter (short diameter) of the organic compound to a solution obtained by dissolving an organic compound as a reaction substrate in a water-containing solvent, and irradiating with light. It is a photocatalytic reaction characterized by selectively converting an organic compound into a smaller size compound. Hereinafter, each component will be described in detail.

メタロシリケート
本発明で使用されるメタロシリケートは、多孔性メタロシリケートであり、多孔質シリカ骨格内のケイ素の一部を、光触媒活性を有する金属で置き換えた構造体である。
Metallosilicate The metallosilicate used in the present invention is a porous metallosilicate, which is a structure in which a part of silicon in the porous silica skeleton is replaced with a metal having photocatalytic activity.

光触媒活性を有する金属としては、光を吸収したとき価数が小さくなり、有機化合物の基質に対し反応性を有する金属であればよく、例えば遷移金属が挙げられる。具体的には、チタン(Ti)、クロム(Cr)、鉄(Fe)、バナジウム(V)、ニオブ(Nb)、コバルト(Co)、マンガン(Mn)、モリブデン(Mo)等の遷移金属が例示される。中でも、チタン、クロム、鉄が好ましく、特にチタンが好ましい。これらの骨格内における光触媒活性を有する金属は、基質の光触媒反応に寄与し得る活性点となる。例えば、光触媒活性を有する金属がチタンの場合(チタノシリケート)の模式図を図1に示す。   The metal having photocatalytic activity may be any metal that has a reduced valence when absorbing light and has reactivity with a substrate of an organic compound, such as a transition metal. Specific examples include transition metals such as titanium (Ti), chromium (Cr), iron (Fe), vanadium (V), niobium (Nb), cobalt (Co), manganese (Mn), and molybdenum (Mo). Is done. Of these, titanium, chromium, and iron are preferable, and titanium is particularly preferable. The metal having photocatalytic activity in these skeletons becomes an active site that can contribute to the photocatalytic reaction of the substrate. For example, FIG. 1 shows a schematic diagram when the metal having photocatalytic activity is titanium (titanosilicate).

骨格内に取込まれる光触媒活性を有する金属(M)の含有量は、特に限定されないが、所望の光触媒活性を得るためには、Si/Mの金属含有比(モル比)を10〜200程度、特に30〜100程度とすることが好適である。特に、Mとしてチタンを用いた場合は、Si/Tiの金属含有比(モル比)を20〜150程度、好ましくは30〜100程度である。   The content of metal (M) having photocatalytic activity incorporated into the skeleton is not particularly limited, but in order to obtain a desired photocatalytic activity, the metal content ratio (molar ratio) of Si / M is about 10 to 200. In particular, it is preferable to be about 30 to 100. In particular, when titanium is used as M, the Si / Ti metal content ratio (molar ratio) is about 20 to 150, preferably about 30 to 100.

メタロシリケートの細孔形態については特に限定されず、4〜20Å程度のミクロポーラス、2〜50nm程度のメソポーラス、さらに50〜200nm程度のマクロポーラスまでの、調製し得る範囲のいずれの平均細孔径を有していてもよい。本発明方法では、メタロシリケートの平均細孔径と基質の分子径(短径)が反応の支配因子となるために、細孔径が実質的に均一なメタロシリケートであることが好ましい。特に、チタノシリケートについては、その平均細孔径が4Å〜10 nm程度の範囲であればよい。なお、本発明において、平均細孔径は、通常、窒素吸着法により測定される。   The pore morphology of the metallosilicate is not particularly limited, and any average pore diameter in a range that can be prepared, from microporous of about 4 to 20 mm, mesoporous of about 2 to 50 nm, and macroporous of about 50 to 200 nm. You may have. In the method of the present invention, since the average pore diameter of the metallosilicate and the molecular diameter (short diameter) of the substrate are the controlling factors of the reaction, the metallosilicate is preferably a metallosilicate having a substantially uniform pore diameter. In particular, the titanosilicate may have an average pore diameter in the range of about 4 to 10 nm. In the present invention, the average pore diameter is usually measured by a nitrogen adsorption method.

また、メタロシリケートの細孔内の表面積が大きい方が、基質の反応速度が大きくなることから、メタロシリケートの比表面積は大きい方が好ましい。すなわち比表面積は、100 m2/g程度以上であることが好ましく、特に、300〜1500 m2/g程度である。メタロシリケートの比表面積は、通常BET法により測定される。 In addition, the larger the surface area in the pores of the metallosilicate, the higher the reaction rate of the substrate. Therefore, it is preferable that the specific surface area of the metallosilicate is large. That is, the specific surface area is preferably about 100 m 2 / g or more, and particularly about 300 to 1500 m 2 / g. The specific surface area of the metallosilicate is usually measured by the BET method.

上記の多孔質構造体とは、多孔性のシリケートを意味する。ゼオライト型としては、シリカライト−1、シリカライト−2等が挙げられ、非ゼオライト型としては、メソポーラスモレキュラーシーブ(M41S、MCM-41、MCM-48他)等が挙げられる。また、メタロシリケートには、ケイ素や光触媒活性を有する金属以外に、アルミニウム、リン、ホウ素等の他の元素を含んでいてもよい。   The above porous structure means a porous silicate. Examples of the zeolite type include silicalite-1 and silicalite-2, and examples of the non-zeolite type include mesoporous molecular sieves (M41S, MCM-41, MCM-48, etc.). The metallosilicate may contain other elements such as aluminum, phosphorus and boron in addition to silicon and metal having photocatalytic activity.

好ましいメタロシリケートとしては、チタノシリケート(TS-1、TS-2、Ti-β、Ti-MCM-41、Ti-MWW等)、クロムシリケート(CrS-1、CrS-2、Cr-MCM-41等)、フェリシリケート(Fe-ZMS-5等)、マンガンシリケート、ニオブシリケート、モリブデンシリケート等が挙げられる。中でも、チタノシリケート(TS-1、TS-2)がより好適である。   Preferred metallosilicates include titanosilicate (TS-1, TS-2, Ti-β, Ti-MCM-41, Ti-MWW, etc.), chrome silicate (CrS-1, CrS-2, Cr-MCM-41) Etc.), ferric silicate (Fe-ZMS-5 etc.), manganese silicate, niobium silicate, molybdenum silicate and the like. Among these, titanosilicate (TS-1, TS-2) is more preferable.

本発明方法で光触媒として用いられる多孔性メタロシリケートは、公知の合成法により調製され、例えば、特開昭56−96720 号公報参照に従って実施できる。シリカまたはその前駆体(例、アルコキシシラン)及び/又は水ガラス(ケイ酸ナトリウム濃厚溶液)と、金属酸化物前駆体としての加水分解性金属化合物(例、アルコキシド、塩化物等)との混合物を加水分解して、含水シリカ上に金属水酸化物を析出させた後、結晶化のための熱処理を行い、さらに焼成することにより多孔性メタロシリケートが調製される。   The porous metallosilicate used as the photocatalyst in the method of the present invention is prepared by a known synthesis method, and can be carried out, for example, according to JP-A-56-96720. A mixture of silica or a precursor thereof (eg, alkoxysilane) and / or water glass (sodium silicate concentrated solution) and a hydrolyzable metal compound (eg, alkoxide, chloride, etc.) as a metal oxide precursor. After hydrolyzing and precipitating a metal hydroxide on the hydrous silica, a heat treatment for crystallization is performed, followed by firing to prepare a porous metallosilicate.

アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシランが例示され、好ましくはテトラエトキシシランである。また、加水分解性金属化合物のアルコキシドとしては、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタンが例示され、好ましくはテトライソプロポキシチタンである。また、加水分解性金属化合物の塩化物としては、四塩化チタンが例示される。   Examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetra-n-butoxysilane, preferably tetraethoxysilane. Examples of the alkoxide of the hydrolyzable metal compound include tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxy titanium, and tetra-n-butoxy titanium, preferably tetraisopropoxy titanium. Moreover, titanium tetrachloride is illustrated as a chloride of a hydrolysable metal compound.

