JP2005052743A - Metal carrier - Google Patents

Metal carrier Download PDF

Info

Publication number
JP2005052743A
JP2005052743A JP2003286038A JP2003286038A JP2005052743A JP 2005052743 A JP2005052743 A JP 2005052743A JP 2003286038 A JP2003286038 A JP 2003286038A JP 2003286038 A JP2003286038 A JP 2003286038A JP 2005052743 A JP2005052743 A JP 2005052743A
Authority
JP
Japan
Prior art keywords
metal carrier
plate
metal
flat plate
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003286038A
Other languages
Japanese (ja)
Inventor
Tamotsu Sugimoto
保 杉本
Junichi Asukai
純一 飛鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003286038A priority Critical patent/JP2005052743A/en
Publication of JP2005052743A publication Critical patent/JP2005052743A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal carrier which can be miniaturized by reducing the number of waves because the number of waves per unit volume is increased and the area of a raw material carrying a catalyst is increased by making the hight H of waves of a corrugated plate higher than the pich P. <P>SOLUTION: This metal carrier is characterized in that the height H of waves 1a of the corrugated plate 1 is made higher than the pitch P. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関等の排気系に装着する触媒コンバータのメタル担体に関する。   The present invention relates to a metal carrier of a catalytic converter to be mounted on an exhaust system of an internal combustion engine or the like.

周知の如く、内燃機関等の排気系には、排ガスを浄化する触媒コンバータが装着されているが、この種の触媒コンバータに用いる触媒担体として、Fe−Cr−Al系フェライトステンレス箔材等の金属製薄板から成るメタル担体が広く用いられている。   As is well known, an exhaust system of an internal combustion engine or the like is equipped with a catalytic converter for purifying exhaust gas. As a catalyst carrier used in this type of catalytic converter, a metal such as an Fe-Cr-Al ferrite stainless steel foil material is used. A metal carrier made of a thin plate is widely used.

この種のメタル担体は、金属製薄板から成る帯状の波板と平板とを交互に重ね、これらを多重に巻回して断面円形状等のハニカム構造のコアを形成した後、コア外周にろう箔材を巻き回して、これらを金属製の外筒内に圧入して真空状態で加熱することにより、波板と平板とを拡散接合すると共に、外筒とコアをろう付け接合することにより製造される。   In this type of metal carrier, strip-like corrugated plates and flat plates made of metal thin plates are alternately stacked, and these are wound in multiple layers to form a honeycomb-structured core having a circular cross section, and then a brazing foil on the outer periphery of the core It is manufactured by wrapping materials, press-fitting them into a metal outer cylinder and heating them in a vacuum state, thereby diffusion bonding the corrugated sheet and the flat plate and brazing the outer cylinder to the core. The

従来のこの種のメタル担体では、図12に示すように波101aの高さH<ピッチPであり、平板102(図示せず)と波101aとが成す角度θが小さいためコア中心部に向かって圧迫力が十分に伝達されず、拡散接合力が不十分になるという問題点が有った。   In the conventional metal carrier of this type, as shown in FIG. 12, the height H of the wave 101a is smaller than the pitch P, and the angle θ formed by the flat plate 102 (not shown) and the wave 101a is small. Therefore, there is a problem that the compression force is not sufficiently transmitted and the diffusion bonding force becomes insufficient.

また、図13に示すように、波101aと平板102とが接する部分に触媒が表面張力により溜まってフィレット103が生成される現象が発生するが、このフィレット103は触媒として機能しない無駄なものであるため、減少させることが望まれている。
特開2000−61317号公報
Further, as shown in FIG. 13, a phenomenon occurs in which the fillet 103 is generated due to the catalyst being accumulated by surface tension at the portion where the wave 101a and the flat plate 102 are in contact with each other. However, the fillet 103 does not function as a catalyst. For this reason, it is desired to reduce it.
JP 2000-61317 A

解決しようとする問題点は、波板と平板とを拡散接合するための圧迫力がコアの中心部に十分に伝達されにくい点、触媒が波板と平板の接合部に溜まって生じるフィレットによって触媒の無駄が多くなっている点である。   The problems to be solved are that the compression force for diffusion-bonding the corrugated plate and the flat plate is not sufficiently transmitted to the center of the core, and the catalyst is caused by the fillet generated by the catalyst accumulating at the joint between the corrugated plate and the flat plate. This is a point where there is a lot of waste.

