JP2005053753A - Water retentivity imparting agent for porous material, method of use of the same and porous material - Google Patents

Water retentivity imparting agent for porous material, method of use of the same and porous material Download PDF

Info

Publication number
JP2005053753A
JP2005053753A JP2003287827A JP2003287827A JP2005053753A JP 2005053753 A JP2005053753 A JP 2005053753A JP 2003287827 A JP2003287827 A JP 2003287827A JP 2003287827 A JP2003287827 A JP 2003287827A JP 2005053753 A JP2005053753 A JP 2005053753A
Authority
JP
Japan
Prior art keywords
water
porous material
porous
water retention
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003287827A
Other languages
Japanese (ja)
Other versions
JP4433271B2 (en
Inventor
Atsunori Maeda
敦則 前田
Naoki Kawanaka
直樹 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003287827A priority Critical patent/JP4433271B2/en
Publication of JP2005053753A publication Critical patent/JP2005053753A/en
Application granted granted Critical
Publication of JP4433271B2 publication Critical patent/JP4433271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Panels For Use In Building Construction (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water retentivity imparting agent for a porous material which imparts stable water retentivity and water permeability to the porous material over a long period and a method of use of the same and the porous material. <P>SOLUTION: The water retentivity imparting agent for the porous material contains a water absorbent material having a water absorption masgnification 2-500 times of dead weight and a cross-linking agent capable of forming a chemical bond with the water absorbent material. The water absorbent material is preferably dispersed or dissolved in water. In the method of use of the water retentivity imparting agent for the porous material, the water retentivity is imparted to the porous material by scattering the water retentivity imparting agent for the porous material on the surface of the porous material to chemically bond the water retentivity imparting agent for the porous material with the cross-linking agent in many continuous void inside the porous material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透水性アスファルト(ポーラスアスファルト)、透水性コンクリート(ポーラスコンクリート)、多孔陶器質材料、汚泥焼却灰製焼成体、軽量骨材、砂利等で代表される内部に多数の連続空隙を有する透水性舗装などに用いられる多孔質材料の保水性付与剤及びその使用方法に関するものである。   The present invention has a large number of continuous voids inside represented by water-permeable asphalt (porous asphalt), water-permeable concrete (porous concrete), porous porcelain material, sludge incinerated ash fired body, lightweight aggregate, gravel, etc. The present invention relates to a water retention agent for a porous material used for permeable pavement and the like and a method for using the same.

従来から、雨水の地中への浸透を促進するため、特に、都市部において、透水性舗装が多用されている。
ところで、透水性舗装は、一般に内部に多数の連続空隙を有することにより、雨水を地中へ速やかに浸透させるものであるが、さらに、近年、都市部におけるヒートアイランド現象の解消を目的として、透水性舗装に保水性を付与する試みがなされている。
Conventionally, in order to promote the penetration of rainwater into the ground, permeable pavement has been frequently used particularly in urban areas.
By the way, the water-permeable pavement generally has a large number of continuous voids in the interior, so that rainwater can quickly penetrate into the ground. In recent years, the water-permeable pavement has been developed for the purpose of eliminating the heat island phenomenon in urban areas. Attempts have been made to impart water retention to the pavement.

透水性舗装に保水性を付与する方法として、例えば外壁コンクリートの表面に吸水性材料を砂利などと混合し、固化させて保水性のあるコンクリート基材を作成する方法が記載されている(特許文献1参照)。しかしながら、この方法によれば、吸水性材料のほとんどがコンクリート基材の内部に埋もれてしまい、高い保水性を基材に付与するためには、多量の吸水性材料が基材表面部分に出るよう吸水性材料の添加量を増やす必要があり、施工費の高価格化の原因となるほか、基材に占める吸水性材料の比率が高くなることで基材本来の物理的な強度が低下するという問題があった。   As a method for imparting water retention to a water-permeable pavement, for example, a method is described in which a water-absorbing material is mixed with gravel on the surface of an outer wall concrete and solidified to create a concrete substrate with water retention (Patent Literature). 1). However, according to this method, most of the water-absorbing material is buried inside the concrete base material, and in order to impart high water retention to the base material, a large amount of water-absorbing material appears on the surface portion of the base material. It is necessary to increase the amount of water-absorbing material added, which causes higher construction costs and increases the proportion of the water-absorbing material in the base material, reducing the original physical strength of the base material. There was a problem.

また、既設の透水性舗装に対し、吸水性材料を混合したセメントミルクを流し込んで固化させ、保水性を付与する方法も提案されているが、この方法によれば、透水性舗装の内部の連続空隙を閉塞することになり、透水性が阻害されるという問題があった。   In addition, a method is also proposed in which cement milk mixed with a water-absorbing material is poured into an existing permeable pavement to solidify and impart water retention, but according to this method, the continuous inside of the permeable pavement is proposed. There was a problem that the air gap was blocked and the water permeability was hindered.

一方、吸水性樹脂を多孔質層の連続気孔内に存在させることによるヒートアイランド緩和対策も開示されているが(特許文献2参照)、吸水性樹脂としては粉末状のもののみを例示している。しかしながら、粉末状では風が吹くだけで施工のための工事を中止せざるをえず、また、施工後にも少しずつ吸水性樹脂が減少し、次第にヒートアイランド緩和の効果が薄くなる問題もあった。さらには連続気孔のうち粉末の到達した一部にしか吸水効果が得られず効果に不満があること、また、既に施工済みの道路や建築物には使えず新たに施工するものにしか応用することが出来ないとの課題もあった。
特開平11−159106号公報(特許請求の範囲) 特開2001−146706号広報(特許請求の範囲)
On the other hand, although a heat island mitigation measure by causing the water absorbent resin to exist in the continuous pores of the porous layer is also disclosed (see Patent Document 2), only the powdery water absorbent resin is illustrated. However, in the powder form, there is a problem that the construction for the construction must be stopped only by blowing the wind, and the water-absorbing resin gradually decreases after the construction, and the effect of relaxing the heat island is gradually reduced. Furthermore, only the part of the continuous pores where the powder has reached can absorb water and is dissatisfied with the effect. Also, it can only be used on newly constructed roads and buildings that cannot be used. There was also a problem that it was not possible.
JP-A-11-159106 (Claims) Japanese Patent Laid-Open No. 2001-146706 (Claims)

本発明は、上記従来の保水性を付与する方法の有する問題点に鑑み、多孔質材料に長期間に亘って安定した保水性と透水性を付与することができる多孔質材料用保水性付与剤及びその使用方法を提供することを目的とする。   In view of the problems of the conventional methods for imparting water retention, the present invention provides a water retention agent for porous materials that can impart stable water retention and water permeability to porous materials over a long period of time. And its usage.

本発明者らは上記課題を達成するため鋭意検討した結果、遂に本発明を完成するに到った。すなわち本発明は以下の多孔質材料用保水性付与剤、その使用方法及び多孔質材料である。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have finally completed the present invention. That is, this invention is the following water retention agent for porous materials, its usage, and a porous material.

(1) 自重の2〜500倍の吸水倍率を有する吸水性材料と、該吸収性材料と化学的な結合を形成することが可能な架橋剤を含む多孔質材料用保水性付与剤。 (1) A water retention agent for a porous material, comprising a water absorbent material having a water absorption rate of 2 to 500 times its own weight and a crosslinking agent capable of forming a chemical bond with the absorbent material.

(2) 吸水性材料が、水に分散または溶解していることを特徴とする(1)記載の多孔質材料用保水性付与剤。 (2) The water retention agent for porous materials according to (1), wherein the water absorbing material is dispersed or dissolved in water.