また、チタノシリケートに関しては、例えば、特開平10−330111号公報等の公知の方法により、その細孔径、比表面積、細孔容積等を変化させて製造することができる。

光源
本発明方法で用いられる光触媒反応の光源は、上記のメタロシリケートの光触媒活性を有する金属(M)の種類によって適宜選択される。例えば、チタノシリケート、マンガンシリケート、ニオブシリケート、モリブデンシリケート等のように、光の吸収波長が200 〜300 nm程度のメタロシリケートについては、通常、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素ランプ、キセノンランプ、Hg-Zn-Pbランプ等の紫外光を中心とする光源が採用される。実用的な反応効率の確保の点から、高圧水銀灯(出力約100〜400 W)が好ましい。なお、光自身が反応に関与し副生成物を生成させるのを抑制するために、光源からの280nm以下の波長をカットするパイレックス(登録商標)フィルターで光源を被覆しておくことが好ましい。
Further, titanosilicate can be produced by changing the pore diameter, specific surface area, pore volume, and the like by a known method such as JP-A-10-330111.

Light source The light source for the photocatalytic reaction used in the method of the present invention is appropriately selected depending on the type of metal (M) having the photocatalytic activity of the metallosilicate. For example, metallosilicates with a light absorption wavelength of about 200 to 300 nm, such as titanosilicate, manganese silicate, niobium silicate, molybdenum silicate, etc. are usually high pressure mercury lamp, low pressure mercury lamp, black light, excimer laser, heavy Light sources centered on ultraviolet light such as hydrogen lamps, xenon lamps, and Hg-Zn-Pb lamps are used. From the viewpoint of ensuring practical reaction efficiency, a high-pressure mercury lamp (output: about 100 to 400 W) is preferable. In order to suppress the light itself from participating in the reaction and generating by-products, it is preferable to cover the light source with a Pyrex (registered trademark) filter that cuts a wavelength of 280 nm or less from the light source.

また、クロムシリケート、フェリシリケート等のように、光の吸収波長が300 〜500 nm程度のメタロシリケートについては、通常、自然光、蛍光灯等の可視光を中心とする光源が採用される。

反応溶媒
本発明方法で用いられる反応溶媒は、光反応に悪影響を与えない溶媒であり、水を含有して基質と混和し得る溶媒であれば特に限定はない。好ましくは、基質を溶解しうる溶媒であること、さらに溶媒自身が光反応で分解しないことが挙げられる。
For metallosilicates having a light absorption wavelength of about 300 to 500 nm, such as chrome silicate and ferric silicate, a light source centering on visible light such as natural light or a fluorescent lamp is usually employed.

Reaction Solvent The reaction solvent used in the method of the present invention is not particularly limited as long as it is a solvent that does not adversely affect the photoreaction and contains water and is miscible with the substrate. Preferably, it is a solvent capable of dissolving the substrate, and further, the solvent itself is not decomposed by a photoreaction.

このような溶媒としては、例えば、水をはじめとして、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール等のアルコール類;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素等が挙げられる。水以外の溶媒は、上記例示されたもののうち1種又は2種以上を混合して用いてもよい。   Examples of such solvents include water, alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; nitriles such as acetonitrile, propionitrile, and butyronitrile; halogens such as chloroform and dichloromethane. And hydrocarbons. Solvents other than water may be used by mixing one or more of those exemplified above.

本発明で用いられる含水溶媒における水の含有量は、通常、含水溶媒の全量に対して、1〜100体積%程度であればよく、好ましくは10〜100体積%程度、より好ましくは50〜100体積%程度である。この水の含有量は、基質の溶解性等を考慮して上記の範囲内から適宜選択することができる。   The water content in the water-containing solvent used in the present invention is usually about 1 to 100% by volume, preferably about 10 to 100% by volume, more preferably 50 to 100%, based on the total amount of the water-containing solvent. It is about volume%. The water content can be appropriately selected from the above range in consideration of the solubility of the substrate.

本発明方法において、溶媒中の水は重要な役割を果たす。例えば、チタノシリケートを光触媒として用いた場合について説明する。チタノシリケート内の4配位チタンは、光(紫外光)を吸収することにより励起され、隣接する酸素リガンド(配位子)からの電子移動により3価のチタン種が生成する。これが、本発明反応の光触媒の活性種としてはたらく(例えば、図6を参照)。しかし、この3価チタン種の寿命は水の存在下では非常に短く、すぐに失活することが知られている(J. Phys. Chem. B 2001, 105, 8350)。チタノシリケートの細孔内では、基質分子はたえず拡散しているが、基質が反応するためにはこの短寿命の活性種をとらえる必要がある。細孔径に対し分子径が小さい基質は細孔内をスムーズに拡散することができるため、上記の短寿命の活性種をとらえにくく反応しにくい。逆に、細孔径より大きい分子径をもつ基質は、細孔内に進入できないため反応しにくい。そして、細孔径とほぼ等しい分子径をもつ基質は、スムーズに細孔内を拡散することができず、一時的に細孔内にトラップされた状態になるために活性点をとらえやすく反応し易い。   In the method of the present invention, water in the solvent plays an important role. For example, a case where titanosilicate is used as a photocatalyst will be described. Tetracoordinate titanium in titanosilicate is excited by absorbing light (ultraviolet light), and trivalent titanium species are generated by electron transfer from an adjacent oxygen ligand (ligand). This serves as an active species of the photocatalyst of the present reaction (see, for example, FIG. 6). However, it is known that the lifetime of this trivalent titanium species is very short in the presence of water and deactivates immediately (J. Phys. Chem. B 2001, 105, 8350). In the titanosilicate pores, the substrate molecules are constantly diffusing, but in order for the substrate to react, it is necessary to capture this short-lived active species. Since the substrate having a small molecular diameter relative to the pore diameter can smoothly diffuse in the pores, it is difficult to catch the above-mentioned short-lived active species and hardly react. On the other hand, a substrate having a molecular diameter larger than the pore diameter is difficult to react because it cannot enter the pores. A substrate having a molecular diameter substantially equal to the pore diameter cannot diffuse smoothly in the pores, and is temporarily trapped in the pores, so that it is easy to catch active sites and react easily. .

また、チタノシリケートの細孔内表面積は、外表面積に比べ非常に大きく、活性点の大部分が細孔内に存在する。   In addition, titanosilicate has a very large surface area in the pores compared to the outer surface area, and most of the active sites are present in the pores.

従って、チタノシリケートの形状選択的反応は、水の存在による活性点の寿命の減少と細孔サイズが組み合わされることにより発現すると考えられる。

基質
本発明方法の特徴は、上記の多孔性メタロシリケートの平均細孔径とほぼ同等の分子径を有する基質を選択的に反応させて目的化合物に導ける点にある。
Therefore, it is considered that the shape-selective reaction of titanosilicate is manifested by a combination of a decrease in active site lifetime due to the presence of water and a pore size.

Substrate The method of the present invention is characterized in that a substrate having a molecular diameter substantially equal to the average pore diameter of the porous metallosilicate can be selectively reacted to lead to the target compound.