本発明のメタル担体は、波板の波の高さHとピッチPの関係をH>Pとしたことを主要な特徴とする。   The main feature of the metal carrier of the present invention is that the relationship between the wave height H of the corrugated plate and the pitch P satisfies H> P.

本発明のメタル担体は、波板の波の高さH>ピッチPとしたことにより、単位体積当たりの波の数が多くなり、触媒を担持する素材面積が大きくなるため、巻数を少なくして小型化を図ることができる。また、波と平板の成す角度が大きくなるため圧迫力の伝播率が大きくなると共に巻数が減少することでコアの中心部に向かって圧迫力が伝播され易くなるため、拡散接合力が大きくなる。これにより、真空状態で加熱する際の温度を低くすることができるため、生産性が向上する。また、圧迫力の伝播率を増やすための絞り工程が不要となるため、製造が容易となるという利点が有る。さらに素材単位面積当たりのフィレット数が減少するため、触媒量を削減することができ、製造コストの低減を図ることができる。   In the metal carrier of the present invention, since the wave height H> pitch P of the corrugated plate increases, the number of waves per unit volume increases and the material area supporting the catalyst increases, so the number of turns is reduced. Miniaturization can be achieved. In addition, since the angle formed by the wave and the flat plate increases, the propagation rate of the compression force increases and the number of turns decreases, so that the compression force is easily transmitted toward the center of the core, so that the diffusion bonding force increases. Thereby, since the temperature at the time of heating in a vacuum state can be made low, productivity improves. Moreover, since the drawing process for increasing the propagation rate of the pressing force is not required, there is an advantage that the manufacturing is easy. Furthermore, since the number of fillets per unit area of the material is reduced, the amount of catalyst can be reduced, and the manufacturing cost can be reduced.

以下、本発明の一実施例を図面に基づいて説明する。図1は本発明の一実施例であるメタル担体の製造方法の説明図、図2は実施例のメタル担体の斜視図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a metal carrier manufacturing method according to an embodiment of the present invention, and FIG. 2 is a perspective view of the metal carrier according to the embodiment.

図3は第1実施例の波板の部分断面図、図4は第1実施例の作用効果の説明図、図5は第1実施例のメタル担体と従来のメタル担体の各部寸法を示す表である。   3 is a partial cross-sectional view of the corrugated plate of the first embodiment, FIG. 4 is an explanatory view of the function and effect of the first embodiment, and FIG. 5 is a table showing the dimensions of the metal carrier of the first embodiment and the conventional metal carrier. It is.

本実施例のメタル担体の基本構造は従来と同様であり、図1に示すように、金属製薄板から成る帯状の波板1と平板2とを交互に重ね、これらを多重に巻回して断面円形状等のハニカム構造のコア3を形成した後、コア3の外周にろう箔材を巻き回して、これらを図2に示すように、金属製の外筒4内に圧入して真空状態で加熱することにより、波板1と平板2とを拡散接合すると共に、外筒4とコア3をろう付け接合することにより製造される。   The basic structure of the metal carrier of the present embodiment is the same as that of the prior art, and as shown in FIG. 1, strip-like corrugated plates 1 and flat plates 2 made of metal thin plates are alternately stacked, and these are wound in multiple layers to obtain a cross section. After the core 3 having a honeycomb structure such as a circular shape is formed, a brazing foil material is wound around the outer periphery of the core 3, and these are press-fitted into a metal outer cylinder 4 as shown in FIG. By heating, the corrugated plate 1 and the flat plate 2 are diffusion bonded, and the outer tube 4 and the core 3 are brazed and bonded.

図3に示すように、波1aの高さH(2.1mm)>ピッチP(1.6mm)となっている。波板1には、その一方の側に配置された平板2を介して圧迫力f(図4参照)が与えられ、これが他方の側に配置された平板2を介して隣接する波板(図示せず)に伝播力f’として伝播される。伝播力f’はsinθと圧迫力fとの積に比例するため、角度θが大きいほど伝播力f’は大きくなる。   As shown in FIG. 3, the height H (2.1 mm) of the wave 1a> pitch P (1.6 mm). The corrugated plate 1 is given a compression force f (see FIG. 4) via a flat plate 2 arranged on one side thereof, and this is adjacent to the corrugated plate (FIG. 4) via the flat plate 2 arranged on the other side. (Not shown) is propagated as a propagation force f ′. Since the propagation force f ′ is proportional to the product of sin θ and the compression force f, the propagation force f ′ increases as the angle θ increases.