(3) (1)または(2)に記載の多孔質材料用保水性付与剤を多孔質材料の表面から散布することにより、多孔質材料の内部の連続空隙内で前記吸水性材料と架橋剤を化学結合させ、多孔質材料に保水性を付与するようにした多孔質材料用保水性付与剤の使用方法。 (3) By dispersing the water retention agent for a porous material according to (1) or (2) from the surface of the porous material, the water-absorbing material and the cross-linking agent within the continuous voids inside the porous material. A method for using a water retention agent for a porous material, wherein the water is chemically bonded to impart water retention to the porous material.

(4) (1)または(2)に記載の多孔質材料用保水性付与剤が、内部の連続空隙内に担持された多孔質材料。 (4) A porous material in which the water retention agent for a porous material according to (1) or (2) is supported in an internal continuous void.

本発明の多孔質材料用保水性付与剤及びその使用方法によれば、特定の吸水性材料を水に分散又は溶解し、多孔質材料の表面から散布することにより、この保水性付与剤が、多孔質材料の内部の多数の連続空隙内に担持して保水性を付与することができる。そして、この多孔質材料用保水性付与剤及びその使用方法によれば、保水性付与剤が多孔質材料の内部の空隙に物理的に安定的に留まり、降雨また散水による吸水性材料の流亡による保水性能の低下を抑制することができる。さらに保水性付与剤が、多孔質材料の内部の空隙を閉塞しないため、保水性と透水性に優れた無機多孔質材料を構築することができ、また、既設の透水性舗装等の無機多孔質材料に対しても、何の制約もなく適用することができる。   According to the water retention agent for a porous material of the present invention and the method for using the same, the water retention agent is dispersed or dissolved in water and sprayed from the surface of the porous material. It can be supported in a number of continuous voids inside the porous material to provide water retention. And according to this water retention agent for porous materials and its method of use, the water retention agent stays physically and stably in the voids inside the porous material, due to the runoff of the water absorbing material due to rainfall or water sprinkling. A decrease in water retention performance can be suppressed. Furthermore, since the water retention agent does not block the voids inside the porous material, it is possible to construct an inorganic porous material excellent in water retention and water permeability, and it is possible to construct an inorganic porous material such as an existing water permeable pavement. It can be applied to materials without any restrictions.

また、本発明の多孔質材料によれば、特定の保水性付与剤が内部の多数の連続空隙内に担持して保水性が付与されている。そして、この多孔質材料によれば、保水性付与剤によって、保水性が保持されているとともに、多孔質材料の内部の空隙を閉塞しないため、保水性と透水性に優れた多孔質材料となり、また、既設の透水性舗装等にも適用可能である。   Further, according to the porous material of the present invention, a specific water retention agent is carried in a large number of continuous voids inside to impart water retention. And according to this porous material, since the water retention property is maintained by the water retention agent and does not block the voids inside the porous material, it becomes a porous material excellent in water retention and water permeability, It can also be applied to existing permeable pavements and the like.

以下、本発明を詳細に説明する。
本発明の保水性付与剤は、自重の2〜500倍の吸水倍率を有する吸水性材料を有し、多孔質材料の内部の多数の連続空隙内で架橋反応により吸水性材料間に化学的な結合を形成することにより多孔質材料の内部の多数の連続空隙の内壁に固定化して保水性を付与するものである。
Hereinafter, the present invention will be described in detail.
The water retention agent according to the present invention has a water absorbing material having a water absorption ratio of 2 to 500 times its own weight, and chemically reacts between the water absorbing materials by a crosslinking reaction in a large number of continuous voids inside the porous material. By forming a bond, it is immobilized on the inner walls of a large number of continuous voids inside the porous material to provide water retention.

自重の2〜500倍の吸水倍率を有する吸水性材料に特に制限はないが、例えば、アクリル酸架橋重合体、メタクリル酸架橋重合体などのカルボキシル基を有する架橋(共)重合体、アルコキシポリアルキレングリコール(メタ)アクリレート架橋重合体、アルコキシポリアルキレングリコール(メタ)アクリレート/(メタ)アクリル酸(塩)架橋共重合体等のポリオキシアルキレン基を有する架橋(共)重合体;(メタ)アクリルアミド/(メタ)アクリル酸(塩)架橋共重合体、N−ビニルアセトアミド架橋重合体、N−ビニルアセトアミド/(メタ)アクリル酸(塩)架橋共重合体等のアミド基を有する架橋(共)重合体;ポリアリルアミン架橋体、ポリエチレンイミン架橋体等のアミノ基を有する架橋(共)重合体;ヒドロキシアルキル(メタ)アクリレート架橋重合体、ヒドロキシアルキル(メタ)アクリレート/(メタ)アクリル酸(塩)架橋共重合体、ビニルアルコール/(メタ)アクリル酸(塩)架橋(共)重合体等のヒドロキシル基を有する架橋(共)重合体;2−アクリルアミド/2−メチルプロパンスルホン酸(塩)架橋重合体、2−アクリルアミド/2−メチルプロパンスルホン酸(塩)/(メタ)アクリル酸(塩)架橋共重合体、スルホアルキル(メタ)アクリレート(塩)架橋共重合体、スルホアルキル(メタ)アクリレート(塩)/(メタ)アクリル酸(塩)架橋共重合体、スルホン化ポリスチレン架橋体等のスルホン酸(塩)基を有する架橋(共)重合体;ポリビニルホスホン酸架橋体、モノ(2−(メタ)アクリロイルオキシエチル)アシッドホスフェート架橋(共)重合体等のリン酸(塩)基を有する架橋(共)重合体;架橋ポリエチレンオキシド、架橋ポリビニルピロリドン、架橋ポリビニルピリジン、澱粉/ポリ(メタ)アクリロニトリルグラフト共重合体のけん化物、澱粉/ポリ(メタ)アクリル酸(塩)グラフト共重合架橋体、ポリビニルアルコールと無水マレイン酸(塩)との反応生成物、イソブチレン/マレイン酸(塩)架橋共重合体、ベタインモノマー(共)重合体、アニオン性モノマーとカチオン性モノマーとの架橋共重合体等が挙げられるが特に限定されるものではない。これら吸水性樹脂は、一種類のみを用いてもよく、二種類以上を併用してもよい。これら耐塩性吸水性樹脂のなかでも、スルホン酸(塩)基を有する架橋(共)重合体が、耐塩性、長期安定性に優れているため特に好ましい。
また、パーライトやバーミキュライトなどを細かく粉砕した保水性のある無機材料などであってもよい。また、水溶性の吸水性材料としては、ポリビニルアルコール、ポリアクリル酸ソーダ、ポリメタクリル酸ソーダ、ポリアクリルアミド及びこれらの共重合体などを用いることができる。これらの水溶性のある吸水性材料を用いても同じ効果が期待できる。
Although there is no restriction | limiting in particular in the water absorbing material which has a water absorption capacity | capacitance of 2 to 500 times self-weight, For example, crosslinked (co) polymer which has carboxyl groups, such as an acrylic acid crosslinked polymer and a methacrylic acid crosslinked polymer, alkoxy polyalkylene Crosslinked (co) polymers having polyoxyalkylene groups such as glycol (meth) acrylate crosslinked polymers, alkoxypolyalkylene glycol (meth) acrylate / (meth) acrylic acid (salt) crosslinked copolymers; (meth) acrylamide / Crosslinked (co) polymer having an amide group such as (meth) acrylic acid (salt) crosslinked copolymer, N-vinylacetamide crosslinked polymer, N-vinylacetamide / (meth) acrylic acid (salt) crosslinked copolymer A crosslinked (co) polymer having an amino group such as a crosslinked polyallylamine or a crosslinked polyethyleneimine; Hydroxyl groups such as killed (meth) acrylate cross-linked polymer, hydroxyalkyl (meth) acrylate / (meth) acrylic acid (salt) cross-linked copolymer, vinyl alcohol / (meth) acrylic acid (salt) cross-linked (co) polymer Crosslinked (co) polymer having 2-acrylamide / 2-methylpropanesulfonic acid (salt) crosslinked polymer, 2-acrylamide / 2-methylpropanesulfonic acid (salt) / (meth) acrylic acid (salt) crosslinked copolymer Polymers, sulfoalkyl (meth) acrylate (salt) cross-linked copolymers, sulfoalkyl (meth) acrylate (salt) / (meth) acrylic acid (salt) cross-linked copolymers, sulfonated polystyrene cross-linked polymers ( Salt) cross-linked (co) polymer having groups; polyvinyl phosphonic acid cross-linked product, mono (2- (meth) acryloyloxyethyl) acid Crosslinked (co) polymers having phosphoric acid (salt) groups such as phosphate crosslinked (co) polymers; saponified products of crosslinked polyethylene oxide, crosslinked polyvinylpyrrolidone, crosslinked polyvinylpyridine, starch / poly (meth) acrylonitrile graft copolymer , Starch / poly (meth) acrylic acid (salt) graft copolymer crosslinked product, reaction product of polyvinyl alcohol and maleic anhydride (salt), isobutylene / maleic acid (salt) crosslinked copolymer, betaine monomer (co) A polymer, a cross-linked copolymer of an anionic monomer and a cationic monomer, and the like are exemplified, but not particularly limited. These water-absorbing resins may be used alone or in combination of two or more. Among these salt-resistant water-absorbing resins, a crosslinked (co) polymer having a sulfonic acid (salt) group is particularly preferable because of its excellent salt resistance and long-term stability.
Further, a water-retaining inorganic material obtained by finely pulverizing pearlite or vermiculite may be used. Moreover, as a water-soluble water-absorbing material, polyvinyl alcohol, polyacrylic acid soda, polysodium methacrylate, polyacrylamide, and copolymers thereof can be used. The same effect can be expected even if these water-soluble water-absorbing materials are used.