反応性基質とは、メタロシリケートの光触媒反応に対し反応性の高い基質を意味する。この反応性基質としては、メタロシリケートの細孔内に進入が可能であり、かつ、細孔内の活性点を捕らえやすい(細孔内の滞留時間が長い)分子径を有する有機化合物が挙げられる。具体的には、メタロシリケートの細孔径と同程度の分子径(好ましくは、分子の短径)を有する有機化合物である。ここでメタロシリケートの細孔径と同程度の分子径とは、メタロシリケートの平均細孔径に対して70〜130%程度の分子径(短径)を有する有機化合物のことを示す。好ましくは、平均細孔径に対して80〜120%程度、より好ましくは90〜110%程度の分子径を有するものである。   The reactive substrate means a substrate that is highly reactive to the photocatalytic reaction of metallosilicate. Examples of the reactive substrate include organic compounds having a molecular diameter that can enter into the pores of the metallosilicate and that can easily catch active sites in the pores (long residence time in the pores). . Specifically, it is an organic compound having a molecular diameter (preferably, a minor axis of the molecule) comparable to that of the metallosilicate. Here, the molecular diameter comparable to the pore diameter of the metallosilicate refers to an organic compound having a molecular diameter (short diameter) of about 70 to 130% with respect to the average pore diameter of the metallosilicate. Preferably, it has a molecular diameter of about 80 to 120%, more preferably about 90 to 110% with respect to the average pore diameter.

また、ここでいう分子径(短径)とは、半経験的分子軌道法(PM3法等)により算出した分子径(短径)であればよい。   In addition, the molecular diameter (minor axis) here may be a molecular diameter (minor axis) calculated by a semi-empirical molecular orbital method (PM3 method or the like).

なお、上述したように、チタノシリケートの細孔内面積は、外表面積に比べて非常に大きいため、活性点のほとんどが細孔内に存在すると考えられる。そのため、分子径がメタロシリケートの細孔径より大きい化合物は細孔内に進入できないため、分解されにくいと考えられる。また、分子径がメタロシリケートの細孔径より小さい化合物は、細孔内において光触媒活性点をとらえにくく素通りしてしまうため分解されにくいと考えられる。   As described above, since the area inside the pores of titanosilicate is much larger than the outer surface area, it is considered that most of the active sites are present in the pores. Therefore, it is considered that a compound having a molecular diameter larger than that of the metallosilicate cannot enter the pores and thus is difficult to be decomposed. In addition, it is considered that a compound having a molecular diameter smaller than that of the metallosilicate pore is difficult to be decomposed because it hardly passes through the photocatalytic active site in the pore and passes through.

また、本発明方法の反応性基質は、その光触媒反応後に得られる反応生成物の分子径が、メタロシリケートの平均細孔径よりも小さくなるものであることが必要である。反応生成物の分子径が反応基質の分子径よりも小さくなることにより、反応生成物がメタロシリケートの細孔内をスムーズに拡散でき、細孔内壁に存在する活性点を捕らえにくくなり、反応生成物のさらなる光触媒反応による分解を回避できるからである。例えば、反応性基質から生成物への変換により、生成物の分子径がメタロシリケートの平均細孔径よりも0.1%以上小さくなる基質が好ましく、10%以上小さくなる基質がより好ましい。さらに好ましくは30%以上小さくなる基質である。   In addition, the reactive substrate of the method of the present invention needs to have a molecular diameter of the reaction product obtained after the photocatalytic reaction smaller than the average pore diameter of the metallosilicate. When the molecular diameter of the reaction product is smaller than the molecular diameter of the reaction substrate, the reaction product can smoothly diffuse through the pores of the metallosilicate, making it difficult to capture the active sites present on the inner walls of the pores. This is because decomposition of the product by further photocatalytic reaction can be avoided. For example, a substrate in which the molecular diameter of the product is 0.1% or more smaller than the average pore diameter of the metallosilicate by conversion from a reactive substrate to a product is preferable, and a substrate in which the molecular diameter is 10% or more is more preferable. More preferably, the substrate is reduced by 30% or more.

さらに、反応性基質は、分子径に影響を与える分子の形状や3次元構造が、周囲の環境により変化しにくい化合物が好適に選択される。具体的には、芳香環やヘテロ芳香環を有する化合物が好適に用いられる。   Furthermore, as the reactive substrate, a compound in which the molecular shape and the three-dimensional structure affecting the molecular diameter are not easily changed by the surrounding environment is suitably selected. Specifically, a compound having an aromatic ring or a heteroaromatic ring is preferably used.

反応性基質として好ましくは、芳香族ハロゲン化物、ヘテロ芳香族ハロゲン化物等が例示される。これらの基質は、光反応に悪影響を与えない範囲で置換基を有していてもよい。芳香族ハロゲン化物又はヘテロ芳香族ハロゲン化物のハロゲンとしては、塩素、臭素、ヨウ素が挙げられ、本発明反応により基質におけるハロゲン原子は水酸基に変換される。ハロゲン原子の大きさは、Cl<Br<Iの順で大きくなることから反応前と反応後の化合物の分子径の差が大きくなると考えられる、芳香族ヨウ化物や芳香族臭化物などがより好適である。   Preferred examples of the reactive substrate include aromatic halides and heteroaromatic halides. These substrates may have a substituent as long as they do not adversely affect the photoreaction. Examples of the halogen of the aromatic halide or heteroaromatic halide include chlorine, bromine and iodine, and the halogen atom in the substrate is converted into a hydroxyl group by the reaction of the present invention. Since the size of the halogen atom increases in the order of Cl <Br <I, aromatic iodides and aromatic bromides, which are considered to increase the difference in molecular diameter between the compounds before and after the reaction, are more preferable. is there.

芳香族ハロゲン化物としては、炭素数6〜30の芳香族化合物上に、塩素原子、臭素原子及びヨウ素原子からなる群から選ばれる少なくとも1種のハロゲン原子を置換基として有している化合物が挙げられる。炭素数6〜30の芳香族化合物としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、ビフェニル、ピレンなどが挙げられる。   Examples of the aromatic halide include compounds having, as a substituent, at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom on an aromatic compound having 6 to 30 carbon atoms. It is done. Examples of the aromatic compound having 6 to 30 carbon atoms include benzene, naphthalene, anthracene, phenanthrene, biphenyl, and pyrene.

該芳香族化合物上には、ハロゲン原子以外に、アルキル基、モノ−又はジ−アルキルアミノ基、アシル基、カルボキシル基、低級アルコキシカルボニル基、保護されていてもよい水酸基、保護されていてもよいアミノ基などの置換基を有していてもよい。これらの基は、本発明反応に対し反応性を有するものであってもよい。   On the aromatic compound, in addition to a halogen atom, an alkyl group, a mono- or di-alkylamino group, an acyl group, a carboxyl group, a lower alkoxycarbonyl group, an optionally protected hydroxyl group, or an optionally protected group. It may have a substituent such as an amino group. These groups may be reactive to the reaction of the present invention.

アルキル基としては、炭素数1〜10の直鎖又は分岐鎖のアルキルであればよく、特に炭素数1〜5の直鎖又は分岐鎖のアルキルが好ましい。具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、n−ペンチル等が挙げられる。   The alkyl group may be a linear or branched alkyl group having 1 to 10 carbon atoms, and a linear or branched alkyl group having 1 to 5 carbon atoms is particularly preferable. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl and the like.

モノ−又はジ−アルキルアミノ基のアルキルも、上記と同様のものが挙げられる。   Examples of the alkyl of the mono- or di-alkylamino group are the same as those described above.

アシル基としては、ホルミル、アセチル、プロピオニル等が挙げられる。   Examples of the acyl group include formyl, acetyl, propionyl and the like.

アルコキシカルボニル基におけるアルコキシとしては、炭素数1〜6の直鎖又は分岐鎖のアルコキシが挙げられ、具体的には、メトキシ、エトキシ、n−プロピルオキシ、イソプロピルオキシ、n−ブチルオキシ、t−ブチルオキシなどが例示される。   Examples of the alkoxy in the alkoxycarbonyl group include linear or branched alkoxy having 1 to 6 carbon atoms, specifically, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, t-butyloxy and the like. Is exemplified.

水酸基の保護基としては、アセチル基、プロピオニル基、ベンジル基、t−ブチルジメチルシリル基などが挙げられる。   Examples of the hydroxyl protecting group include an acetyl group, a propionyl group, a benzyl group, and a t-butyldimethylsilyl group.

