JP2005052083A - Method for introducing protein into cell - Google Patents

Method for introducing protein into cell Download PDF

Info

Publication number
JP2005052083A
JP2005052083A JP2003286781A JP2003286781A JP2005052083A JP 2005052083 A JP2005052083 A JP 2005052083A JP 2003286781 A JP2003286781 A JP 2003286781A JP 2003286781 A JP2003286781 A JP 2003286781A JP 2005052083 A JP2005052083 A JP 2005052083A
Authority
JP
Japan
Prior art keywords
protein
antibody
cell
seq
fusion protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003286781A
Other languages
Japanese (ja)
Inventor
Hidemichi Obata
英理 小畠
Masakazu Mie
正和 三重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2003286781A priority Critical patent/JP2005052083A/en
Publication of JP2005052083A publication Critical patent/JP2005052083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for readily and efficiently introducing an antibody to a cell. <P>SOLUTION: The fused protein contains the whole or a part of an antibody-bonded protein, and a cell membrane-permeable peptide. The method for introducing the protein into the cell involves utilizing the fused protein. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、抗体などを細胞内へ導入する方法、及びにそれに用いる試薬などに関する。この方法は、細胞を傷つけることなく、簡易な手法で細胞内へ抗体などを導入することができる。   The present invention relates to a method for introducing an antibody into a cell, and a reagent used therefor. This method can introduce an antibody or the like into a cell by a simple technique without damaging the cell.

細胞内への抗体の導入法は、これまでマイクロインジェクションやエレクトロポレーションといった物理的に細胞に穴を開ける方法と細胞膜透過性ペプチドを利用した方法が報告されている。しかし物理的に細胞に穴を開ける方法は特殊な装置を必要とし、細胞へのダメージが大きいうえに、導入効率の低さが問題となっている。一方ペプチドを利用した方法では、抗体に膜透過性ペプチドを非特異的に吸着させる、あるいは化学的にペプチドを抗体に結合させる方法が報告されている。特に前者は既に、Activemotif社のChariotとして商品化されている。しかしこの方法では、抗体とペプチドを非特異的に結合させるため、他のタンパク質の存在下では目的物以外のタンパク質が導入される可能性がある。また、抗体への化学結合法は種々の抗体毎に結合反応・精製を行う必要がある。   As a method for introducing an antibody into a cell, a method of physically making a hole in a cell such as microinjection or electroporation and a method using a cell membrane permeable peptide have been reported so far. However, the method of physically making a hole in a cell requires a special device, and the damage to the cell is large and the introduction efficiency is a problem. On the other hand, as a method using a peptide, a method of non-specifically adsorbing a membrane-permeable peptide to an antibody or chemically binding a peptide to an antibody has been reported. In particular, the former is already commercialized as Chariot of Activemotif. However, in this method, since an antibody and a peptide are nonspecifically bound, a protein other than the target substance may be introduced in the presence of another protein. Moreover, the chemical coupling method to an antibody needs to perform a coupling reaction and purification for each of various antibodies.

NatureBiotechnology, 19, 1173-1176, 2001NatureBiotechnology, 19, 1173-1176, 2001

抗体の細胞内への導入は、抗体の標的となるタンパク質の生細胞内での動態解析を行う上で有効な技術であり、生命科学分野の研究における強力なツールとなる。また、細胞内に導入された抗体と標的タンパク質の結合により、標的タンパク質の機能が阻害されることから、抗体医薬として医療分野での利用も期待出来る。細胞内への抗体導入において、特異性や導入効率が問題となる。   Introduction of an antibody into a cell is an effective technique for analyzing the dynamics of a target protein of an antibody in a living cell, and is a powerful tool in life science research. Moreover, since the function of the target protein is inhibited by the binding between the antibody introduced into the cell and the target protein, it can be expected to be used in the medical field as an antibody drug. Specificity and introduction efficiency are problems in introducing antibodies into cells.