この多孔質材料用保水性付与剤としては、好ましくは、吸水性材料を水に分散または溶解したものを用いることができ、特に好ましくは、ミクロヒドロゲル水性分散体を用いることができる。ここで言うヒドロゲルとは水溶性又は親水性重合体に架橋構造を付与せしめて得られる実質的に水不溶性、かつ水膨潤性の物質の総称であり、ミクロヒドロゲルとは100μm以下の微細粒子径を有するヒドロゲルを示す。
このミクロヒドロゲル水性分散体としては、例えば、架橋構造を含有する高分子体からなり、しかも−COOX(X:アルカリ金属又はアンモニウムイオン)で示される塩型カルボキシル基が導入されてなり、少なくとも0.1mmol/gの塩型カルボキシル基を含有するヒドロゲルが水系媒体中に安定に分散してなるものが挙げられる。
As the water retention agent for the porous material, preferably, a water-absorbing material dispersed or dissolved in water can be used, and a microhydrogel aqueous dispersion can be used particularly preferably. The hydrogel here is a general term for substantially water-insoluble and water-swellable substances obtained by adding a crosslinked structure to a water-soluble or hydrophilic polymer. A microhydrogel has a fine particle diameter of 100 μm or less. The hydrogel which has is shown.
The microhydrogel aqueous dispersion is made of, for example, a polymer containing a cross-linked structure, and a salt-type carboxyl group represented by —COOX (X: alkali metal or ammonium ion) is introduced. A hydrogel containing a 1 mmol / g salt-type carboxyl group is stably dispersed in an aqueous medium.

ここで、ミクロヒドロゲルや水溶性の吸水性材料の吸水倍率の測定は、
1.アルミ製シャーレに試料約8gを精秤し、105℃定温乾燥器で5時間以上乾燥した後の乾燥試料の入ったアルミ製シャーレを500mlビーカーに入れる。
2.純水300mlを入れた後、膨潤ゲルを剥がし、アルミ製シャーレを取り出しゲルを沈降させる。
3.上澄み液を捨て、再び300mlの純水を入れる。
4.3.を3回繰り返す。
5.茶こしに入れ、10分間水を切る。
6.茶こし上の約1/4をアルミ製シャーレに取り精秤し、105℃の定温乾燥器で5時間以上乾燥して次の式により計算する。
吸水倍率(倍)=(乾燥前の試料(ゲル)重量/乾燥後の試料重量)−1
Here, the measurement of the water absorption rate of the microhydrogel or water-soluble water-absorbing material is
1. About 8 g of the sample is precisely weighed in an aluminum petri dish, and the aluminum petri dish containing the dried sample after being dried for 5 hours or more in a 105 ° C. constant temperature dryer is put in a 500 ml beaker.
2. After adding 300 ml of pure water, the swollen gel is peeled off, the aluminum petri dish is taken out and the gel is allowed to settle.
3. Discard the supernatant and add 300 ml of pure water again.
4.3. Repeat three times.
5). Put in tea strainer and drain for 10 minutes.
6). About 1/4 of the tea strainer is placed in an aluminum petri dish and weighed precisely, dried for 5 hours or more in a constant temperature dryer at 105 ° C., and calculated according to the following formula.
Water absorption ratio (times) = (weight of sample (gel) before drying / sample weight after drying) −1

吸水性材料として、より具体的には、ヒドロゲルが水系媒体中に安定して分散してなるミクロヒドロゲル水性分散体で代表される吸水性樹脂の水分散体、例えば、酸性基及び架橋構造を含有するアクリロニトリル系重合体(以下、アクリロニトリルを「AN」と略記することがある。)からなり、しかもニトリル基の加水分解反応により−COOX(X:アルカリ金属又はアンモニウムイオン)で示される塩型カルボキシル基が導入されてなり、少なくとも、0.1mmol/gの塩型カルボキシル基を含有するヒドロゲルが水系媒体中に安定に分散してなるものを好適に用いることができる。   More specifically, as the water-absorbing material, an aqueous dispersion of a water-absorbing resin represented by an aqueous microhydrogel dispersion in which hydrogel is stably dispersed in an aqueous medium, for example, containing an acidic group and a crosslinked structure A salt-type carboxyl group represented by —COOX (X: alkali metal or ammonium ion) by a hydrolysis reaction of the nitrile group, which comprises an acrylonitrile-based polymer (hereinafter, acrylonitrile may be abbreviated as “AN”). And at least a hydrogel containing a salt-type carboxyl group of 0.1 mmol / g is stably dispersed in an aqueous medium.