アミノ基の保護基としては、アセチル基、ベンジル基、低級アルコキシカルボニル基などが挙げられる。低級アルコキシカルボニル基の低級アルコキシとしては、炭素数1〜6の直鎖又は分岐鎖のアルコキシが挙げられ、具体的には、メトキシ、エトキシ、n−プロピルオキシ、イソプロピルオキシ、n−ブチルオキシ、t−ブチルオキシなどが例示される。   Examples of the amino-protecting group include an acetyl group, a benzyl group, and a lower alkoxycarbonyl group. Examples of the lower alkoxy of the lower alkoxycarbonyl group include linear or branched alkoxy having 1 to 6 carbon atoms, specifically, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, t- Examples include butyloxy and the like.

芳香族ハロゲン化物として、具体的には、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、クロロフェノール、ブロモフェノール、ヨードフェノール、ジヒドロキシクロロベンゼン、ジヒドロキシヨードベンゼン、ジヒドロキシブロモベンゼン、クロロナフタレン、ブロモナフタレン、ヨードナフタレン、ヒドロキシクロロナフタレン、ヒドロキシブロモナフタレン、ヒドロキシヨードナフタレン、ジヒドロキシクロロナフタレン、ジヒドロキシヨードナフタレン、ジヒドロキシブロモナフタレン等が例示される。   Specific examples of aromatic halides include chlorobenzene, bromobenzene, iodobenzene, chlorophenol, bromophenol, iodophenol, dihydroxychlorobenzene, dihydroxyiodobenzene, dihydroxybromobenzene, chloronaphthalene, bromonaphthalene, iodonaphthalene, and hydroxychloro. Examples include naphthalene, hydroxybromonaphthalene, hydroxyiodonaphthalene, dihydroxychloronaphthalene, dihydroxyiodonaphthalene, dihydroxybromonaphthalene and the like.

ヘテロ芳香族ハロゲン化物としては、酸素、窒素及び硫黄からなる群から選ばれる少なくとも1種のヘテロ原子を含むヘテロ芳香族化合物上に、塩素原子、臭素原子及びヨウ素原子からなる群から選ばれる少なくとも1種のハロゲン原子を置換基として有している化合物が挙げられる。ヘテロ芳香族化合物として例えば、チオフェン、フラン、ピロール、イミダゾール、ピラゾール、イソキサゾール、イソチアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、ベンゾフラン、インドール、イソインドール、プリン、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、カルバゾール、アクリジンなどが例示される。   The heteroaromatic halide is at least one selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom on a heteroaromatic compound containing at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. The compound which has a halogen atom of a kind as a substituent is mentioned. Heteroaromatic compounds such as thiophene, furan, pyrrole, imidazole, pyrazole, isoxazole, isothiazole, pyridine, pyrazine, pyrimidine, pyridazine, benzofuran, indole, isoindole, purine, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline , Carbazole, acridine and the like.

該ヘテロ芳香族化合物上には、ハロゲン原子以外に、アルキル基、モノ−又はジ−アルキルアミノ基、アシル基、保護されていてもよい水酸基、保護されていてもよいアミノ基などの置換基を有していてもよい。これらの基は、本発明反応に反応性を有するものであってもよい。

本発明方法
本発明方法は、具体的に次のようにして実施される。光透過性を有する反応容器(パイレックス(登録商標)チューブ等)に、基質、含水溶媒、及びメタロシリケートを加え、光照射することにより実施される。
On the heteroaromatic compound, in addition to a halogen atom, a substituent such as an alkyl group, a mono- or di-alkylamino group, an acyl group, an optionally protected hydroxyl group, and an optionally protected amino group is added. You may have. These groups may be reactive to the reaction of the present invention.

The method of the present invention The method of the present invention is specifically carried out as follows. The reaction is carried out by adding a substrate, a water-containing solvent, and a metallosilicate to a reaction vessel (such as a Pyrex (registered trademark) tube) having light permeability and irradiating with light.

基質、含水溶媒、メタロシリケート及び光源は上記のものが採用される。   The substrate, water-containing solvent, metallosilicate, and light source are as described above.

基質を含水溶媒に溶解した溶液における基質の濃度は、通常、0.01〜1000mmol/L程度、好ましくは、0.1〜1000 mmol/L程度であればよい。濃度が低すぎると反応性が低下し、濃度が高すぎると反応に時間を要し副反応が増加するため好ましくない。メタロシリケートの添加量は、基質100重量部に対し0.1〜10重量部程度、好ましくは、1〜10重量部程度であればよい。   The concentration of the substrate in a solution obtained by dissolving the substrate in a water-containing solvent is usually about 0.01 to 1000 mmol / L, preferably about 0.1 to 1000 mmol / L. If the concentration is too low, the reactivity decreases, and if the concentration is too high, the reaction takes time and side reactions increase, which is not preferable. The addition amount of the metallosilicate may be about 0.1 to 10 parts by weight, preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the substrate.

反応に用いる反応容器には、メタロシリケートと基質の反応を促進するために、撹拌子等を加えて撹拌するのが好ましい。また、反応に供されるメタロシリケートの形状は、反応液中に十分拡散しやすい、粉末或いは微粉末のものが好ましく、その平均粒径は、通常、0.01〜100 μm程度、好ましくは、0.1〜10μm程度であればよい。   The reaction vessel used for the reaction is preferably stirred by adding a stirrer or the like in order to promote the reaction between the metallosilicate and the substrate. In addition, the shape of the metallosilicate to be subjected to the reaction is preferably a powder or fine powder that is easily diffused into the reaction solution, and the average particle size thereof is usually about 0.01 to 100 μm, preferably 0.1 to It may be about 10 μm.

目的とする反応が酸化反応である場合、反応容器内を酸素雰囲気にすることが必要である。酸素雰囲気下とは、反応液及び空間部に酸化反応に必要な酸素分子を有している状態にすることを意味し、通常、酸素を含む気体を反応容器内に充填すればよい。他の方法としては、例えば、反応液中に連続的にまたは間欠的に空気または酸素を供給する方法が挙げられる。空気または酸素を試料水中に連続的に供給する場合、その供給量としては、例えば、反応液1Lに対し毎分0.1〜100 mL程度の割合で供給すればよい。   When the target reaction is an oxidation reaction, it is necessary to make the reaction vessel have an oxygen atmosphere. Under an oxygen atmosphere means that the reaction solution and the space have oxygen molecules necessary for the oxidation reaction, and usually a gas containing oxygen may be filled in the reaction vessel. Examples of other methods include a method of supplying air or oxygen continuously or intermittently into the reaction solution. When air or oxygen is continuously supplied into the sample water, the supply amount may be, for example, supplied at a rate of about 0.1 to 100 mL per minute with respect to 1 L of the reaction solution.

また、光照射においては、反応容器全体を内部ミラーで覆うことにより、紫外線の照射効率を大きくし反応を促進することができる。   In light irradiation, the entire reaction vessel is covered with an internal mirror, so that the irradiation efficiency of ultraviolet rays can be increased and the reaction can be promoted.

本発明方法は常温での反応が可能な方法であるが、更に反応時間を短縮する場合には反応液を加熱しても良い。加熱温度は、溶媒の沸点とのかねあいもあるが、例えば、40〜80℃であればよい。加熱する場合は、溶媒や基質の蒸発等により測定値に影響を及ぼさないよう、反応容器の密閉性等に十分留意して行う。   The method of the present invention is a method capable of reacting at room temperature, but the reaction liquid may be heated when the reaction time is further shortened. The heating temperature may be in the range of 40 to 80 ° C., for example, although it may be related to the boiling point of the solvent. When heating, pay close attention to the sealing of the reaction vessel so that the measurement value is not affected by evaporation of the solvent or substrate.