また、H>Pとしたことにより、単位体積当たりの波1aの数が多くなり、触媒を担持する素材面積(波板1の面積と平板2の面積の和)が大きくなるため、巻数を少なくすることができ、コア3の中心部に向かって圧迫力が伝播され易くなる。したがって、従来のものと比べて波板1と平板2の拡散接合力を大きくすることができる。これにより、真空状態で加熱する際の温度を低くすることができ、伝播力f’を大きくするための絞り工程も不要となるため、生産性が向上するという利点が有る。   In addition, since H> P, the number of waves 1a per unit volume increases, and the area of the material carrying the catalyst (the sum of the area of the corrugated plate 1 and the area of the flat plate 2) increases, so the number of turns is reduced. The compression force can be easily propagated toward the center of the core 3. Therefore, the diffusion bonding force between the corrugated plate 1 and the flat plate 2 can be increased as compared with the conventional one. As a result, the temperature at the time of heating in a vacuum state can be lowered, and a drawing step for increasing the propagation force f 'is not necessary, so that there is an advantage that productivity is improved.

なお、H/Pが小さいと上記作用効果は得られにくくなるため、H/Pは2以上であることが好ましい。また、素材面積が大きくなることで素材単位面積当たりのフィレット数が減少するため、触媒量を削減することができ、製造コストの低減を図ることができる。   In addition, since it becomes difficult to obtain the said effect if H / P is small, it is preferable that H / P is 2 or more. Moreover, since the number of fillets per unit area of the material is reduced by increasing the material area, the amount of catalyst can be reduced, and the manufacturing cost can be reduced.

図5は、外筒4の外径76.3mm、高さ40mm、板厚1.5mmのメタル担体(1平方インチ当たりセル数=400)について、本実施例の構造のものと、従来の構造のものとの各部寸法を示した表である。なお、波板1と平板2の板厚は50μmである。これらの板厚は加工性の点から25〜100μm程度が好ましい。この表から、本発明のものは従来のものに比べて素材面積が大きくなって巻数が減少し、これに伴って素材単位面積当たりのフィレット数が減少していることが判る。   FIG. 5 shows the structure of this example and the conventional structure of a metal carrier (number of cells per square inch = 400) of the outer cylinder 4 having an outer diameter of 76.3 mm, a height of 40 mm, and a plate thickness of 1.5 mm. It is the table | surface which showed each part dimension with the thing. In addition, the plate | board thickness of the corrugated sheet 1 and the flat plate 2 is 50 micrometers. These plate thicknesses are preferably about 25 to 100 μm from the viewpoint of workability. From this table, it can be seen that the material according to the present invention has a larger material area and a smaller number of turns than the conventional one, and accordingly, the number of fillets per material area is decreased.

図6は1平方インチ当たりのセル数=400のメタル担体のH/Pと素材面積との関係を示すグラフである。H/Pが大きくなるほど素材面積は大きくなっており、H/P=0.5の標準的なメタル担体と比べてH/P=2.4では素材面積が約20%増加している。   FIG. 6 is a graph showing the relationship between H / P and material area of a metal carrier having 400 cells per square inch = 400. The material area increases as H / P increases, and the material area increases by about 20% at H / P = 2.4 compared to a standard metal carrier with H / P = 0.5.

図7は1平方インチ当たりのセル数=200、300、900のメタル担体のH/Pと素材面積との関係を示すグラフである。このグラフに示すように、セル数=400以外のメタル担体でもH/Pが大きくなるほど素材面積が大きくなる。   FIG. 7 is a graph showing the relationship between the H / P and the material area of a metal carrier having 200, 300, and 900 cells per square inch. As shown in this graph, even when the metal carrier has a number other than 400, the material area increases as H / P increases.