本発明は、抗体を簡便に効率よく細胞内に導入する方法の開発を目的とするものである。   The object of the present invention is to develop a method for introducing an antibody into a cell simply and efficiently.

本発明者は、上記課題を解決するため鋭意検討した結果、抗体結合タンパク質と細胞膜透過性ペプチドからなる融合タンパク質を利用することにより、抗体を簡便かつ効率的に細胞内に導入できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that antibodies can be introduced into cells easily and efficiently by using a fusion protein comprising an antibody binding protein and a cell membrane permeable peptide. Completed the invention.

即ち、本発明は、以下の〔1〕〜〔9〕を提供するものである。
〔1〕抗体結合タンパク質の全部又は一部と、細胞膜透過性ペプチドとを含む融合タンパク質。
〔2〕抗体結合タンパク質が、プロテインA、プロテインG、プロテインA/G、又はプロテインLである〔1〕記載の融合タンパク質。
〔3〕細胞膜透過性ペプチドが、配列番号1乃至33のいずれか一つの配列番号記載のアミノ酸配列で表されるペプチドである〔1〕記載の融合タンパク質。
〔4〕〔1〕乃至〔3〕のいずれか記載の融合タンパク質をコードするDNA。
〔5〕〔4〕記載のDNAを含むベクター。
〔6〕〔1〕乃至〔3〕のいずれか記載の融合タンパク質を有効成分として含有するタンパク質の細胞内導入試薬。
〔7〕タンパク質が、抗体である〔6〕記載のタンパク質の細胞内導入試薬。
〔8〕(1)〔1〕乃至〔3〕のいずれか記載の融合タンパク質、(2)導入しようとする抗体、及び(3)抗体の導入対象とする細胞の三者を共存させることを特徴とする抗体の細胞内導入方法。
〔9〕導入しようとするタンパク質と、このタンパク質と結合可能な抗体を共存させ、抗体とタンパク質の結合体を作製し、その後、(1)〔1〕乃至〔3〕のいずれか記載の融合タンパク質、(2)前記抗体とタンパク質の結合体、及び(3)タンパク質の導入対象とする細胞の三者を共存させることを特徴とするタンパク質の細胞内導入方法。
That is, the present invention provides the following [1] to [9].
[1] A fusion protein comprising all or part of an antibody binding protein and a cell membrane permeable peptide.
[2] The fusion protein according to [1], wherein the antibody-binding protein is protein A, protein G, protein A / G, or protein L.
[3] The fusion protein according to [1], wherein the cell membrane permeable peptide is a peptide represented by the amino acid sequence described in any one of SEQ ID NOs: 1 to 33.
[4] DNA encoding the fusion protein according to any one of [1] to [3].
[5] A vector comprising the DNA according to [4].
[6] A protein intracellular introduction reagent containing the fusion protein according to any one of [1] to [3] as an active ingredient.
[7] The intracellular introduction reagent for the protein according to [6], wherein the protein is an antibody.
[8] A fusion protein according to any one of (1) [1] to [3], (2) an antibody to be introduced, and (3) a cell to which the antibody is to be introduced coexisting. A method for introducing an antibody into a cell.
[9] A fusion protein according to any one of (1) [1] to [3], wherein a protein to be introduced and an antibody capable of binding to the protein coexist to produce a conjugate of the antibody and protein; (2) A method for introducing a protein into a cell, comprising coexisting a conjugate of the antibody and protein, and (3) a cell into which the protein is to be introduced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の融合タンパク質は、抗体結合タンパク質の全部又は一部と、細胞膜透過性ペプチドとを含むものである。   The fusion protein of the present invention comprises all or part of an antibody binding protein and a cell membrane permeable peptide.