反応時間は、反応容器の大きさ、溶液中の基質の濃度、光触媒の使用量、紫外線の光源等の反応条件により異なってくるが、約30〜60分程度で進行する。   The reaction time varies depending on the reaction conditions such as the size of the reaction vessel, the concentration of the substrate in the solution, the amount of photocatalyst used, the ultraviolet light source, etc., but it proceeds in about 30 to 60 minutes.

反応終了後、反応液からメタロシリケートを濾別し溶液を濃縮した後、公知の精製過程を経て目的物を得ることができる。濾別されたメタロシリケートは、洗浄、乾燥した後、再利用することが可能である。

II.本発明方法の用途
本発明方法は、上述したように、特定の平均細孔径を有するメタロシリケートにより、同等の分子径を有する反応性基質を選択的に反応させて目的物を得ることができる。この本発明方法は、例えば、次のような分野に応用される。
After completion of the reaction, the metallosilicate is filtered off from the reaction solution, the solution is concentrated, and the desired product can be obtained through a known purification process. The metallosilicate filtered off can be reused after washing and drying.

II. Use of the method of the present invention As described above, the method of the present invention can obtain a target product by selectively reacting a reactive substrate having an equivalent molecular diameter with a metallosilicate having a specific average pore diameter. This method of the present invention is applied to the following fields, for example.

(1) 反応性基質(芳香族ハロゲン化物等)の分子径に応じた平均細孔径を有するメタロシリケートを光触媒として採用することにより、目的物(芳香族水酸化物等)を高収率で得ることができる。本反応は、酸化チタン等の光触媒反応のように基質選択性が低く、かつ徹底的に酸化分解反応が進行する光触媒とは大きく相違する。また、芳香環の水素原子を無差別に水酸基に変換する特許文献1(特開平9-208511号公報)に対し、芳香環上のハロゲン原子を選択的に水酸基へ置換することができる点で相違する。   (1) By using a metallosilicate having an average pore size corresponding to the molecular diameter of a reactive substrate (aromatic halide, etc.) as a photocatalyst, the desired product (aromatic hydroxide, etc.) is obtained in high yield. be able to. This reaction is greatly different from a photocatalyst having low substrate selectivity and a thorough oxidative decomposition reaction like a photocatalytic reaction of titanium oxide or the like. Further, it is different from Patent Document 1 (Japanese Patent Laid-Open No. 9-208511) that indiscriminately converts a hydrogen atom of an aromatic ring into a hydroxyl group in that a halogen atom on the aromatic ring can be selectively substituted with a hydroxyl group. To do.

(2) 反応性基質とそれ以外の基質が混在する反応系において、反応性基質を選択的に反応させることができる。すなわち、分子径の異なる複数の基質が存在する液相において、メタロシリケートの細孔径と同等の分子径をもつ反応性基質を高選択的に反応させることができる。これは、該反応性基質がメタロシリケートの活性点を捕らえやすく、優先的に反応が進行するからである。   (2) A reactive substrate can be selectively reacted in a reaction system in which a reactive substrate and other substrates are mixed. That is, in a liquid phase in which a plurality of substrates having different molecular diameters are present, a reactive substrate having a molecular diameter equivalent to the pore diameter of the metallosilicate can be reacted with high selectivity. This is because the reactive substrate easily captures the active site of the metallosilicate and the reaction proceeds preferentially.

具体的には、メタロシリケートの細孔径を調整することにより、液相中に含有される特定の物質(例えば、ダイオキシン、PCB等の有害物質)等を高選択的に分解することができるほか、水酸化物類などの付加価値の高い化合物へ変換することができる。   Specifically, by adjusting the pore size of the metallosilicate, specific substances contained in the liquid phase (for example, harmful substances such as dioxin and PCB) can be decomposed with high selectivity. It can be converted into a compound with high added value such as hydroxides.

本発明の方法によれば、液相にて、特定の平均細孔径を有するメタロシリケートを光触媒として用い、該平均細孔径とほぼ同等の分子径(短径)を有する反応基質を選択的に目的物に変換させることができる。具体的には、含水溶媒中、多孔性メタロシリケートを光触媒に用いて、該メタロシリケートの平均細孔径とほぼ同程度の分子径(短径)を有する有機化合物をより小さな化合物へ選択的に変換することができる。より具体的には、芳香族ハロゲン化物を選択的に芳香族水酸化物に変換することかできる。   According to the method of the present invention, a metallosilicate having a specific average pore diameter is used as a photocatalyst in a liquid phase, and a reaction substrate having a molecular diameter (short diameter) substantially equal to the average pore diameter is selectively used. It can be converted into a thing. Specifically, using a porous metallosilicate as a photocatalyst in a water-containing solvent, an organic compound having a molecular diameter (short diameter) approximately the same as the average pore diameter of the metallosilicate is selectively converted to a smaller compound. can do. More specifically, the aromatic halide can be selectively converted into an aromatic hydroxide.

従って、本発明の方法を用いることにより、異なる分子径を有するメタロシリケートの平均細孔径を制御することにより、同等の分子径を有する基質を高選択的に反応させることができる。   Therefore, by using the method of the present invention, a substrate having an equivalent molecular diameter can be reacted with high selectivity by controlling the average pore diameter of metallosilicates having different molecular diameters.

以下、本発明の具体例(実施例)を示すが、これにより本発明が限定されるものではない。   Hereinafter, although the specific example (Example) of this invention is shown, this invention is not limited by this.

実施例1(非特許文献1の検証)
技術背景の項で記載された非特許文献1(Chemistry Letters, 1999, 885)の内容を検証するために、以下の実験を行った。蒸留水に、下記に示した1〜10の化合物をそれぞれ溶解させた(10 mmol/L)。これらの水溶液(15 mL)を、それぞれ、触媒(0.01g)および攪拌子とともにパイレックス(登録商標)製試験管(容量20 mL)に入れた。本実施例で用いた光触媒の物性値、製法を記載した文献等を表1に示す。ゴム栓により試験管を密栓し、ステンレス製シリンジを通して、試験管内に酸素ガスを5分間通した(流量10 mL/min)。続いて、図2に示すように、試験管を高圧水銀灯(300W、英光社製YHB-300型)横に設置し、下からマグネチックスターラーにより攪拌しながら光照射を行った。なお、高圧水銀灯の発光部はパイレックス(登録商標)フィルターにより覆い、λ> 280 nm以上の光のみが試験管に照射されるようにした。30分間光照射を行った後、反応溶液を濾過し、触媒を回収した。得られた溶液を高速液体クロマトグラフ(島津製作所製、LC-6A)により分析し、化合物の転化率をもとめた。
Example 1 (Verification of Non-Patent Document 1)
In order to verify the contents of Non-Patent Document 1 (Chemistry Letters, 1999, 885) described in the technical background section, the following experiment was performed. The following compounds 1 to 10 shown below were dissolved in distilled water (10 mmol / L). These aqueous solutions (15 mL) were put into a Pyrex (registered trademark) test tube (capacity 20 mL) together with a catalyst (0.01 g) and a stirrer, respectively. Table 1 shows literatures describing the physical property values and production methods of the photocatalyst used in this example. The test tube was sealed with a rubber stopper, and oxygen gas was passed through the test tube for 5 minutes through a stainless steel syringe (flow rate: 10 mL / min). Subsequently, as shown in FIG. 2, a test tube was placed beside a high-pressure mercury lamp (300 W, YHB-300 type manufactured by Eikoh), and irradiated with light from the bottom while being stirred by a magnetic stirrer. The light-emitting part of the high-pressure mercury lamp was covered with a Pyrex (registered trademark) filter so that only light with λ> 280 nm or more was irradiated onto the test tube. After 30 minutes of light irradiation, the reaction solution was filtered to recover the catalyst. The obtained solution was analyzed with a high performance liquid chromatograph (manufactured by Shimadzu Corporation, LC-6A) to determine the conversion rate of the compound.