このミクロヒドロゲル又はその水性分散体を得るための出発物質として使用する架橋構造を含有するAN系重合体とは、ANと他の1種若しくは2種以上のエチレン系不飽和化合物とを共重合させた架橋構造を含有する重合体の総称である。このようなAN系重合体におけるANの含有率は、AN系重合体を構成する単量体全量に対して30重量%以上、好ましくは50重量%以上、さらに好ましくは70重量%以上であることが望ましく、かかる推奨範囲に満たないAN含有率の重合体を出発物質として使用する場合には、アルカリ物質を作用させることによって十分親水化されないか、若しくは親水化し得ても所望の吸水倍率を有するヒドロゲルが形成されにくいことがある。また、架橋構造を導入する方法は、AN系重合体合成後にニトリル基と共有結合を形成可能な官能基を分子内に2個以上有する多官能性化合物を反応させる方法と予め共重合段階で分子内にビニル基を2個以上有する架橋性モノマーを共重合する方法がある。   The AN polymer containing a crosslinked structure used as a starting material for obtaining the microhydrogel or an aqueous dispersion thereof is obtained by copolymerizing AN with one or more other ethylenically unsaturated compounds. It is a general term for polymers containing a crosslinked structure. The AN content in such an AN polymer is 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more based on the total amount of monomers constituting the AN polymer. In the case where a polymer having an AN content less than the recommended range is used as a starting material, it is not sufficiently hydrophilized by the action of an alkaline substance, or even if it can be hydrophilized, it has a desired water absorption capacity. Hydrogels may be difficult to form. In addition, a method for introducing a crosslinked structure includes a method in which a polyfunctional compound having at least two functional groups capable of forming a covalent bond with a nitrile group after the synthesis of an AN polymer is reacted with a molecule in a copolymerization stage in advance. There is a method of copolymerizing a crosslinkable monomer having two or more vinyl groups therein.

なお、ANに共重合する他のエチレン系不胞和化合物としては、ANと共重合し得る公知の不飽和化合物、例えば、塩化ビニル、塩化ビニリデン等のハロゲン化ビニル及びハロゲン化ビニリデン類;アリルアルコール、メタリルアルコール等の不飽和アルコール及びこれらのエーテル類;アクリル酸、メタクリル酸等の不飽和カルボン酸及びこれらの塩類;アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル類;メチルビニルケトンの不飽和ケトン類、蟻酸ビニル、酢酸ビニル等のビニルエステル類;アクリルアミド及びそのアルキル置換体;N−メチロールアクリルアミド;p−スチレンスルホン酸等の不飽和炭化水素スルホン酸及びこれらの塩類;アクリル酸スルホブチル、メタクリル酸スルホエチル等のアクリル酸若しくはメタクリル酸のスルホアルキルエステル及びこれらの塩類;スチレン、α−メチルスチレン、クロロステレン等のスチレン及びそのアルキル又はハロゲン置換体;ビニルピリジン等の塩基性ビニル化合物類;メタクリロニトリル、ヒドロキシエチルアクリロニトリル等のビニル系ニトリル化合物類;アクロレイン、メタクロレイン等のビニル系アルデヒド化合物類;グリシジルアクリレート、グリシジルメタクリレート等の不飽和カルボン酸のグリシジルエステル類;グリシジルアリルスルホネート等の不飽和スルホン酸のグリシジルエステル類;ビニルグリシジルエーテル、アリルグリシジルエーテル等の不飽和グリシジルエーテル類;を挙げることができる。また、架橋性モノマーを使用する場合は、エチレングリコールジ(メタ)アクリレート、メチレンビスアクリルアミド、ジビニルベンゼン等のジビニル系モノマーを使用することができる。   Examples of other ethylenically unsaturated compounds copolymerized with AN include known unsaturated compounds that can be copolymerized with AN, for example, vinyl halides and vinylidene halides such as vinyl chloride and vinylidene chloride; allyl alcohol , Unsaturated alcohols such as methallyl alcohol and ethers thereof; unsaturated carboxylic acids such as acrylic acid and methacrylic acid and salts thereof; acrylic acid esters such as methyl acrylate and ethyl acrylate; methyl methacrylate and methacrylic acid Methacrylic acid esters such as ethyl acid; Unsaturated ketones of methyl vinyl ketone; Vinyl esters such as vinyl formate and vinyl acetate; Acrylamide and alkyl-substituted products thereof; N-methylol acrylamide; Unsaturation such as p-styrene sulfonic acid Hydrocarbon sulfonic acids and their salts; Sulfoalkyl esters of acrylic acid or methacrylic acid such as sulfobutyl sulfonate and sulfoethyl methacrylate and salts thereof; styrene such as styrene, α-methylstyrene, and chlorosterene, and alkyl or halogen substituted products thereof; basic vinyl compounds such as vinylpyridine Vinyl nitrile compounds such as methacrylonitrile and hydroxyethyl acrylonitrile; vinyl aldehyde compounds such as acrolein and methacrolein; glycidyl esters of unsaturated carboxylic acids such as glycidyl acrylate and glycidyl methacrylate; glycidyl allyl sulfonate and the like Examples thereof include glycidyl esters of unsaturated sulfonic acids; unsaturated glycidyl ethers such as vinyl glycidyl ether and allyl glycidyl ether. Moreover, when using a crosslinkable monomer, divinyl monomers, such as ethylene glycol di (meth) acrylate, methylenebisacrylamide, and divinylbenzene, can be used.

吸水性材料の水分散体の製造においては、まず、吸水性材料を所定の水量に調製する。この水量の調製は、乾燥粉末の場合、撹拌中の水の中に滴下あるいは分散し、又は調湿操作することにより行うことができる。
一方、重合反応工程から供給される重合体の場合は通常含水ゲル形態であるので、ゲルの含水率に応じて、加水操作を行うか、公知の乾燥方法により直接脱水を行う。
次いで、所定の水分量に調整した吸水性材料を攪拌下に添加、分散させる。このときの吸水性材料はそのままの状態でもよいし、スラリー状であってもよい。吸水性材料の水分散体の所望の粒径及び狭い粒度分布を得るために、均一に分散させることが好ましい。使用する装置としては、例えば、振動型混合機、高速回転パドル機等がある。また、界面活性剤、分散剤、凝集剤、無機物質添加剤等も使用することができる。
In the production of an aqueous dispersion of a water-absorbing material, first, the water-absorbing material is prepared to a predetermined amount of water. In the case of a dry powder, the amount of water can be adjusted by dropping or dispersing in water under stirring, or by adjusting the humidity.
On the other hand, since the polymer supplied from the polymerization reaction step is usually in the form of a hydrous gel, depending on the water content of the gel, a water addition operation is performed or direct dehydration is performed by a known drying method.
Next, the water-absorbing material adjusted to a predetermined moisture content is added and dispersed with stirring. The water-absorbing material at this time may be as it is or in the form of a slurry. In order to obtain a desired particle size and a narrow particle size distribution of the aqueous dispersion of the water-absorbing material, it is preferable to uniformly disperse. Examples of the apparatus to be used include a vibration type mixer and a high-speed rotary paddle machine. Surfactants, dispersants, flocculants, inorganic substance additives, and the like can also be used.

本発明で用いる流動性の高い吸水性材料の水分散体を得るためには、平均粒子径と吸水倍率のバランスをとるのが好ましく、さらに、水に分散させる際、吸水性材料と水との割合を考慮することが好ましい。多孔質材料の内部の連続空隙に浸透させるには、水分散体における吸水性材料の割合は通常1〜50重量%、好ましくは2〜20重量%程度である。このとき、平均粒子径と吸水倍率のバランスをとった吸水性材料を用いる場合でも、水に分散させる際の吸水性材料の水への添加割合が大きくなりすぎると施工時の流動性が損なわれてしまう。また、吸水性材料の平均粒子径が大きくなればなるほど、多孔質材料の内部の連続空隙に吸水性材料の水分散体が浸透するのが困難になることなどから、吸水性材料の吸水倍率は平均粒子径が大きくなれば相対的に低いことが実用的である。   In order to obtain an aqueous dispersion of a water-absorbing material having high fluidity used in the present invention, it is preferable to balance the average particle diameter and the water-absorbing magnification. Further, when dispersed in water, the water-absorbing material and water It is preferable to consider the ratio. In order to permeate into the continuous voids inside the porous material, the ratio of the water-absorbing material in the aqueous dispersion is usually 1 to 50% by weight, preferably about 2 to 20% by weight. At this time, even when using a water-absorbing material that balances the average particle diameter and the water-absorbing ratio, if the proportion of water-absorbing material added to water is too large when dispersed in water, the fluidity during construction is impaired. End up. In addition, the larger the average particle size of the water-absorbing material, the more difficult it is for the water dispersion of the water-absorbing material to penetrate into the continuous voids inside the porous material. It is practical that the average particle size is relatively low when the average particle size is large.