抗体結合タンパク質は、抗体と結合することができるものであれば特に限定されず、例えば、スタフィロコッカス・アウレウス(Staphylococcus aureus)由来のタンパク質であるプロテインA、ストレプトコッカス(Streptococcus)属の微生物群由来のタンパク質であるプロテインG、プロテインAとプロテインGを遺伝子工学的に融合させたプロテインA/G、ペプトストレプトコッカス・マグヌス(Peptostreptococcus magnus)由来のタンパク質であるプロテインLなどを使用することができる。 The antibody-binding protein is not particularly limited as long as it can bind to an antibody. For example, protein A derived from Staphylococcus aureus , protein derived from microorganisms belonging to the genus Streptococcus Protein G, which is a protein, protein A / G obtained by genetically fusing protein A and protein G, protein L which is a protein derived from Peptostreptococcus magnus, and the like can be used.

抗体結合タンパク質は、タンパク質全体を使用してもよいが、抗体結合能を持つドメイン(例えば、プロテインAのBドメイン)のみを使用してもよい。   The whole antibody-binding protein may be used as the antibody-binding protein, or only a domain having antibody-binding ability (for example, B domain of protein A) may be used.

細胞膜透過性ペプチドも特に限定されず、一般的に知られている細胞膜透過性ペプチド、例えば、Journal of BiologicalChemistry, 277(4), 2437-2443, 2002、Current Opinion in Molecular Therapeutics, 2(2),162-167, 2000、TRENDS in Biotechnology, 19(1), 21-28, 2001などに記載されているペプチドを使用することができる。具体的には、以下のペプチドを使用することができる。
HIVTAT(YGRKKRRQRRR)〔配列番号1〕
KaposiFGF (AAVALLPAVLLALLAP)〔配列番号2〕
Grb2(AAVLLPVLLAAP)〔配列番号3〕
Integrinβ3 (VTVLALAGVGVG)〔配列番号4〕
HIV-1gp41 (GALFLGFLGAAGSTMGA)〔配列番号5〕
InfluenzaHA-2 (WEAKLAKALAKALAKHLAKALAKALKACEA)〔配列番号6〕
Antennapedia (RQIKIWFQNRRMKWKK)〔配列番号7〕
HerpesSimplex Virus VP22 (DAATATRGRSAASPRTERPRAPARSASRPRRPVE)〔配列番号8〕
W/R(RRWRRWWRRWWRRWRR)〔配列番号9〕
NLS(KKKRKV)〔配列番号10〕
AlkCWK(CWKKKKKKKKKKKKKKKKKK)〔配列番号11〕
DiCWK18(K18WCCWK18)〔配列番号12〕
Transportan (GWTLNSAGYLLGKINLKALAALAKKIL)〔配列番号13〕
DipaLytic(GLFEALEELWEAK)〔配列番号14〕
HIV-1 Rev(TRQARRNRRRRWRERQR)〔配列番号15〕
R9-TAT(GRRRRRRRRRPPQ)〔配列番号16〕
R8(RRRRRRRR)〔配列番号17〕
FHV coat(RRRRNRTRRNRRRVR)〔配列番号18〕
BMV-gag(KMTRAQRRAAARRNRWTAR)〔配列番号19〕
HTLV-IIRex (TRRQRTRRARRNR)〔配列番号20〕
huamn cFOS (KRRIRRERNKMAAAKSRNRRRELTDT)〔配列番号21〕
human cJUN (RIKAERKRMRNRIAASKSRKRKLERIAR)〔配列番号22〕
YeastGCN-4 (KRARNTEAARRSRARKLQRMKQ)〔配列番号23〕
P1(K16GGCMFGCGG)〔配列番号24〕
P3a (VAYISRGGVSTYYSDTVKGRFTRQKYNKRA)〔配列番号25〕
P9.3 (IGRIDPANGKTKYAPKFQDKATRSNYYGNSPS)〔配列番号26〕
Plae(PLAEIDGIELTY)〔配列番号27〕
Kplae(K16GGPLAEDGIELGA)〔配列番号28〕
cKplae(K16GGPLAEDGIELCA)〔配列番号29〕
Hel-11-7 (KLLKLLLKLWLKLLKLLL)〔配列番号30〕