(1)チタノシリケート(TS-1,TS-2)および酸化チタンを触媒として、化合物を光分解させた時の分配比D(Dは下記式を参照)と基質の分解率を表2に示す。表2の結果によれば、化合物6〜10において、TS-1及びTS-2では酸化チタンよりも分配比Dが大きい(吸着しやすい)にもかかわらず、分解率は酸化チタンよりも著しく低いことが分かった。さらに、TS-1及びTS-2についてみると、分配比Dと分解率の間には、全く比例関係が見られなかった。従って、非特許文献1で記載されるような、光触媒への吸着のしやすさが必ずしも分解されやすさの支配因子ではないことが分かった。 (1) Table 2 shows the partition ratio D (see formula below for D) and the decomposition rate of the substrate when the compound is photolyzed using titanosilicate (TS-1, TS-2) and titanium oxide as catalysts. Show. According to the results of Table 2, in the compounds 6 to 10, TS-1 and TS-2 have a significantly lower decomposition rate than titanium oxide, although the distribution ratio D is larger (easily adsorbed) than titanium oxide. I understood that. Further, regarding TS-1 and TS-2, no proportional relationship was found between the distribution ratio D and the decomposition rate. Therefore, it was found that the ease of adsorption to the photocatalyst as described in Non-Patent Document 1 is not necessarily the controlling factor of the ease of decomposition.

D=(初期の溶液中基質濃度−平衡時の溶液中基質濃度)/平衡時の溶液中基質濃度   D = (Substrate concentration in initial solution−Substrate concentration in solution at equilibrium) / Substrate concentration in solution at equilibrium

(2)次に、チタノシリケートにおける分解反応において、基質分子の形状やサイズが分解されやすさに影響を及ぼしていると考え、分子サイズと分解率の関係を次のようにして調べた。化合物2,3及び6の半経験分子軌道法(PM3法)を用いた分子サイズの算出結果を図3に示す。3種の触媒((a) TS-1、(b) TS-2、(c)酸化チタン(アナターゼ))を用いて分解反応を行った場合の(照射時間30分)、分子短径と分解率の関係を図4に示す。なお、図4中の波線は、それぞれの触媒の細孔径を示す。図4によれば、酸化チタンを用いた場合(c)には、分子径と分解率とは全く関係は見られないが、TS-1(a)とTS-2(b)の場合には、いずれも小さな分子は分解されにくく、分子径が大きくなるにつれて分解されやすくなっている。分子径が細孔径(波線)とほぼ等しい場合に基質が最も分解されやすく、さらに分子径が大きくなると逆に分解されにくくなる傾向が見て取れる。つまり、(a)、(b)において、チタノシリケートは、化合物6のように細孔径よりも小さな分子径をもつ基質や、化合物3のように細孔径よりも大きな分子径を持つ基質は分解しないのに対し、化合物2のように細孔径とほぼ等しい分子径を持つ基質を選択的に分解していることが分かった。

実施例2(形状選択性の発現のメカニズム)
(1)実施例1で示された形状選択的な分解特性が、何に起因するかを次のようにして調べた。まず、基質として化合物2(分子短径0.6341nm)を用い、光触媒として(i)ミクロ細孔を有する4配位Ti種であるチタノシリケート(TS-1及びTS-2:細孔径0.6nm)、(ii)チタンを含まないシリカライトに6配位Ti種である酸化チタンを含浸担持させた触媒(細孔径0.6nm)、及び(iii)メソ細孔を有する4配位チタン種であるTi-MCM-41(細孔径2.7nm)を用いた。その結果、上記(i)の光触媒では、図4に示される形状選択的な分解特性が観測されたが、上記(ii)及び(iii)の光触媒では、そのような形状選択性は全く観測されなかった(図5を参照)。このことから、化合物2に対するチタノシリケートの形状選択性は、4配位チタンとミクロ細孔が組み合わされることにより、初めて発現される機能であることが分かった。
(2) Next, in the decomposition reaction of titanosilicate, it was considered that the shape and size of the substrate molecule had an effect on the decomposition, and the relationship between the molecular size and the decomposition rate was examined as follows. FIG. 3 shows the calculation results of the molecular size of the compounds 2, 3 and 6 using the semi-empirical molecular orbital method (PM3 method). Molecular short diameter and decomposition when the decomposition reaction was performed using three types of catalysts ((a) TS-1, (b) TS-2, (c) titanium oxide (anatase)) (irradiation time 30 minutes) The relationship between the rates is shown in FIG. In addition, the wavy line in FIG. 4 shows the pore diameter of each catalyst. According to FIG. 4, when titanium oxide is used (c), there is no relationship between the molecular diameter and the decomposition rate, but in the case of TS-1 (a) and TS-2 (b) In both cases, small molecules are difficult to be decomposed, and are easily decomposed as the molecular diameter increases. It can be seen that the substrate is most easily decomposed when the molecular diameter is almost equal to the pore diameter (dashed line), and tends to be difficult to decompose when the molecular diameter is further increased. That is, in (a) and (b), titanosilicate decomposes a substrate having a molecular diameter smaller than the pore diameter as in Compound 6 or a substrate having a molecular diameter larger than the pore diameter as in Compound 3. On the other hand, it was found that a substrate having a molecular diameter almost equal to the pore diameter as in Compound 2 was selectively decomposed.

Example 2 (Mechanism of expression of shape selectivity)
(1) It was investigated as follows what the shape selective decomposition characteristic shown in Example 1 originates. First, titanosilicate (TS-1 and TS-2: pore diameter 0.6 nm), which is a 4-coordinate Ti species having micropores as a photocatalyst, using compound 2 (molecular minor axis 0.6341 nm) as a substrate , (Ii) a catalyst in which titanium oxide is impregnated with and supported by titanium oxide which is a 6-coordinated Ti species (pore diameter 0.6 nm), and (iii) a 4-coordinated titanium species having mesopores -MCM-41 (pore diameter 2.7 nm) was used. As a result, in the photocatalyst (i), the shape selective decomposition characteristics shown in FIG. 4 were observed, but in the photocatalysts (ii) and (iii), such shape selectivity was not observed at all. None (see FIG. 5). From this, it was found that the shape selectivity of titanosilicate with respect to compound 2 was a function that was first expressed by the combination of tetracoordinate titanium and micropores.

従って、チタノシリケートの形状選択性が発現するメカニズムは、以下のように説明することができる。チタノシリケート内の4配位チタンは、紫外線を吸収することにより励起され、隣接する酸素リガンドからの電子移動により3価のチタン種が生成しこれが活性種として働く。しかし、この3価のチタン活性種の寿命は非常に短く、水の存在によりすぐに失活する(例えば、図6を参照)。チタノシリケートの内表面積は、外表面積に比べ非常に大きいため活性点の大部分が細孔内に存在すると考えられる。基質が分解されるためには、細孔内に存在するこの短寿命の活性種をとらえる必要があるが、分子径の小さな基質は、細孔内をスムーズに拡散できるため、短寿命の3価のチタン活性種をとらえにくく分解されにくい。また、分子径の大きな基質は、細孔内に進入できないため分解されない。一方、細孔径とほぼ等しい分子径を有する基質は細孔内には進入できるが、スムーズに拡散できず、一時的に細孔内にトラップされた状態になるため、活性点をとらえやすく分解されやすい(図7を参照)。従って、チタノシリケートの形状選択性は、水の存在による活性点の寿命の減少と細孔サイズが組み合わさることにより発現されると考えられる。
(2)上記(1)のメカニズムを検証するために、次のような実験を行った。チタノシリケートの光触媒反応の溶媒として、無水のアセトニトリル(○)、及びアセトニトリルに10体積%の水を添加した溶液(●)を用い、TS-1により化合物1〜10について光分解を行った。反応条件は、実施例1と同じである。その結果として得られた基質の分子径(短径)と分解率の関係を図8に示す。なお、図8中の波線は、TS-1の細孔径を示す。図8によれば、無水のアセトニトリルでは、水が存在しないため3価チタン活性種の寿命が減少しないため、分子径と分解率の間には全く相関関係がない。一方で、アセトニトリルに10%の水を添加した溶液では、分解率は分子径に依存することが分かった。この結果は、上記(1)のメカニズムを強く示唆するものであり、チタノシリケートの形状選択性は、水の存在による活性点の寿命の減少が重要な役割を担っていることが分かった。