そして、吸水性材料の平均粒子径と吸水倍率とのバランスが最適の範囲とならない場合でも、水中で吸水分散させる際に長時間攪拌することで、流動性のある、均一分散した吸水性材料の水分散体を得ることが可能である。また、ある程度の攪拌を実施した後静置させ、デカンテーション法により均一分散した部分のみを取り出すことでも吸水性材料の水分散体を得ることが可能であるが、多くの工程を要するという問題がある。   And even when the balance between the average particle diameter of the water-absorbing material and the water absorption ratio is not in the optimum range, by stirring for a long time when water-absorbing and dispersing in water, the fluidity of the uniformly dispersed water-absorbing material It is possible to obtain an aqueous dispersion. In addition, it is possible to obtain a water dispersion of a water-absorbing material by leaving still after performing a certain amount of stirring and taking out only the uniformly dispersed portion by a decantation method, but there is a problem that many steps are required. is there.

かかる吸水性材料の水分散体として最も適する材料の例として、東洋紡績社製「エスペックL」を挙げることができる。この吸水性材料の水分散体はミクロヒドロゲルであり、水に均一に分散した状態で用いることができる。その他にも例えば、水で膨潤した状態の吸水性材料の水分散体の粒子の平均粒子径が約0.1〜10μmであるものが好ましい。さらに固形分(水に対する吸水性材料の重量換算比率)を5〜20重量%として使用することも好ましい。   As an example of a material most suitable as an aqueous dispersion of such a water-absorbing material, “Espec L” manufactured by Toyobo Co., Ltd. can be mentioned. The water dispersion of this water-absorbing material is a microhydrogel and can be used in a state of being uniformly dispersed in water. In addition, for example, it is preferable that the average particle size of the water-dispersed particles of the water-absorbing material swollen with water is about 0.1 to 10 μm. Further, it is also preferable to use the solid content (weight conversion ratio of the water-absorbing material to water) as 5 to 20% by weight.

本発明に用いる吸水性材料としては自重の2〜500倍の吸水倍率を有するが、水への分散性やその他の特性のバランスを考慮すると好ましくは3〜400倍、より好ましくは10〜350倍、次に好ましくは80〜120倍である。   The water-absorbing material used in the present invention has a water absorption ratio of 2 to 500 times its own weight, but preferably 3 to 400 times, more preferably 10 to 350 times considering the balance of water dispersibility and other characteristics. Next, it is preferably 80 to 120 times.

本発明の保水性付与剤において、吸水性材料の他に該吸収性材料と化学的な結合を形成することが可能な架橋剤を併用する。   In the water retention agent of the present invention, a crosslinking agent capable of forming a chemical bond with the absorbent material is used in addition to the water absorbent material.

本発明で利用する架橋剤は、吸水性材料を構成するポリマーの主鎖および/または側鎖にある官能基と化学結合を形成することが可能な官能基を分子内に2個以上有する多官能性化合物である。ここで言う化学結合は、共有結合、イオン結合、水素結合であり、実際の利用用途を考えると形成する化学結合は共有結合であることが好ましい。   The cross-linking agent used in the present invention is a polyfunctional compound having two or more functional groups in the molecule capable of forming a chemical bond with a functional group in the main chain and / or side chain of the polymer constituting the water-absorbing material. It is a sex compound. The chemical bond referred to here is a covalent bond, an ionic bond, or a hydrogen bond, and it is preferable that the chemical bond to be formed is a covalent bond in consideration of an actual application.

かかる架橋剤としては例えば、水酸基、エポキシ基、アミノ基、メチロール基等の官能基いずれか1種の官能基を2個以上有する多官能性化合物、具体的には、エチレングリコール、プロピレングリコール、グリセリン、ジグリシジルエーテル、グリセリントリグリシジルエーテル、エチレングリコールジグリシジルエーテル、エチレンジアミン、プロピレンジアミン、ポリエチレングリコール、ポリビニルアルコール、トリメチロールメラミン、トリメチロールプロパン、ポリエチレンイミン、尿素、ポリリジン等が挙げられる。また炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム等の架橋剤を使用することもできる。これら架橋剤の使用量としては、吸水性材料100重量%に対し0.1〜20.0重量%、より好ましくは0.5〜10.0重量%、最も好ましくは1〜6.0重量%使用するのが適当である。架橋剤が少な過ぎると、吸水性材料間に形成される化学結合数が少なく、吸水性材料皮膜の物理的強度が低くなり、架橋剤を添加した効果が十分に発現されないことがある。一方、架橋剤濃度が高いと形成される吸水性材料皮膜の物理的強度は強くなるが、保水性能そのものが大きく低下してしまう場合がある。これらの架橋剤の添加方法としては、架橋剤を吸水性材料の水分散体に溶解、あるいは乳化する方法を用いることができる。   Examples of such cross-linking agents include polyfunctional compounds having two or more functional groups of any one functional group such as hydroxyl group, epoxy group, amino group, and methylol group, specifically, ethylene glycol, propylene glycol, and glycerin. , Diglycidyl ether, glycerin triglycidyl ether, ethylene glycol diglycidyl ether, ethylene diamine, propylene diamine, polyethylene glycol, polyvinyl alcohol, trimethylol melamine, trimethylol propane, polyethylene imine, urea, polylysine and the like. A crosslinking agent such as ammonium zirconium carbonate or potassium zirconium carbonate can also be used. The amount of these crosslinking agents used is from 0.1 to 20.0% by weight, more preferably from 0.5 to 10.0% by weight, most preferably from 1 to 6.0% by weight, based on 100% by weight of the water-absorbing material. It is suitable to use. When the amount of the crosslinking agent is too small, the number of chemical bonds formed between the water-absorbing materials is small, the physical strength of the water-absorbing material film is lowered, and the effect of adding the crosslinking agent may not be sufficiently exhibited. On the other hand, when the concentration of the crosslinking agent is high, the physical strength of the water-absorbing material film formed is increased, but the water retention performance itself may be greatly reduced. As a method for adding these crosslinking agents, a method of dissolving or emulsifying the crosslinking agent in an aqueous dispersion of a water-absorbing material can be used.