KK(KKKKKKKKGGC)〔配列番号31〕
KWK(KWKKKWKKGCC)〔配列番号32〕
RWR (RWRRRWRRGGC)〔配列番号33〕
なお、上記のアミノ酸配列には、L体のアミノ酸だけでなく、D体のアミノ酸も含まれる。
The cell membrane permeable peptide is not particularly limited, and generally known cell membrane permeable peptides such as Journal of Biological Chemistry, 277 (4), 2437-2443, 2002, Current Opinion in Molecular Therapeutics, 2 (2), 162-167, 2000, TRENDS in Biotechnology, 19 (1), 21-28, 2001 etc. can be used. Specifically, the following peptides can be used.
HIVTAT (YGRKKRRQRRR) [SEQ ID NO: 1]
KaposiFGF (AAVALLPAVLLALLAP) [SEQ ID NO: 2]
Grb2 (AAVLLPVLLAAP) [SEQ ID NO: 3]
Integrinβ3 (VTVLALAGVGVG) [SEQ ID NO: 4]
HIV-1gp41 (GALFLGFLGAAGSTMGA) [SEQ ID NO: 5]
InfluenzaHA-2 (WEAKLAKALAKALAKHLAKALAKALKACEA) [SEQ ID NO: 6]
Antennapedia (RQIKIWFQNRRMKWKK) [SEQ ID NO: 7]
HerpesSimplex Virus VP22 (DAATATRGRSAASPRTERPRAPARSASRPRRPVE) [SEQ ID NO: 8]
W / R (RRWRRWWRRWWRRWRR) [SEQ ID NO: 9]
NLS (KKKRKV) [SEQ ID NO: 10]
AlkCWK (CWKKKKKKKKKKKKKKKKKK) [SEQ ID NO: 11]
DiCWK18 (K18WCCWK18) [SEQ ID NO: 12]
Transportan (GWTLNSAGYLLGKINLKALAALAKKIL) [SEQ ID NO: 13]
DipaLytic (GLFEALEELWEAK) [SEQ ID NO: 14]
HIV-1 Rev (TRQARRNRRRRWRERQR) [SEQ ID NO: 15]
R9-TAT (GRRRRRRRRRPPQ) [SEQ ID NO: 16]
R8 (RRRRRRRR) [SEQ ID NO: 17]
FHV coat (RRRRNRTRRNRRRVR) [SEQ ID NO: 18]
BMV-gag (KMTRAQRRAAARRNRWTAR) [SEQ ID NO: 19]
HTLV-IIRex (TRRQRTRRARRNR) [SEQ ID NO: 20]
huamn cFOS (KRRIRRERNKMAAAKSRNRRRELTDT) [SEQ ID NO: 21]
human cJUN (RIKAERKRMRNRIAASKSRKRKLERIAR) [SEQ ID NO: 22]
YeastGCN-4 (KRARNTEAARRSRARKLQRMKQ) [SEQ ID NO: 23]
P1 (K16GGCMFGCGG) [SEQ ID NO: 24]
P3a (VAYISRGGVSTYYSDTVKGRFTRQKYNKRA) [SEQ ID NO: 25]
P9.3 (IGRIDPANGKTKYAPKFQDKATRSNYYGNSPS) [SEQ ID NO: 26]
Plae (PLAEIDGIELTY) [SEQ ID NO: 27]
Kplae (K16GGPLAEDGIELGA) [SEQ ID NO: 28]
cKplae (K16GGPLAEDGIELCA) [SEQ ID NO: 29]
Hel-11-7 (KLLKLLLKLWLKLLKLLL) [SEQ ID NO: 30]
KK (KKKKKKKKGGC) [SEQ ID NO: 31]
KWK (KWKKKWKKGCC) [SEQ ID NO: 32]
RWR (RWRRRWRRGGC) [SEQ ID NO: 33]
The above amino acid sequences include not only L-form amino acids but also D-form amino acids.

本発明の融合タンパク質は、抗体結合タンパク質、細胞膜透過性ペプチドのほかにも他のタンパク質やペプチドを含んでいてもよい。   The fusion protein of the present invention may contain other proteins and peptides in addition to the antibody binding protein and the cell membrane permeable peptide.