実施例3(形状選択型分解機能の応用)
次に、実施例1及び2で示されたチタノシリケートの形状選択型分解反応の応用を試みた。
Therefore, the mechanism by which the titanosilicate shape selectivity is expressed can be explained as follows. The tetracoordinate titanium in the titanosilicate is excited by absorbing ultraviolet rays, and a trivalent titanium species is generated by electron transfer from an adjacent oxygen ligand, and this acts as an active species. However, the lifetime of this trivalent titanium active species is very short and deactivates quickly due to the presence of water (see, for example, FIG. 6). Since the inner surface area of titanosilicate is much larger than the outer surface area, it is considered that most of the active sites are present in the pores. In order for the substrate to be decomposed, it is necessary to capture this short-lived active species present in the pores. However, since a substrate having a small molecular diameter can diffuse smoothly in the pores, it is a short-lived trivalent. It is hard to catch active titanium species and to be decomposed. In addition, a substrate having a large molecular diameter is not decomposed because it cannot enter the pores. On the other hand, a substrate having a molecular diameter almost equal to the pore diameter can enter the pores, but cannot diffuse smoothly and is temporarily trapped in the pores. Easy (see FIG. 7). Therefore, it is considered that the shape selectivity of titanosilicate is expressed by the combination of the decrease in the lifetime of active sites due to the presence of water and the pore size.
(2) In order to verify the mechanism of (1) above, the following experiment was conducted. As the solvent for the photocatalytic reaction of titanosilicate, anhydrous acetonitrile (◯) and a solution obtained by adding 10% by volume of water to acetonitrile (●) were used to photolyze compounds 1 to 10 using TS-1. The reaction conditions are the same as in Example 1. FIG. 8 shows the relationship between the molecular diameter (minor axis) of the substrate and the decomposition rate obtained as a result. In addition, the wavy line in FIG. 8 shows the pore diameter of TS-1. According to FIG. 8, in anhydrous acetonitrile, since water does not exist, the lifetime of the trivalent titanium active species does not decrease, so there is no correlation between the molecular diameter and the decomposition rate. On the other hand, it was found that the decomposition rate depends on the molecular diameter in a solution obtained by adding 10% water to acetonitrile. This result strongly suggests the mechanism of the above (1), and it was found that the decrease in the lifetime of active sites due to the presence of water plays an important role in the shape selectivity of titanosilicate.

Example 3 (Application of shape selection type decomposition function)
Next, application of the shape selective decomposition reaction of titanosilicate shown in Examples 1 and 2 was attempted.

反応性基質として、内分泌攪乱物質である2−クロロ−1,4−ジヒドロキシベンゼン10 mmol/L、酸化チタン(アナターゼ型、和光純薬工業製、粒径5(m)
0.01 g、水15 mL、酸素雰囲気下、30 ℃で0.5 時間光照射した。塩素原子が水酸基へ置換された無害な1,2,4−トリヒドロキシベンゼンを一時的に生成するが、さらに分解されて水と二酸化炭素に分解され、最終的な1,2,4−トリヒドロキシベンゼンの収率は約1.3%であった。2−クロロ−1,4−ジヒドロキシベンゼンの分解率は高いものの、1,2,4−トリヒドロキシベンゼンの選択率は非常に低いことが分かった(図9を参照)。
As reactive substrate, endocrine disrupting substance 2-chloro-1,4-dihydroxybenzene 10 mmol / L, titanium oxide (anatase type, manufactured by Wako Pure Chemical Industries, particle size 5 (m)
It was irradiated with light at 0.01 ° C., 15 mL of water and 30 ° C. for 0.5 hours in an oxygen atmosphere. The harmless 1,2,4-trihydroxybenzene in which the chlorine atom is replaced with a hydroxyl group is temporarily produced, but it is further decomposed into water and carbon dioxide, and the final 1,2,4-trihydroxy is obtained. The yield of benzene was about 1.3%. Although the decomposition rate of 2-chloro-1,4-dihydroxybenzene was high, it was found that the selectivity of 1,2,4-trihydroxybenzene was very low (see FIG. 9).

また、上記の反応において、酸化チタン0.01 gに代えて、チタノシリケート触媒(TS-1、TS-2)0.01 gを用いたこと以外は、同様にして反応を行った。2−クロロ−1,4−ジヒドロキシベンゼンは、チタノシリケートの細孔径とほぼ等しい分子径を有しているため分解反応が効率よく進行した。しかも、この場合は、生成したトリヒドロキシベンゼンは、チタノシリケートの細孔径よりも小さいため、それ以上の分解反応が進行せず、特にTS-2では選択率100%近くが達成された(図9を参照)。   Further, in the above reaction, the reaction was performed in the same manner except that 0.01 g of titanosilicate catalyst (TS-1, TS-2) was used instead of 0.01 g of titanium oxide. Since 2-chloro-1,4-dihydroxybenzene has a molecular diameter almost equal to the pore diameter of titanosilicate, the decomposition reaction proceeded efficiently. In addition, in this case, since the produced trihydroxybenzene is smaller than the pore size of titanosilicate, further decomposition reaction does not proceed, and in particular TS-2 has achieved a selectivity of nearly 100% (Fig. 9).

チタノシリケート(TS-2)の模式図である。It is a schematic diagram of a titanosilicate (TS-2). 本実施例1で用いた実験装置の概略図である。1 is a schematic view of an experimental apparatus used in Example 1. FIG. 半経験分子軌道法により求めた化合物2,3,6の分子サイズを示す図である。It is a figure which shows the molecular size of the compound 2,3,6 calculated | required by the semi-empirical molecular orbital method. 三種の触媒((a) TS-1、(b) TS-2、(c)酸化チタン(アナターゼ))を用いて分解反応を行った場合の分子短径と分解率の関係を示す図である。It is a figure which shows the relationship between a molecular minor axis and a decomposition rate at the time of performing a decomposition reaction using three types of catalysts ((a) TS-1, (b) TS-2, (c) titanium oxide (anatase)) . 実施例2における3種の光触媒の構造と、それを用いた分解反応の形状選択性の有無を示す図である。It is a figure which shows the structure of the 3 types of photocatalyst in Example 2, and the presence or absence of the shape selectivity of a decomposition reaction using the same. チタノシリケートにおける3価チタン活性種と水の影響を示す図である。It is a figure which shows the influence of trivalent titanium active species and water in titanosilicate. チタノシリケートを用いた分解反応における形状選択性のメカニズムの模式図である。It is a schematic diagram of the mechanism of shape selectivity in the decomposition reaction using titanosilicate. 溶媒中の水の存在の有無における基質の分子径(短径)と分解率の関係を示す図である。It is a figure which shows the relationship between the molecular diameter (short diameter) of a substrate, and the decomposition rate in the presence or absence of the water in a solvent. チタノシリケートを用いた形状選択的分解反応の応用例である。This is an application example of a shape selective decomposition reaction using titanosilicate.