本発明に用いる多孔質材料は、内部に多数の連続空隙を有するものであれば、新設、既設のものを問わず、透水性アスファルト(ポーラスアスファルト)、透水性コンクリート(ポーラスコンクリート)、多孔陶器質材料、汚泥焼却灰製焼成体、軽量骨材、砂利等で代表される内部に多数の連続空隙を有する多孔質材料に広く適用することができる。この保水性が付与された多孔質材料は、水の気化冷却により多孔質材料の温度低減が可能となり、近年問題とされている冷暖房などによる廃熱量の増大、建物や道路などのコンクリート化やアスファルト化による太陽熱の吸収の増大、そして、蓄熱した熱の大気への放熱等による都市のヒートアイランド化の防止に特に有用である。
本発明の保水性付与材が適応される多孔質材料は、道路、広場、駐車場、各種敷地内などに用いられる透水性舗装が最も好ましいが、これだけでなく、構造物の内外壁、内外装パネル、天井材や屋根材などとして用いられているものにも利用することができる。
The porous material used in the present invention is permeable asphalt (porous asphalt), permeable concrete (porous concrete), porous ceramics, regardless of whether the porous material has a large number of continuous voids in the interior. The present invention can be widely applied to porous materials having a large number of continuous voids in the interior, represented by materials, sludge incinerated ash fired bodies, lightweight aggregates, gravel and the like. This porous material with water retention capability can reduce the temperature of the porous material by evaporative cooling of water, increase the amount of waste heat due to cooling and heating, which has been a problem in recent years, and concrete or asphalt of buildings and roads This is particularly useful for increasing the absorption of solar heat due to heat treatment and preventing urban heat islands from being released into the atmosphere.
The porous material to which the water retention material of the present invention is applied is most preferably a water-permeable pavement used in roads, plazas, parking lots, various sites, etc. It can also be used for those used as panels, ceiling materials, roofing materials, and the like.

本発明における多孔質材料は、内部に多数の連続空隙を有するが、その空隙の程度は空隙率で表すことができる。多孔質材料の空隙率は、決まった容積に多孔質材料を切り取り、これに吸収される水の量から求めることができる。空隙率が大きいほど、水に分散したもしくは溶解した保水性材料を多く付着することができ、多孔質材料により多くの保水性を付与することができる。ただし、空隙率の増大は多孔質材料自体の物理的強度を低下させるため具体的な用途によるが、例えば、3〜60%程度が好ましい。   The porous material in the present invention has a large number of continuous voids inside, and the degree of the voids can be expressed by the porosity. The porosity of the porous material can be obtained from the amount of water absorbed by cutting the porous material into a predetermined volume. The larger the porosity, the more water retaining material dispersed or dissolved in water can be adhered, and more water retaining property can be imparted to the porous material. However, although the increase in porosity depends on the specific application because it lowers the physical strength of the porous material itself, for example, about 3 to 60% is preferable.

本発明においては、保水性付与剤を多孔質材料の連続空隙に浸透させ、その連続空隙内で保水性付与剤中の吸水性材料と架橋剤が化学結合を形成して、空隙内に担持させ保水性を付与する。本発明の付与剤は水分散性あるいは水溶性であるものを用いると、多孔質の材料の上から付与剤を散布するだけで連続空隙の広い範囲に浸透させ、その後太陽熱で水分を自然乾燥させるだけで吸水性材料と架橋剤の化学結合を促し、この保水性付与剤を空隙内部に担持させることが可能であり、かつ充填した吸水性材料が化学結合により硬化するため、水膨潤しても再度流動性を有する保水性付与剤にもどることなく多孔質内部に固定化される。固定化には、空隙内部への密着性向上と、空隙内で保水性付与剤が水膨潤して体積増加することにより空隙口より大きくなることの二面から流亡を防止する効果があるものと予想される。従って、その施工方法は極めて容易で、しかも短期間での施工が可能となる。また、既に敷設済みの道路等への施工も可能であり、新たに道路を敷設する工事も必要がない。また既に建築済みの材料への施工も極めて容易である。   In the present invention, the water retention agent is infiltrated into the continuous voids of the porous material, and the water absorbing material and the crosslinking agent in the water retention agent form a chemical bond in the continuous voids and are supported in the voids. Provides water retention. When the imparting agent of the present invention is water-dispersible or water-soluble, it is allowed to permeate a wide range of continuous voids by simply spraying the imparting agent on the porous material, and then the moisture is naturally dried by solar heat. It is possible to promote chemical bonding between the water-absorbing material and the cross-linking agent alone, and this water-holding agent can be supported inside the voids. It is immobilized inside the porous body without returning to the water retention agent having fluidity again. Immobilization has the effect of improving adhesion to the inside of the gap and preventing runaway from the two sides of the water retention agent being swollen in the gap and becoming larger than the gap opening due to volume increase. is expected. Therefore, the construction method is extremely easy and construction in a short period of time is possible. In addition, it is possible to construct a road that has already been laid, and there is no need to construct a new road. It is also very easy to apply to already built materials.

以下に実施例及び比較例を用いて、本発明の無機多孔質材料用保水性付与剤及びその使用方法を具体的に示すが、本発明はこれらに限定されるものではない。なお、実施例に記載される百分率及び部は、特に断りのない限りすべて重量基準によるものである。   Although the water retention agent for inorganic porous materials of this invention and its usage method are shown concretely using an Example and a comparative example below, this invention is not limited to these. All percentages and parts described in the examples are based on weight unless otherwise specified.

吸水性材料の吸水倍率(倍)の測定方法
1.アルミ製シャーレに試料約8gを精秤し、105℃定温乾燥器で5時間以上乾燥した後の乾燥試料の入ったアルミ製シャーレを500mlビーカーに入れる。
2.純水300mlを入れた後、膨潤ゲルを剥がしアルミ製シャーレを取り出しゲルを沈降させる。
3.上澄み液を捨て、再び300mlの純水を入れる。
4.3.を3回繰り返す。
5.茶こしに入れ、10分間水を切る。
6.茶こし上の約1/4をアルミ製シャーレに取り精秤し、105℃の定温乾燥器で5時間以上乾燥する。次の式により計算する。
吸水倍率(倍)=(乾燥前の試料(ゲル)重量/乾燥後の試料重量)−1
Measuring method of water absorption ratio (times) of water-absorbing material About 8 g of the sample is precisely weighed in an aluminum petri dish, and the aluminum petri dish containing the dried sample after being dried for 5 hours or more in a 105 ° C. constant temperature dryer is put in a 500 ml beaker.
2. After adding 300 ml of pure water, the swelling gel is peeled off, the aluminum petri dish is taken out, and the gel is allowed to settle.
3. Discard the supernatant and add 300 ml of pure water again.
4.3. Repeat three times.
5). Put in tea strainer and drain for 10 minutes.
6). About 1/4 of the tea strainer is placed in an aluminum petri dish and weighed precisely, and dried in a constant temperature dryer at 105 ° C. for 5 hours or longer. Calculate with the following formula.
Water absorption ratio (times) = (weight of sample (gel) before drying / sample weight after drying) −1

吸水性材料の水分散体として東洋紡績社製エスペックLを用いた。吸水性材料の濃度は9重量%でありB型粘度計で測定した粘度は450mPa・sである。膨潤時の吸水性材料の平均粒子径は8μmであり、吸水性材料の吸水倍率は100倍である。以下これを吸水性材料の水分散体Aとする。   ESPEC L manufactured by Toyobo Co., Ltd. was used as an aqueous dispersion of the water-absorbing material. The concentration of the water-absorbing material is 9% by weight, and the viscosity measured with a B-type viscometer is 450 mPa · s. The average particle size of the water-absorbing material at the time of swelling is 8 μm, and the water-absorbing magnification of the water-absorbing material is 100 times. Hereinafter, this is referred to as an aqueous dispersion A of a water-absorbing material.

吸水性材料の水分散体Aに60重量%ヒドラジン水溶液を5重量%になるように添加し、100℃×2時間保温した後に、吸水性材料濃度が9重量%になるよう調整したものを吸水性材料の水分散体Bとする。吸水性材料の水分散体Bの粘度は、B型粘度計で220mPa・sで、吸水性材料の膨潤時の平均粒子径は2μm、吸水倍率は2.3倍であった。   A 60% by weight hydrazine aqueous solution was added to water dispersion A of water absorbent material so as to be 5% by weight, and after keeping the temperature at 100 ° C. for 2 hours, the water absorbent material concentration was adjusted to 9% by weight. An aqueous dispersion B of the functional material. The viscosity of the water dispersion B of the water-absorbing material was 220 mPa · s with a B-type viscometer, the average particle diameter when the water-absorbing material was swollen was 2 μm, and the water absorption ratio was 2.3 times.