本発明の融合タンパク質は、抗体と特異的に結合し、それを細胞内に導入することができるので、抗体の細胞内導入方法に利用することができる。具体的には、(1)本発明の融合タンパク質、(2)導入しようとする抗体、及び(3)抗体の導入対象とする細胞の三者を共存させることにより、抗体を細胞内に導入することができる。   Since the fusion protein of the present invention specifically binds to an antibody and can be introduced into a cell, it can be used in a method for introducing an antibody into a cell. Specifically, (1) the fusion protein of the present invention, (2) the antibody to be introduced, and (3) the antibody to be introduced into the cell are introduced into the cell, thereby allowing the antibody to be introduced into the cell. be able to.

導入しようとする抗体は、融合タンパク質に含まれる抗体結合タンパク質と結合可能なものを用いる。例えば、抗体結合タンパク質がプロテインAであれば、ウサギIgG、ヒトIgG、ブタIgGなどを使用し、プロテインGであれば、マウスIgG、ヤギIgG、ヒツジIgGなどを使用し、プロテインLであれば、マウスIgG、ラットIgGなどを使用する。   The antibody to be introduced is one that can bind to the antibody binding protein contained in the fusion protein. For example, if the antibody binding protein is protein A, use rabbit IgG, human IgG, pig IgG, etc., if protein G, use mouse IgG, goat IgG, sheep IgG, etc., and if protein L, Mouse IgG, rat IgG, etc. are used.

抗体の導入対象とする細胞は主として動物細胞であるが、他の細胞を対象としてもよい。   The cells to which antibodies are introduced are mainly animal cells, but other cells may be targeted.

抗体の導入時における融合タンパク質の濃度は特に限定されないが、0.5〜2 μg/ml程度とするのが好適である。また、抗体の濃度も特に限定されないが、0.5〜10μg/ml程度とするのが好適である。更に、細胞の濃度も限定されないが、1x104〜1x105 cells/cm2程度とするのが好適である。 The concentration of the fusion protein at the time of introducing the antibody is not particularly limited, but is preferably about 0.5 to 2 μg / ml. The concentration of the antibody is not particularly limited, but is preferably about 0.5 to 10 μg / ml. Furthermore, the concentration of cells is not limited, but is preferably about 1 × 10 4 to 1 × 10 5 cells / cm 2 .

融合タンパク質、抗体、細胞の三者を共存させる時間は特に限定されないが、4〜18時間程度とするのが好適である。   The time for the fusion protein, antibody, and cell to coexist is not particularly limited, but is preferably about 4 to 18 hours.

この抗体の導入方法では、融合タンパク質を抗体と共存させるだけで、融合タンパク質は抗体と結合し、これを細胞内へ導入するので、簡便に抗体の導入を行うことができる。また、融合タンパク質は、抗体と特異的に結合するので、培地中に他のタンパク質(例えば、血清中に含まれるタンパク質など)が存在していても、他のタンパク質を導入することなく、抗体のみを細胞内に導入することができる。   In this antibody introduction method, simply by allowing the fusion protein to coexist with the antibody, the fusion protein binds to the antibody and introduces it into the cell, so that the antibody can be easily introduced. In addition, since the fusion protein specifically binds to the antibody, even if another protein (for example, a protein contained in serum) is present in the medium, only the antibody is introduced without introducing the other protein. Can be introduced into cells.

上記の抗体の導入方法を利用し、抗体以外のタンパク質の導入を行うことも可能である。具体的には、導入しようとするタンパク質と、このタンパク質と結合可能な抗体を共存させ、抗体とタンパク質の結合体を作製し、その後、(1)本発明の融合タンパク質、(2)前記抗体とタンパク質の結合体、及び(3)タンパク質の導入対象とする細胞の三者を共存させることにより、タンパク質を導入することが可能である。   It is also possible to introduce proteins other than antibodies using the above-described antibody introduction method. Specifically, a protein to be introduced and an antibody capable of binding to the protein are allowed to coexist to produce a conjugate of the antibody and protein, and then (1) the fusion protein of the present invention, (2) the antibody and Proteins can be introduced by coexisting a protein conjugate and (3) a cell into which proteins are to be introduced.