Claims (9)

有機化合物を含水溶媒に溶解した溶液に、メタロシリケートを加えて光照射することにより、該メタロシリケートの平均細孔径と同程度の分子径(短径)を有する有機化合物からより小さなサイズの化合物を選択的に製造する方法。 By adding a metallosilicate to a solution in which an organic compound is dissolved in a water-containing solvent and irradiating with light, a compound having a smaller size is obtained from an organic compound having a molecular diameter (short diameter) similar to the average pore diameter of the metallosilicate. Selective manufacturing method. メタロシリケートにおけるケイ素(Si)と光触媒活性を有する金属(M)とのモル比(Si/M)が、10〜200程度である請求項1に記載の方法。 The method according to claim 1, wherein the molar ratio (Si / M) of silicon (Si) to metal (M) having photocatalytic activity in the metallosilicate is about 10 to 200. メタロシリケートの平均細孔径が0.4〜10 nm程度である請求項1に記載の方法。 The method according to claim 1, wherein the metallosilicate has an average pore diameter of about 0.4 to 10 nm. メタロシリケートがチタノシリケートである請求項1に記載の方法。 The method of claim 1, wherein the metallosilicate is titanosilicate. 含水溶媒が水及び水と混和しうる有機溶媒を含み、含水溶媒中の水の含有量が、1〜100 体積%程度である請求項1に記載の方法。 The method according to claim 1, wherein the hydrous solvent contains water and an organic solvent miscible with water, and the water content in the hydrous solvent is about 1 to 100% by volume. 有機化合物が芳香族ハロゲン化物である請求項1〜5のいずれかに記載の方法。 The method according to claim 1, wherein the organic compound is an aromatic halide. 芳香族ハロゲン化物を含水溶媒に溶解した溶液に、該芳香族ハロゲン化物の分子径(短径)と同程度の平均細孔径を有するメタロシリケートを加えて光照射することを特徴とする芳香族水酸化物の製造方法。 Aromatic water characterized by adding a metallosilicate having an average pore diameter comparable to the molecular diameter (short diameter) of the aromatic halide to a solution in which the aromatic halide is dissolved in a water-containing solvent and irradiating with light. Production method of oxide. 芳香族ハロゲン化物が、炭素数6〜30の芳香族化合物上に、塩素原子、臭素原子及びヨウ素原子からなる群から選ばれる少なくとも1種のハロゲン原子を置換基として有している請求項7に記載の製造方法。 The aromatic halide has, as a substituent, at least one halogen atom selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom on an aromatic compound having 6 to 30 carbon atoms. The manufacturing method as described. 異なる分子径(短径)を有する2種以上の基質を含水溶媒に溶解した溶液に、メタロシリケートを加えて光照射することにより、該メタロシリケートの平均細孔径と同程度の分子径(短径)を有する反応性基質を選択的に反応させる方法。

By adding a metallosilicate to a solution in which two or more substrates having different molecular diameters (minor axis) are dissolved in a water-containing solvent and irradiating with light, the molecular diameter (minor axis) is about the same as the average pore size of the metallosilicate. And a reactive substrate having a selective reaction.

JP2003284674A 2003-08-01 2003-08-01 Method for producing organic compound with metallosilicate photocatalyst Pending JP2005053808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284674A JP2005053808A (en) 2003-08-01 2003-08-01 Method for producing organic compound with metallosilicate photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284674A JP2005053808A (en) 2003-08-01 2003-08-01 Method for producing organic compound with metallosilicate photocatalyst

Publications (1)

Publication Number Publication Date
JP2005053808A true JP2005053808A (en) 2005-03-03

Family

ID=34364530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284674A Pending JP2005053808A (en) 2003-08-01 2003-08-01 Method for producing organic compound with metallosilicate photocatalyst

Country Status (1)

Country Link
JP (1) JP2005053808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108398A1 (en) * 2007-03-05 2008-09-12 National Institute Of Advanced Industrial Science And Technology Process for producing oxygenic organic compound by oxidation of hydrocarbon and oxidation catalyst for use therein
CN113304769A (en) * 2021-06-17 2021-08-27 重庆工商大学 A series of bimetallic silicates/g-C3N4Preparation and application of composite photocatalyst
CN116618050A (en) * 2023-04-20 2023-08-22 陕西科技大学 Titanium dioxide/ferric silicate heterojunction photo-Fenton catalyst, preparation method and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108398A1 (en) * 2007-03-05 2008-09-12 National Institute Of Advanced Industrial Science And Technology Process for producing oxygenic organic compound by oxidation of hydrocarbon and oxidation catalyst for use therein
JP5017619B2 (en) * 2007-03-05 2012-09-05 独立行政法人産業技術総合研究所 Method for producing oxygenated organic compound by oxidation of hydrocarbon and oxidation catalyst used therefor
CN113304769A (en) * 2021-06-17 2021-08-27 重庆工商大学 A series of bimetallic silicates/g-C3N4Preparation and application of composite photocatalyst
CN113304769B (en) * 2021-06-17 2023-08-08 重庆工商大学 A series of bimetallic silicates/g-C 3 N 4 Preparation and application of composite photocatalyst
CN116618050A (en) * 2023-04-20 2023-08-22 陕西科技大学 Titanium dioxide/ferric silicate heterojunction photo-Fenton catalyst, preparation method and application
CN116618050B (en) * 2023-04-20 2024-01-12 陕西科技大学 Titanium dioxide/ferric silicate heterojunction photo-Fenton catalyst, preparation method and application

Similar Documents

Publication Publication Date Title
Lima et al. Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol
Abedi et al. Ordered mesoporous metal–organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective aerobic oxidation in sunlight irradiation
Huang et al. Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts
Laoufi et al. The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor
Bosc et al. Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation
US20020018741A1 (en) Doped titanium dioxide
Yan et al. Ru doped graphitic carbon nitride mediated peroxymonosulfate activation for diclofenac degradation via singlet oxygen
EP2542515A1 (en) Photocatalyst composition of matter
Chen et al. Role of SiF groups in enhancing interfacial reaction of Fe-MCM-41 for pollutant removal with ozone
Tilgner et al. Titanium dioxide reinforced metal–organic framework Pd catalysts: activity and reusability enhancement in alcohol dehydrogenation reactions and improved photocatalytic performance
Singha et al. N‐doped yellow TiO2 hollow sphere‐mediated visible‐light‐driven efficient esterification of alcohol and N‐hydroxyimides to active esters
Ismail et al. Pyrolysis conversion of metal organic frameworks to form uniform codoped C/N-Titania photocatalyst for H2 production through simulated solar light
Kokate et al. Energy efficient photocatalytic activation of peroxymonosulfate by g-C3N4 under 400 nm LED irradiation for degradation of Acid Orange 7
JP2005270734A (en) Photocatalyst composite and organic substance converting method using the same
Nagarjun et al. Influence of oxophilic behavior of UiO‐66 (Ce) metal–organic framework with superior catalytic performance in Friedel‐Crafts alkylation reaction
Liao et al. Vacuum degassed treatment for fabricating quasi-MIL-125 (Ti) with enhanced catalytic oxidative desulfurization activity
Jiang et al. Insights into membrane fouling of a side-stream ceramic membrane reactor for phenol hydroxylation over ultrafine TS-1
KR102018645B1 (en) Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
Sabaghi et al. Fabrication of a new heterogeneous tungstate-based on the amino-functionalized metal-organic framework as an efficient catalyst towards sonochemical oxidation of alcohols under green condition
Feng et al. Photocatalysis of dinitrotoluene decomposition by H3PW12O40/TiO2 and H4SiW12O40/TiO2 prepared by a modified sol-gel synthesis and solvothermal treatment method
Tavakoli Catalytic CO2 fixation over a high-throughput synthesized copper terephthalate metal-organic framework
JP2005053808A (en) Method for producing organic compound with metallosilicate photocatalyst
Khodkari et al. In situ copper nanoparticle immobilization on the indigo carmine-functionalized chitosan: a versatile biocatalyst towards CO 2 fixation and click reactions in water
Wei et al. A benzimidazole‐linked porphyrin covalent organic polymers as efficient heterogeneous catalyst/photocatalyst
Mandache et al. Epoxidation of dibenzocycloalkenes on Ti–Ge-MCM-41 and Ti-SBA-15 catalysts

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091021