使用した架橋剤はエチレングリコール・エピクロルヒドリン0〜2モル付加体混合物のポリグリシジルエーテル(以下EGDGEと略す)と炭酸ジルコニウムアンモニウムの2種類である。EGDGEとしてはエピオールE−100(日本油脂株式会社製)、炭酸ジルコニウムアンモニウムとしてはベイコート20(日本軽金属株式会社製)を使用した。   Two types of crosslinking agents were used: polyglycidyl ether (hereinafter abbreviated as EGDGE) of ethylene glycol / epichlorohydrin 0-2 mol adduct mixture and ammonium zirconium carbonate. As EGDGE, Epiol E-100 (manufactured by Nippon Oil & Fats Co., Ltd.) and Baycoat 20 (manufactured by Nippon Light Metal Co., Ltd.) were used as ammonium zirconium carbonate.

無機多孔質材料としてはポーラスアスファルトを使用した。ポーラスアスファルトは空隙率15%でサイズは10cm×10cm×5cmに切り出したものを使用した。   Porous asphalt was used as the inorganic porous material. The porous asphalt used was a 15% porosity and was cut into a size of 10 cm × 10 cm × 5 cm.

実施例1
吸水性材料の水分散体Aに吸水性材料(樹脂固形分)100重量%に対して5重量%のエピオールE−100を溶解し保水性付与剤を調整した。この保水性付与剤にポーラスアスファルトを5分間完全に埋没させた後、ポーラスアスファルトを引き上げて30℃×12時間保温し、重量を測定し、ここからポーラスアスファルト単体の重量を引いて保水性付与剤充填量とした。続いて、保水性付与剤充填したポーラスアスファルトを純水中に30分間完全浸漬後、引き上げて10分間金網の上で水切りを行い重量測定し、この重量からポーラスアスファルト単体の重量を引いて保水量を算出した。重量測定後の試験体を30℃×12時間乾燥し、再度純水中に浸漬、水切りして2回目の保水量を測定した。この操作を計5回繰り返した結果を表2にまとめた。判定は以下の基準に従って行った。
Example 1
A water retention agent was prepared by dissolving 5% by weight of Epiol E-100 in 100% by weight of the water absorbent material (resin solid content) in the aqueous dispersion A of the water absorbent material. After the porous asphalt is completely buried for 5 minutes in this water retention agent, the porous asphalt is pulled up and kept at 30 ° C. for 12 hours, the weight is measured, and the weight of the porous asphalt alone is subtracted from the water retention agent. The filling amount was used. Subsequently, the porous asphalt filled with the water retention agent was completely immersed in pure water for 30 minutes, then pulled up, drained on a wire mesh for 10 minutes, weighed, and the weight of the porous asphalt alone was subtracted from this weight. Was calculated. The test specimen after the weight measurement was dried at 30 ° C. for 12 hours, immersed again in pure water and drained, and the second water retention amount was measured. The results of repeating this operation a total of 5 times are summarized in Table 2. The determination was made according to the following criteria.

Figure 2005053753
Figure 2005053753

実施例2
実施例1のうち架橋剤をベイコート20に変更した以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Example 2
Table 2 shows the results when the same operation as in Example 1 was performed except that the crosslinking agent was changed to Baycoat 20 in Example 1.

実施例3
実施例1のうち吸水性材料濃度を1重量%に変更した以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Example 3
Table 2 shows the results when the same operation as in Example 1 was performed except that the water-absorbing material concentration in Example 1 was changed to 1% by weight.

実施例4
実施例1のうち架橋剤濃度を9重量%に変更した以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Example 4
Table 2 shows the results when the same operation as in Example 1 was performed except that the concentration of the crosslinking agent in Example 1 was changed to 9% by weight.

実施例5
実施例1のうち吸水性材料の水分散体をBに、架橋剤濃度を1重量%に変更した以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Example 5
Table 2 shows the results when the same operation as in Example 1 was performed except that the water dispersion of the water-absorbing material was changed to B and the concentration of the crosslinking agent was changed to 1% by weight.

実施例6
実施例1のうち架橋剤濃度を0.1重量%に変更した以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Example 6
Table 2 shows the results when the same operation as in Example 1 was performed except that the concentration of the crosslinking agent in Example 1 was changed to 0.1% by weight.

比較例1
実施例1のうち吸水性材料、硬化剤を使わない以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Comparative Example 1
Table 2 shows the results when the same operation as in Example 1 was performed except that the water-absorbing material and the curing agent were not used in Example 1.

比較例2
実施例1のうち架橋剤を添加しないこと以外は、実施例1と同様の操作をしたときの結果を表2に示す。
Comparative Example 2
Table 2 shows the results when the same operation as in Example 1 was performed except that no crosslinking agent was added in Example 1.

Figure 2005053753
Figure 2005053753

実施例1、2はミクロヒドロゲル吸水性材料を使用することで、ポーラスアスファルト内部にミクロヒドロゲルが十分充填され、しかも繰り返し保水量測定によってもその保水量が大きく低下しないことを示している。実施例3は吸水性材料濃度が低く、従って粘度が低く充填量が減少し、さらに吸水性材料の絶対量が少ないため保水量は少ないが、優れた保水量を有することを示している。実施例4は架橋剤濃度が高く、保水量そのものは若干低いが、繰り返しによる保水量低下が少ないことを示している。実施例5は吸水性材料の吸水倍率が低いために保水量がやや不足している。実施例6は架橋剤濃度が低く、保水量そのものは非常に高い値を示すが、繰り返しによる耐久性が若干低い。   Examples 1 and 2 show that by using a microhydrogel water-absorbing material, the inside of the porous asphalt is sufficiently filled with the microhydrogel, and the water retention amount is not greatly reduced by repeated water retention amount measurement. Example 3 shows that the water-absorbing material concentration is low, the viscosity is low, the filling amount is reduced, and the water-retaining material is small because the absolute amount of the water-absorbing material is small, but it has an excellent water-retaining amount. Example 4 shows that the concentration of the crosslinking agent is high and the water retention amount itself is slightly low, but the decrease in the water retention amount due to repetition is small. In Example 5, the water retention amount of the water-absorbing material is low, so that the water retention amount is slightly insufficient. In Example 6, the concentration of the crosslinking agent is low, and the water retention amount itself is very high, but the durability by repetition is slightly low.

比較例1は吸水性材料を使用していないため、保水量が不十分であることを示している。
比較例2は架橋剤が入っておらず、形成された皮膜が弱く繰り返し測定に対する耐久性が不十分であることを示している。
Since the comparative example 1 does not use the water absorbing material, it shows that the amount of water retention is insufficient.
Comparative Example 2 does not contain a crosslinking agent, and the formed film is weak, indicating that the durability against repeated measurement is insufficient.

本発明の保水性付与剤は、多孔質材料の空隙内に担持させ保水性を付与するものであり、多数の連続空隙を有するものであれば、新設、既設のものを問わず、透水性アスファルト(ポーラスアスファルト)、透水性コンクリート(ポーラスコンクリート)、多孔陶器質材料、汚泥焼却灰製焼成体、軽量骨材、砂利等で代表される内部に多数の連続空隙を有する多孔質材料に広く適用することができる。   The water retention agent according to the present invention imparts water retention by being supported in the voids of the porous material. As long as it has a large number of continuous voids, regardless of whether it is newly installed or existing, water permeable asphalt (Porous asphalt), water permeable concrete (porous concrete), porous ceramic materials, sludge incinerated ash fired bodies, lightweight aggregates, porous materials having many continuous voids inside such as gravel be able to.