本発明により、細胞を傷つけることなく、簡便に抗体などのタンパク質を細胞内に導入できるようになる。   According to the present invention, a protein such as an antibody can be easily introduced into a cell without damaging the cell.

以下、本発明を実施例により更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

細胞膜透過性ペプチドとして、HIV由来のTATタンパク質中に存在するYGRKKRRQRRRの細胞膜透過ドメイン配列を利用した。このペプチド配列に対応するDNAを合成し、発現プラスミドpET-32cに挿入した。TATをコードする遺伝子の下流に、抗体結合能を有するタンパク質であるプロテインAのBドメインをコードする遺伝子を挿入し、TAT-Bドメイン発現ベクターpET-TAT-Bを構築した。このプラスミドにより大腸菌BL21(DE3)株を形質転換して、IPTGによりTAT-Bドメイン融合タンパク質の発現を誘導した。発現した組換えタンパク質は、ヒスチジンタグを利用してニッケルカラムにより精製した。また同時にコントロールとしてTAT配列を欠損させたBドメインタンパク質のプラスミドも作製し、発現させた。このTAT-Bドメイン、B-ドメインタンパク質が抗体結合能を有することは、ウエスタンブロッティングにより確認した(図1)。   As a cell membrane permeable peptide, the cell membrane permeability domain sequence of YGRKKRRQRRR present in TAT protein derived from HIV was used. DNA corresponding to this peptide sequence was synthesized and inserted into the expression plasmid pET-32c. A TAT-B domain expression vector pET-TAT-B was constructed by inserting a gene encoding the B domain of protein A, which is a protein having antibody binding ability, downstream of the gene encoding TAT. E. coli BL21 (DE3) strain was transformed with this plasmid, and expression of the TAT-B domain fusion protein was induced by IPTG. The expressed recombinant protein was purified by a nickel column using a histidine tag. At the same time, a B domain protein plasmid lacking the TAT sequence was prepared and expressed as a control. It was confirmed by Western blotting that the TAT-B domain and B-domain protein have antibody binding ability (FIG. 1).

抗体の細胞導入は、次の様に行った。精製した各タンパク質(0.25-1μg)と蛍光標識されたウサギIgG(10μg)とを30μlのリン酸緩衝液中で混合し10分間室温でインキュベーションした。その後、2mlの血清入り培地の入った6穴プレート内で培養したマウス繊維芽細胞3T3L1に混合液を添加した。添加12時間後の細胞をレーザー共焦点顕微鏡で観察した(図2)。その結果、Bドメインタンパク質では蛍光は観察されなかったが、TAT-Bドメインタンパク質では細胞内に蛍光が観察され、TAT-Bドメインにより抗体が細胞内に導入されていることが確認された。また、タンパク質濃度を変化させ細胞に加え、12時間後に細胞をトリプシン処理しフローサイトメターにより蛍光強度を測定した。その結果Bドメインタンパク質を添加した細胞では蛍光強度の変化は見られなかったが、TAT-B3ドメインタンパク質ではタンパク濃度に依存した蛍光強度の増加が確認できた(図3)。   Antibody introduction into cells was performed as follows. Each purified protein (0.25-1 μg) and fluorescently labeled rabbit IgG (10 μg) were mixed in 30 μl phosphate buffer and incubated at room temperature for 10 minutes. Thereafter, the mixed solution was added to mouse fibroblast 3T3L1 cultured in a 6-well plate containing 2 ml of serum-containing medium. The cells 12 hours after the addition were observed with a laser confocal microscope (FIG. 2). As a result, fluorescence was not observed in the B domain protein, but fluorescence was observed in the cell in the TAT-B domain protein, and it was confirmed that the antibody was introduced into the cell by the TAT-B domain. In addition, the protein concentration was changed and added to the cells. After 12 hours, the cells were trypsinized and the fluorescence intensity was measured by flow cytometry. As a result, no change in fluorescence intensity was observed in the cells to which the B domain protein was added, but an increase in fluorescence intensity depending on the protein concentration was confirmed in the TAT-B3 domain protein (FIG. 3).

融合タンパク質の抗体結合能を確認するためのウエスタンブロッティングの結果を示す図。The figure which shows the result of the western blotting for confirming the antibody binding ability of fusion protein. 抗体を導入した細胞のレーザー共焦点顕微鏡画像。Laser confocal microscope image of antibody-introduced cells. 抗体導入量の測定結果を示す図。The figure which shows the measurement result of an antibody introduction amount.

Claims (9)

抗体結合タンパク質の全部又は一部と、細胞膜透過性ペプチドとを含む融合タンパク質。 A fusion protein comprising all or part of an antibody binding protein and a cell membrane permeable peptide. 抗体結合タンパク質が、プロテインA、プロテインG、プロテインA/G、又はプロテインLである請求項1記載の融合タンパク質。 The fusion protein according to claim 1, wherein the antibody-binding protein is protein A, protein G, protein A / G, or protein L. 細胞膜透過性ペプチドが、配列番号1乃至33のいずれか一つの配列番号記載のアミノ酸配列で表されるペプチドである請求項1記載の融合タンパク質。 The fusion protein according to claim 1, wherein the cell membrane permeable peptide is a peptide represented by the amino acid sequence described in any one of SEQ ID NOs: 1 to 33. 請求項1乃至3のいずれか一項記載の融合タンパク質をコードするDNA。 A DNA encoding the fusion protein according to any one of claims 1 to 3. 請求項4記載のDNAを含むベクター。 A vector comprising the DNA according to claim 4. 請求項1乃至3のいずれか一項記載の融合タンパク質を有効成分として含有するタンパク質の細胞内導入試薬。 A reagent for introducing a protein containing the fusion protein according to any one of claims 1 to 3 as an active ingredient. タンパク質が、抗体である請求項6記載のタンパク質の細胞内導入試薬。 The reagent for introducing a protein into a cell according to claim 6, wherein the protein is an antibody. (1)請求項1乃至3のいずれか一項記載の融合タンパク質、(2)導入しようとする抗体、及び(3)抗体の導入対象とする細胞の三者を共存させることを特徴とする抗体の細胞内導入方法。 (1) The fusion protein according to any one of claims 1 to 3, (2) an antibody to be introduced, and (3) an antibody to which the antibody is introduced, coexisting with an antibody, Intracellular introduction method. 導入しようとするタンパク質と、このタンパク質と結合可能な抗体を共存させ、抗体とタンパク質の結合体を作製し、その後、(1)請求項1乃至3のいずれか一項記載の融合タンパク質、(2)前記抗体とタンパク質の結合体、及び(3)タンパク質の導入対象とする細胞の三者を共存させることを特徴とするタンパク質の細胞内導入方法。 A protein to be introduced and an antibody capable of binding to the protein are allowed to coexist to produce a conjugate of the antibody and protein, and then (1) the fusion protein according to any one of claims 1 to 3, (2 (3) A method for introducing a protein into a cell, comprising combining the antibody-protein conjugate and (3) a cell into which the protein is to be introduced.
JP2003286781A 2003-08-05 2003-08-05 Method for introducing protein into cell Pending JP2005052083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286781A JP2005052083A (en) 2003-08-05 2003-08-05 Method for introducing protein into cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286781A JP2005052083A (en) 2003-08-05 2003-08-05 Method for introducing protein into cell

Publications (1)

Publication Number Publication Date
JP2005052083A true JP2005052083A (en) 2005-03-03

Family

ID=34365981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286781A Pending JP2005052083A (en) 2003-08-05 2003-08-05 Method for introducing protein into cell

Country Status (1)

Country Link
JP (1) JP2005052083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088882A1 (en) 2006-01-31 2007-08-09 Ishihara Sangyo Kaisha, Ltd. Polypeptide having affinity for envelope virus constituent and use thereof in transferring substance into cell
JP2009527251A (en) * 2006-02-20 2009-07-30 エファ・ユニバーシティ・インダストリー・コラボレイション・ファウンデイション Cell membrane permeable peptide
KR20170122179A (en) 2015-02-27 2017-11-03 각코호우징 조쇼 가쿠엔 Polysaccharide derivatives having membrane permeable peptide chains
KR20170122180A (en) 2015-02-27 2017-11-03 각코호우징 조쇼 가쿠엔 A polymer compound having a membrane-permeable peptide in its side chain

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088882A1 (en) 2006-01-31 2007-08-09 Ishihara Sangyo Kaisha, Ltd. Polypeptide having affinity for envelope virus constituent and use thereof in transferring substance into cell
JP2009527251A (en) * 2006-02-20 2009-07-30 エファ・ユニバーシティ・インダストリー・コラボレイション・ファウンデイション Cell membrane permeable peptide
KR20170122179A (en) 2015-02-27 2017-11-03 각코호우징 조쇼 가쿠엔 Polysaccharide derivatives having membrane permeable peptide chains
KR20170122180A (en) 2015-02-27 2017-11-03 각코호우징 조쇼 가쿠엔 A polymer compound having a membrane-permeable peptide in its side chain
US10501564B2 (en) 2015-02-27 2019-12-10 Josho Gakuen Educational Foundation Polymer compound which has membrane-permeable peptide in side chain
US10793603B2 (en) 2015-02-27 2020-10-06 Josho Gakuen Educational Foundation Polysaccharide derivative having membrane-permeable peptide chain

Similar Documents

Publication Publication Date Title
Tsukiji et al. Sortase‐mediated ligation: a gift from gram‐positive bacteria to protein engineering
Proft Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation
Popp et al. Making and breaking peptide bonds: protein engineering using sortase
Tanaka et al. Site‐specific protein modification on living cells catalyzed by sortase
US7420031B2 (en) Intracellular delivery of small molecules, proteins, and nucleic acids
Fekkes et al. Zinc stabilizes the SecB binding site of SecA
Su et al. Cationic membrane peptides: atomic-level insight of structure–activity relationships from solid-state NMR
Klein et al. Lactam-stapled cell-penetrating peptides: cell uptake and membrane binding properties
US7534819B2 (en) Compositions and methods for intracellular delivery of biotinylated cargo
Luo et al. Self‐organization of a chiral D‐EAK16 designer peptide into a 3D nanofiber scaffold
CA2413857A1 (en) Pd-l2 molecules: pd-1 ligands and uses therefor
US20090042216A1 (en) Method for purifying proteins and/or biomolecule or protein complexes
CA2420350A1 (en) Membrane penetrating peptides and uses thereof
Eguchi et al. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles
JP2022521049A (en) Means and Methods for Preparing Target Proteins Manipulated by Genetic Code Expansion in a Selective Mode of Target Proteins
Chu et al. Protein immobilization on liposomes and lipid‐coated nanoparticles by protein trans‐splicing
Komarov et al. Modular strategy for the semisynthesis of a K+ channel: investigating interactions of the pore helix
JP2005052083A (en) Method for introducing protein into cell
Yamaguchi et al. Efficient protein transduction method using cationic peptides and lipids
JP6412866B2 (en) Structure of a spider silk fusion protein without repetitive fragments for binding to organic targets
Becker‐Hapak et al. Protein Transduction: Generation of Full‐Length Transducible Proteins Using the TAT System
JP6304683B2 (en) Intracellular introduction agent for target protein and method for intracellular introduction of target protein
Holford et al. Adding ‘splice’to protein engineering
Moosmeier et al. Transtactin: a universal transmembrane delivery system for Strep‐tag II‐fused cargos
JP2011520101A (en) Magnetic sign set