また、図8は1平方インチ当たりのセル数=400のメタル担体のH/Pと素材単位面積当たりフィレット数との関係を示すグラフである。H/Pが1を超えることで単位面積当たりフィレット数は10〜20%減少しており、無駄な触媒を削減することができる。   FIG. 8 is a graph showing the relationship between H / P of a metal carrier having 400 cells per square inch = 400 and the number of fillets per unit area of the material. When H / P exceeds 1, the number of fillets per unit area is reduced by 10 to 20%, and wasteful catalysts can be reduced.

図9は1平方インチ当たりのセル数=200、300、900のメタル担体のH/Pと単位面積当たりフィレット数との関係を示すグラフである。このグラフに示すように、セル数=400以外のメタル担体でもH/Pが大きくなるほど単位面積当たりフィレット数が減少する。   FIG. 9 is a graph showing the relationship between the H / P and the number of fillets per unit area of a metal carrier having 200, 300, and 900 cells per square inch. As shown in this graph, the number of fillets per unit area decreases as H / P increases even for metal carriers other than the number of cells = 400.

図10は第2実施例の波板1の部分断面図である。本実施例では、波1aの頂部の両側が平行でが平板2と成す角度θが略90°となっている。このようにすることで、圧迫力f(図4参照)が逃げにくくなるため、拡散接合力がより大きくなるという利点が有る。   FIG. 10 is a partial cross-sectional view of the corrugated sheet 1 of the second embodiment. In this embodiment, the angle θ formed between the flat plate 2 and the both sides of the top of the wave 1a is approximately 90 °. By doing in this way, since the compression force f (refer FIG. 4) becomes difficult to escape, there exists an advantage that a diffusion joining force becomes larger.

図11は第3実施例の波板1の部分断面図である。本実施例では、波1aがΩ形を成すように形成されており、平板2と成す角度θが90°よりも大きくなっている。このようにすることで、単位体積当たりの波1aの数をより多くすることができるため、素材面積がより大きくなり、単位面積当たりのフィレット数がより小さくなる。   FIG. 11 is a partial sectional view of the corrugated sheet 1 of the third embodiment. In this embodiment, the wave 1a is formed in an Ω shape, and the angle θ formed with the flat plate 2 is greater than 90 °. By doing in this way, since the number of the waves 1a per unit volume can be increased more, a raw material area becomes larger and the number of fillets per unit area becomes smaller.

なお、本発明は上記各実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で上記実施例に種々の改変を施すことができる。   The present invention is not limited to the above embodiments, and various modifications can be made to the above embodiments without departing from the gist of the present invention.

本発明の一実施例であるメタル担体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the metal carrier which is one Example of this invention. 実施例のメタル担体の斜視図である。It is a perspective view of the metal carrier of an Example. 第1実施例の波板の部分断面図である。It is a fragmentary sectional view of the corrugated sheet of 1st Example. 第1実施例の作用効果の説明図である。It is explanatory drawing of the effect of 1st Example. 第1実施例のメタル担体と従来のメタル担体の各部寸法を示す表である。It is a table | surface which shows each part dimension of the metal carrier of 1st Example, and the conventional metal carrier. セル数=400のメタル担体のH/Pと素材面積との関係を示すグラフである。It is a graph which shows the relationship between H / P of a metal support | carrier of the number of cells = 400, and a raw material area. セル数=200、300、900のメタル担体のH/Pと素材面積との関係を示すグラフである。It is a graph which shows the relationship between H / P of a metal support | carrier of cell number = 200,300,900, and raw material area. セル数=400のメタル担体のH/Pと素材単位面積当たりフィレット数との関係を示すグラフである。It is a graph which shows the relationship between H / P of a metal support | carrier of the number of cells = 400, and the number of fillets per material unit area. セル数=200、300、900のメタル担体のH/Pと単位面積当たりフィレット数との関係を示すグラフである。It is a graph which shows the relationship between H / P of the metal support | carrier of cell number = 200,300,900, and the number of fillets per unit area. 第2実施例の波板の部分断面図である。It is a fragmentary sectional view of the corrugated sheet of 2nd Example. 第3実施例の波板の部分断面図である。It is a fragmentary sectional view of the corrugated sheet of 3rd Example. 従来のメタル担体の波板の部分断面図である。It is a fragmentary sectional view of the corrugated sheet of the conventional metal carrier. 従来のメタル担体の部分断面図である。It is a fragmentary sectional view of the conventional metal carrier.

符号の説明Explanation of symbols

1 波板
1a 波
2 平板
3 コア
4 外筒
1 corrugated plate 1a wave 2 flat plate 3 core 4 outer cylinder

Claims (3)

金属製薄板から成る波板(1)と平板(2)とを交互に重ね、これらを多重に巻回して形成したコア(3)を金属製の外筒(4)内に圧入して波板(1)と平板(2)とを拡散接合すると共に外筒(4)の内周とコア(3)の外周とをろう付け接合して成るメタル担体であって、波板(1)の波(1a)の高さHとピッチPの関係をH>Pとしたことを特徴とするメタル担体。   A corrugated plate (1) and a flat plate (2) made of a thin metal plate are alternately stacked, and a core (3) formed by winding them in multiple layers is press-fitted into a metal outer tube (4) to corrugate the plate. (1) and a flat plate (2) are diffusion-bonded and a metal carrier formed by brazing and joining the inner circumference of the outer cylinder (4) and the outer circumference of the core (3). A metal carrier characterized in that the relationship between the height H and the pitch P in (1a) satisfies H> P. H/Pが2以上であることを特徴とする請求項1記載のメタル担体。   The metal carrier according to claim 1, wherein H / P is 2 or more. 波板(1)及び平板(2)の厚みが25〜100μmであることを特徴とする請求項1又は請求項2記載のメタル担体。
The metal carrier according to claim 1 or 2, wherein the corrugated plate (1) and the flat plate (2) have a thickness of 25 to 100 µm.
JP2003286038A 2003-08-04 2003-08-04 Metal carrier Pending JP2005052743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286038A JP2005052743A (en) 2003-08-04 2003-08-04 Metal carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286038A JP2005052743A (en) 2003-08-04 2003-08-04 Metal carrier

Publications (1)

Publication Number Publication Date
JP2005052743A true JP2005052743A (en) 2005-03-03

Family

ID=34365477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286038A Pending JP2005052743A (en) 2003-08-04 2003-08-04 Metal carrier

Country Status (1)

Country Link
JP (1) JP2005052743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710410A2 (en) * 2003-11-28 2006-10-11 Calsonic Kansei Corporation Metal carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710410A2 (en) * 2003-11-28 2006-10-11 Calsonic Kansei Corporation Metal carrier
EP1710410A3 (en) * 2003-11-28 2006-10-18 Calsonic Kansei Corporation Metal carrier

Similar Documents

Publication Publication Date Title
JP3610720B2 (en) Metal catalyst carrier structure
JP2862298B2 (en) Exhaust gas purification device
JP2005052743A (en) Metal carrier
JP2003080083A (en) Metallic catalyst support
JP2005177736A (en) Metal carrier
JP3315716B2 (en) Low noise metal carrier
EP1120163B1 (en) Method for manufacturing a metallic carrier for a catalytic converter
JP2010125423A (en) Metal catalyst carrier
WO1990003842A1 (en) Metal carrier having thermal fatigue resistance for automobile exhaust gas cleaning catalysts
JP2008104990A (en) Metal carrier and manufacturing method of metal carrier
JP3037365B2 (en) Exhaust gas purification device
JP3281250B2 (en) Method for producing metal foil for honeycomb body and honeycomb body for metal carrier by diffusion bonding
JP2008104918A (en) Metal catalyst carrier and its manufacturing method
JP2608114B2 (en) Metal honeycomb catalyst carrier and method for producing the same
JP2005028320A (en) Metallic catalyst carrier and production method of metallic catalyst carrier
JPH03178338A (en) Preparation of honeycomb body for catalytic converter
JP2010106980A (en) Multiple pipe and method of manufacturing the same
JPS6336842A (en) Metallic honeycomb carrier and its preparation
JPH03174221A (en) Exhaust gas cleaning device
JP2005254105A (en) Metal catalyst carrier
JP3742147B2 (en) Metal catalyst carrier for internal combustion engine and catalytic converter using the same
JP2005048672A (en) Catalytic converter
JPH1085612A (en) Metal carrier for catalytic device
JPH03178336A (en) Catalytic converter for purifying exhaust gas
JPH09310615A (en) Metal catalyst support of catalytic converter