また、本発明の保水性付与剤により保水性が付与された多孔質材料は、水の気化冷却により多孔質材料の温度低減が可能となり、近年問題とされている冷暖房などによる廃熱量の増大、建物や道路などのコンクリート化やアスファルト化による太陽熱の吸収の増大、そして、蓄熱した熱の大気への放熱等による都市のヒートアイランド化の防止に特に有用である。   In addition, the porous material provided with water retention by the water retention agent of the present invention enables the temperature of the porous material to be reduced by evaporative cooling of water, and an increase in the amount of waste heat due to cooling and heating, which has been a problem in recent years, It is particularly useful for increasing the absorption of solar heat due to concrete and asphalt of buildings, roads, etc., and preventing urban heat islands due to heat dissipation from the stored heat to the atmosphere.

さらに、本発明の保水性付与材が適応される多孔質材料は、道路、広場、駐車場、各種敷地内などに用いられる透水性舗装が最も好ましいが、これだけでなく、構造物の内外壁、内外装パネル、天井材や屋根材などとして用いられているものにも利用することができる。   Furthermore, the porous material to which the water retention agent of the present invention is applied is most preferably a water-permeable pavement used for roads, plazas, parking lots, various sites, etc. It can also be used for interior and exterior panels, ceiling materials, roofing materials, and the like.

Claims (4)

自重の2〜500倍の吸水倍率を有する吸水性材料と、該吸収性材料と化学的な結合を形成することが可能な架橋剤を含む多孔質材料用保水性付与剤。   A water retention agent for porous materials, comprising a water absorbent material having a water absorption ratio of 2 to 500 times its own weight and a crosslinking agent capable of forming a chemical bond with the absorbent material. 吸水性材料が、水に分散または溶解していることを特徴とする請求項1記載の多孔質材料用保水性付与剤。   The water retention agent for porous materials according to claim 1, wherein the water absorbing material is dispersed or dissolved in water. 請求項1または2に記載の多孔質材料用保水性付与剤を多孔質材料の表面から散布することにより、多孔質材料の内部の連続空隙内で前記吸水性材料と架橋剤を化学結合させ、多孔質材料に保水性を付与するようにした多孔質材料用保水性付与剤の使用方法。   By spraying the water retention agent for a porous material according to claim 1 or 2 from the surface of the porous material, the water absorbing material and the crosslinking agent are chemically bonded within the continuous voids inside the porous material, A method for using a water retention agent for a porous material that imparts water retention to a porous material. 請求項1または2に記載の多孔質材料用保水性付与剤が、内部の連続空隙内に担持された多孔質材料。   A porous material in which the water retention agent for a porous material according to claim 1 or 2 is supported in an internal continuous void.
JP2003287827A 2003-08-06 2003-08-06 Water retention agent for porous material, method of using the same and porous material Expired - Fee Related JP4433271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287827A JP4433271B2 (en) 2003-08-06 2003-08-06 Water retention agent for porous material, method of using the same and porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287827A JP4433271B2 (en) 2003-08-06 2003-08-06 Water retention agent for porous material, method of using the same and porous material

Publications (2)

Publication Number Publication Date
JP2005053753A true JP2005053753A (en) 2005-03-03
JP4433271B2 JP4433271B2 (en) 2010-03-17

Family

ID=34366700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287827A Expired - Fee Related JP4433271B2 (en) 2003-08-06 2003-08-06 Water retention agent for porous material, method of using the same and porous material

Country Status (1)

Country Link
JP (1) JP4433271B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249169A (en) * 2005-03-09 2006-09-21 Kuraray Trading Kk Manufacturing process of water-absorbing resin for repetitive use
JP2006274743A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Paving method and water retentive paving
JP2017154728A (en) * 2016-02-29 2017-09-07 ザ・ボーイング・カンパニーThe Boeing Company Structurally integrated thermal management system for aerospace vehicles
JP2018204243A (en) * 2017-06-01 2018-12-27 国立大学法人宇都宮大学 Soil improvement paving method using hydrogel
JP2020076307A (en) * 2018-10-26 2020-05-21 株式会社豊田中央研究所 Road structure and road construction method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249169A (en) * 2005-03-09 2006-09-21 Kuraray Trading Kk Manufacturing process of water-absorbing resin for repetitive use
JP2006274743A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Paving method and water retentive paving
JP4514636B2 (en) * 2005-03-30 2010-07-28 住友大阪セメント株式会社 Pavement method and water retention pavement
JP2017154728A (en) * 2016-02-29 2017-09-07 ザ・ボーイング・カンパニーThe Boeing Company Structurally integrated thermal management system for aerospace vehicles
JP2018204243A (en) * 2017-06-01 2018-12-27 国立大学法人宇都宮大学 Soil improvement paving method using hydrogel
JP2020076307A (en) * 2018-10-26 2020-05-21 株式会社豊田中央研究所 Road structure and road construction method
JP7298441B2 (en) 2018-10-26 2023-06-27 株式会社豊田中央研究所 road structure

Also Published As

Publication number Publication date
JP4433271B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
RU2541564C9 (en) Mixtures containing oligomeric or polymeric compounds, production and use thereof
CN101028971A (en) Building material mixture additive containing swollenable polymer shaped object
JP2009534483A (en) Highly permeable superabsorbent polymer structure
JP7179588B2 (en) Method for fixing water-absorbing resin, method for producing water-retentive pavement, and water-retaining agent for porous pavement
KR100971111B1 (en) Superabsorbent concrete composite and concrete paving method using the same
JP4433271B2 (en) Water retention agent for porous material, method of using the same and porous material
CN113105578B (en) Saline-alkali resistant slow-release water-absorbent resin and application thereof
JP2602048B2 (en) Cement additives and compositions
JP4092421B2 (en) How to lower the pavement temperature
JPWO2020209057A1 (en) Cement Additives, Cement Admixtures, Cement Compositions, Molds, and Methods for Improving Strength of Molds
JP4514636B2 (en) Pavement method and water retention pavement
KR101854438B1 (en) Self-healing concrete admixture and self-healing concrete using amine functionalized hydrogel scaffolds
CN112961284A (en) Saline-alkali-resistant slow-release water-absorbent resin with semi-interpenetrating network structure and application thereof
CN108516866B (en) Preparation method of modified super absorbent resin internal curing agent
JP2514202B2 (en) Cement complex
JP4711122B2 (en) Water absorbing material
JPH0810616A (en) Water absorbing composition and production thereof
JP2022128958A (en) Resin to be blended with cement for building or civil engineering structure, and method of producing the same
JP2003300786A (en) Agent imparting water holding property to inorganic porous material, method for using the agent and inorganic porous material
JP4712660B2 (en) Hardened concrete
WO2003066543A1 (en) Agent imparting water holding property to inorganic porous material, method for using the agent and inorganic porous material
JP7136616B2 (en) Method for fixing water-absorbing resin, method for producing water-retentive pavement, and water-retaining agent for porous pavement
Diao et al. Synthesis and Characterization of Thermosensitive P (NIPAAm-co-AAc)-Grafted Silica Nanocomposites for Smart Architectural Coatings
JPH101343A (en) Cement additive composition and cement blend
JP2021031927A (en) Water retentivity imparting agent for porous pavement body and water retentive pavement manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

R151 Written notification of patent or utility model registration

Ref document number: 4433271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees