JP2005052021A - Interleukin-18 mutant protein - Google Patents

Interleukin-18 mutant protein Download PDF

Info

Publication number
JP2005052021A
JP2005052021A JP2003206609A JP2003206609A JP2005052021A JP 2005052021 A JP2005052021 A JP 2005052021A JP 2003206609 A JP2003206609 A JP 2003206609A JP 2003206609 A JP2003206609 A JP 2003206609A JP 2005052021 A JP2005052021 A JP 2005052021A
Authority
JP
Japan
Prior art keywords
amino acid
interleukin
protein
mutant protein
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206609A
Other languages
Japanese (ja)
Inventor
Masahiro Shirakawa
昌宏 白川
Zenichiro Kato
善一郎 加藤
Naomi Kondo
直実 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama City
Original Assignee
Yokohama City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama City filed Critical Yokohama City
Priority to JP2003206609A priority Critical patent/JP2005052021A/en
Publication of JP2005052021A publication Critical patent/JP2005052021A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To analyze the three-dimensional structure of interleukin-18 to enable the utilization of the interleukin-18 for screening new medicine candidate substances or the like, and to provide a mutant in which the biological activity of the interleukin-18 is changed. <P>SOLUTION: The following interleukin-18 mutant proteins or their salts. The interleukin-18 mutant protein comprises an amino acid sequence in which at least one amino acid selected from three amino acid residue groups selected from specific amino acid residues is replaced by at least one of other amino acids. The other interleukin-18 mutant protein comprises an amino acid sequence in which one or several amino acids except the amino acids contained in the amino acid residue groups are deleted, replaced or added, and has the lower or higher biological activity of the interleukin-18 protein than that of mild type interleukin-18 protein. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インターロイキン−18変異体タンパク質に関する。
【0002】
【従来の技術】
インターフェロンγ誘導因子と呼ばれていたサイトカインであるインターロイキン18 (IL−18)は、IFN−γ産生の増強、ナチュラルキラー細胞に対するFas媒介細胞傷害性、およびヘルパーTリンパ球タイプ1の発生調節を含む多面発現性の免疫調節機能を有する(非特許文献1〜3)。
【0003】
IFN−γ産生という点でIL−12に機能的に類似しているIL−18は、重篤な炎症性疾患に関連している。IL−18の異常発現は、自己免疫疾患、アレルギーまたは神経障害等の重篤な炎症性疾患に関連していると推論されている(非特許文献2〜4)。IL−18を用いたマウスにおける腫瘍抑制等の治療的アプローチの成功が報告されている(非特許文献5)。IL−18の生体内における機能は、IL−12の機能と密接に関連している。したがって、IL−18欠損マウスはIL−12欠損マウスの表現型に類似した表現型を示す。しかし、IL−18およびその受容体は、IL−12およびその受容体に対してそれぞれ構造的類似性を全く示さない(非特許文献2及び3)。対照的に、IFN−γ産生という点で重要な機能的類似性を欠くにも関わらず、IL−1βとIL−18は中程度の配列類似性(17%同一性)を示す。さらに、IL−18およびIL−1のポリペプチドプロセシング機構は共通の特徴、すなわち、両方とも前駆体のカスペース1開裂が成熟のために必須であるという特徴を共有する(非特許文献2及び3)。IL−1βおよびIL−18両者の受容体は、IL−1受容体ファミリーに属する。したがって、これらのサイトカインに応答するための細胞内シグナル伝達経路は、TRAF6およびNF−κB2,3等の同一の下流メディエーターを共有する。これらの受容体の活性化のためには、2つの構造的に関連しているが別個の免疫グロブリン様鎖のヘテロ二量体化が必要とされる;IL−18経路の開始にはIL−18受容体α(IL−18Rα;以前にはIL−1Rrp1と呼ばれていた)および受容体β(IL−18Rβ; 以前にはIL−1AcPLと呼ばれていた)が必要とされ(非特許文献2及び3)、IL−1経路の開始にはIL−1受容体 I型 (IL−1RI)およびIL−1アクセサリータンパク質 (IL−1AcP)が必要とされる。IL−1とIL−1RIとの相互作用は、それらの複合体の結晶構造によって解明された(非特許文献6及び7)。しかし、IL−1によるIL−1AcPの認識、およびそれゆえIL−1経路の活性化機構は、いまだに不明である(非特許文献2及び3)。
【0004】
また、インターロイキン18の立体構造に関する報告はない。
【0005】
【非特許文献1】
Okamura, H. et al. Nature. 378, 88−91 (1995)
【0006】
【非特許文献2】
Dinarello, CA. Eur. Cytokine Netw. 11, 483−6 (2000)
【0007】
【非特許文献3】
Nakanishi, K., Yoshimoto, T., Tsutsui H. & Okamura, H. Cytokine Growth Factor Rev. 12, 53−72. (2001)
【0008】
【非特許文献4】
Konishi, H. et al. Proc. Natl. Acad. Sci. USA. 99:11340−5. (2002)
【0009】
【非特許文献5】
Wigginton JM, et al. J. Immunol. 169:4467−4474. (2002)
【0010】
【非特許文献6】
Vigers, G.P., Anderson, L.J., Caffes, P. & Brandhuber, B.J. Nature. 386, 190−194 (1997)
【0011】
【非特許文献7】
Schreuder, H. et al. Nature. 386, 194−200 (1997)
【0012】
【発明が解決しようとする課題】
本発明は、インターロイキン−18の立体構造を解析することにより、インターロイキン−18の生物学的活性(すなわち、IL−18の受容体活性化)に対する理解を深め、新薬候補物質のスクリーニングなどに利用できるようにすることを目的とする。
【0013】
また、本発明は、インターロイキン−18の生物学的活性を変化させた変異体を得ることを目的とする。
【0014】
【課題を解決するための手段】
本発明者らは、IL−18の受容体活性化機構を理解するための第1のステップとして、IL−18の溶液構造を決定した。IL−18は、IL−1のβトレフォイル(trefoil、三つ葉形)構造に類似した構造に折り畳まれている。広範囲にわたる突然変異誘発は、受容体活性化にとって重要な3つの部位が存在することを明らかにした。そのうち2つは、IL−18Rαの結合部位として機能し、IL−1のIL−1RI結合部位に類似した場所に位置している。他方、第3の部位はIL−18β結合に関与している。これらの構造および突然変異誘発データは、IL−18によって誘導される、受容体活性化に必要な受容体サブユニットのヘテロ二量体化を理解するための基礎を提供する。本発明は、これらの知見により、完成された。
【0015】
本発明の要旨は以下の通りである。
[1] 以下の(a)又は(b)のインターロイキン−18変異体タンパク質又はその塩。
(a)配列番号1のアミノ酸配列において、13番目のアルギニン、17番目のアスパラギン酸、33番目のメチオニン、35番目のアスパラギン酸及び132番目のアスパラギン酸からなる第1のアミノ酸残基群、2番目のフェニルアラニン、4番目のリシン、5番目のロイシン、8番目のリシン、58番目のアルギニン、60番目のメチオニン及び104番目のアルギニンからなる第2のアミノ酸残基群、ならびに79番目のリシン、84番目のリシン及び98番目のアスパラギン酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸が他のアミノ酸に置換されているアミノ酸配列からなるインターロイキン−18変異体タンパク質
(b)(a)のタンパク質のアミノ酸配列において、第1〜3のアミノ酸残基群に含まれるアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつインターロイキン−18タンパク質の生物学的活性が配列番号1のアミノ酸配列からなる野生型インターロイキン−18タンパク質よりも低いあるいは高いインターロイキン−18変異体タンパク質
[2] [1]記載のタンパク質をコードするDNA。
[3] [2]記載のDNAを含有する組換えベクター。
[4] [3]記載の組換えベクターを含む形質転換体。
[5] [2]記載のDNAで形質転換した宿主を培養し、培養物からインターロイキン−18変異体タンパク質を採取することを含むインターロイキン−18変異体タンパク質の製造方法。
[6] [1]記載のインターロイキン−18変異体タンパク質又はその塩からなるインターロイキン−18タンパク質のアンタゴニスト。
[7] [1]記載のインターロイキン−18変異体タンパク質又はその塩を有効成分として含有する医薬組成物。
[8] [1]記載のインターロイキン−18変異体タンパク質又はその塩に対する抗体。
[9] 表A及び/又は表Bに示す3次元構造座標の全部又は一部を使用して、インターロイキン−18タンパク質と結合する物質をスクリーニングする方法。
[10] 配列番号1のアミノ酸配列からなる野生型インターロイキン−18タンパク質又は請求項1記載のインターロイキン−18変異体タンパク質のアミノ酸配列において、13番目のアミノ酸、17番目のアミノ酸、33番目のアミノ酸、35番目のアミノ酸及び132番目のアミノ酸からなる第1のアミノ酸残基群、2番目のアミノ酸、4番目のアミノ酸、5番目のアミノ酸、8番目のアミノ酸、58番目のアミノ酸、60番目のアミノ酸及び104番目のアミノ酸からなる第2のアミノ酸残基群、ならびに79番目のアミノ酸、84番目のアミノ酸及び98番目のアミノ酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸残基と被験物質との相互作用を調べることを含む、インターロイキン−18タンパク質と結合する物質を探索する方法。
[11] 配列番号18の塩基配列で表されるDNA。
【0016】
本明細書において、「変異体タンパク質」とは、基準となるタンパク質と異なるが、基準となるタンパク質の不可欠な性質を保持しているタンパク質を意味する。典型的な変異体タンパク質は、基準となるタンパク質とアミノ酸配列が相違する。
【0017】
「インターロイキン−18タンパク質」とは、一般に、配列番号1のアミノ酸配列からなるインターロイキン−18タンパク質(野生型)及びその変異体タンパク質を意味する。
【0018】
「インターロイキン−18タンパク質の生物学的活性」とは、インターロイキン−18タンパク質の代謝的または生理学的機能を意味し、これには、IFN−γ産生の増強活性、ナチュラルキラー細胞に対するFas媒介細胞傷害性、ヘルパーTリンパ球タイプ1の発生調節を含む多面発現性の免疫調節機能の他、抗原としての活性、免疫原としての活性なども含まれる。
【0019】
「アンタゴニスト」とは、生物学的活性を有する物質の活性を減少ないし消失させる物質をいう。
【0020】
「抗体」とは、抗原刺激の結果、免疫反応によって生体内に誘導されるタンパク質で、免疫原(抗原)と特異的に結合する活性を有するものを意味し、これには、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体、さらには、Fab又はFabフラグメントなどが含まれる。
【0021】
「スクリーニング」とは、目的とする物質を選択することを意味し、これには、目的とする物質の同定、検索、評価、設計などが含まれる。
【0022】
「相互作用」とは、2つ以上の物体(例えば、原子、分子)の間に力が働きあうことをいう。相互作用としては、親水性の相互作用(例えば、水素結合、塩橋)、疎水性の相互作用(例えば、疎水結合)、静電相互作用、ファンデルワールス相互作用などを例示することができる。
【0023】
【発明の実施の形態】
1.インターロイキン−18変異体タンパク質
本発明は、以下の(a)又は(b)のインターロイキン−18変異体タンパク質又はその塩を提供する。
(a)配列番号1のアミノ酸配列において、13番目のアルギニン、17番目のアスパラギン酸、33番目のメチオニン、35番目のアスパラギン酸及び132番目のアスパラギン酸からなる第1のアミノ酸残基群、2番目のフェニルアラニン、4番目のリシン、5番目のロイシン、8番目のリシン、58番目のアルギニン、60番目のメチオニン及び104番目のアルギニンからなる第2のアミノ酸残基群、ならびに79番目のリシン、84番目のリシン及び98番目のアスパラギン酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸が他のアミノ酸に置換されているアミノ酸配列からなるインターロイキン−18変異体タンパク質
(b)(a)のタンパク質のアミノ酸配列において、第1〜3のアミノ酸残基群に含まれるアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつインターロイキン−18タンパク質の生物学的活性が配列番号1のアミノ酸配列からなる野生型インターロイキン−18タンパク質よりも低いあるいは高いインターロイキン−18変異体タンパク質
(a)のインターロイキン−18変異体タンパク質としては、配列番号1のアミノ酸配列において、13番目のアルギニン、17番目のアスパラギン酸、33番目のメチオニン、35番目のアスパラギン酸、132番目のアスパラギン酸、2番目のフェニルアラニン、4番目のリシン、5番目のロイシン、8番目のリシン、58番目のアルギニン、60番目のメチオニン、104番目のアルギニン、79番目のリシン、84番目のリシン及び98番目のアスパラギン酸のうちの少なくとも1つのアミノ酸がアラニン、バリン、イソロイシン、プロリン、トリプトファン、グリシン、セリン、トレオニン、システイン、グルタミン、アスパラギン、チロシン、ヒスチジン又はグルタミン酸のいずれかに置換されたものを例示することができる。
(b)のインターロイキン−18タンパク質の生物学的活性が野生型インターロイキン−18タンパク質よりも低いインターロイキン−18変異体タンパク質は、インターロイキン−18タンパク質のアンタゴニストとして利用することができる。インターロイキン−18タンパク質のアンタゴニストは、インターロイキン−18タンパク質に起因する疾患(例えば、自己免疫疾患、アレルギー、神経障害など)の予防及び/又は治療に用いることができる。
(b)のインターロイキン−18タンパク質の生物学的活性が野生型インターロイキン−18タンパク質より高いインターロイキン−18変異体タンパク質は、インターロイキン−18タンパク質のアゴニストとして利用することができる。「アゴニスト」とは、ある物質がその受容体に示す親和性及び/又は生物学的活性と同質のものを有する物質をいう。インターロイキン−18タンパク質のアゴニストは、インターロイキン−18タンパク質の投与により症状の改善が見られる疾患(例えば、C型肝炎、腫瘍など)の予防及び/又は治療に用いることができる。
【0024】
本発明のインターロイキン−18変異体タンパク質の塩としては、特に、薬理学的に許容される酸付加塩が好ましい。薬理学的に許容される酸付加塩としては、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などを例示することができる。
【0025】
本発明のインターロイキン−18変異体タンパク質及びその塩は、公知の方法によって製造することができる。例えば、後述の2に記載のようにしてインターロイキン−18変異体タンパク質をコードするDNAを得、得られたDNAを適当な発現ベクターに組み込んだ後、適当な宿主に導入し、組換え蛋白質として生産させることにより、インターロイキン−18変異体タンパク質を製造することができる(例えば、西郷薫、佐野弓子共訳、CURRENT PROTOCOLSコンパクト版、分子生物学実験プロトコール、I、II、III、丸善株式会社 : 原著、Ausubel,F.M.等, Short Protocols in Molecular Biology, Third Edition,John Wiley & Sons, Inc., New Yorkを参照のこと)。
【0026】
あるいはまた、本発明のインターロイキン−18変異体タンパク質及びその塩は、公知のペプチド合成法に従って製造することもできる。
【0027】
2.インターロイキン−18変異体タンパク質をコードするDNA
本発明のインターロイキン−18変異体タンパク質をコードするDNAは、本発明のインターロイキン−18変異体タンパク質をコードする塩基配列を含有するものであればいかなるものであってもよい。本発明のインターロイキン−18変異体タンパク質をコードするDNAとしては、配列番号3〜17の塩基配列のいずれかで表されるDNAを例示することができる。
【0028】
本発明のインターロイキン−18変異体タンパク質をコードするDNAは、例えば、以下のようにして製造することができる。
【0029】
健常なヒトの血液からmRNAを抽出し、逆転写酵素およびオリゴdTプライマーを用いてcDNAを合成する。成熟hIL−18のコード領域(157残基)をPCRによって増幅する。得られたPCR産物が野生型hIL−18タンパク質をコードするDNAである。野生型hIL−18タンパク質をコードするDNAのアミノ酸配列および塩基配列の一例をそれぞれ配列番号1および2に示す。
【0030】
hIL−18変異体タンパク質をコードするDNAは、成熟hIL−18のコード領域(157残基)を点突然変異誘発法により変異させることにより作製することができる。変異させた成熟hIL−18のコード領域(157残基)をPCRによって増幅する。得られたPCR産物がhIL−18変異体タンパク質をコードするDNAである。hIL−18変異体タンパク質をコードするDNAの塩基配列の例を配列番号3〜17に示す。配列番号3〜17の塩基配列を有するDNAは、それぞれ、配列番号1のアミノ酸配列において、2番目のフェニルアラニン、4番目のリシン、5番目のロイシン、8番目のリシン、13番目のアルギニン、17番目のアスパラギン酸、33番目のメチオニン、35番目のアスパラギン酸、58番目のアルギニン、60番目のメチオニン、79番目のリシン、84番目のリシン、98番目のアスパラギン酸、104番目のアルギニン及び132番目のアスパラギン酸がアラニンに置換されているアミノ酸配列からなるインターロイキン−18変異体タンパク質をコードする。上記のhIL−18変異体タンパク質をコードするDNAは、野生型hIL−18遺伝子をもとに作製したものであるが、野生型hIL−18遺伝子の代わりに、最適化cDNAを設計・合成し、これをもとにインターロイキン−18変異体タンパク質をコードするDNAを作製することもできる。最適化cDNAの配列の一例を配列番号18に示す。この最適化cDNAを用いることにより、インターロイキン−18タンパク質の発現・生産が大幅に改善される(5倍以上)ことが確認されている。
【0031】
3.組換えベクター
本発明のインターロイキン−18変異体タンパク質をコードするDNAを含有する組換えベクターは、公知の方法(例えば、Molecular Cloning2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989に記載の方法)により、本発明のインターロイキン−18変異体タンパク質をコードするDNAを適当な発現ベクターに挿入することにより得られる。
【0032】
発現ベクターとしては、大腸菌由来のプラスミド(例、pBR322,pBR325,pUC12,pUC13)、枯草菌由来のプラスミド(例、pUB110,pTP5,pC194)、酵母由来プラスミド(例、pSH19,pSH15)、λファージなどのバクテリオファージ、レトロウイルス,ワクシニアウイルスなどの動物ウイルス、バキュロウイルスなどの昆虫病原ウイルスなどを用いることができる。
【0033】
発現ベクターには、プロモーター、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジンなどを付加してもよい。
【0034】
また、発現ベクターは、融合タンパク質発現ベクターであってもよい。種々の融合タンパク質発現ベクターが市販されており、pGEXシリーズ(アマシャムファルマシアバイオテク社)、pET CBD Fusion System 34b−38b(Novagen社)、pET Dsb Fusion Systems 39b and 40b(Novagen社)、pET GST Fusion System 41 and 42(Novagen社)などを例示することができる。
【0035】
4.形質転換体
本発明のインターロイキン−18変異体タンパク質をコードするDNAを含有する組換えベクターを宿主に導入することにより、形質転換体を得ることができる。
【0036】
宿主としては、細菌細胞(例えば、エシェリヒア属菌、バチルス属菌、枯草菌など)、真菌細胞(例えば、酵母、アスペルギルスなど)、昆虫細胞(例えば、S2細胞、Sf細胞など)、動物細胞(例えば、CHO細胞、COS細胞、HeLa細胞、C127細胞、3T3細胞、BHK細胞、HEK293細胞など)、植物細胞などを例示することができる。
【0037】
組換えベクターを宿主に導入するには、Molecular Cloning2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989に記載の方法(例えば、リン酸カルシウム法、DEAE−デキストラン法、トランスベクション法、マイクロインジェクション法、リポフェクション法、エレクロトポレーション法、形質導入法、スクレープローディング法、ショットガン法など)または感染により行うことができる。
【0038】
形質転換体を培地で培養し、培養物からインターロイキン−18変異体タンパク質を採取することができる。インターロイキン−18変異体タンパク質が培地に分泌される場合には、培地を回収し、その培地からインターロイキン−18変異体タンパク質を分離し、精製すればよい。インターロイキン−18変異体タンパク質が形質転換された細胞内に産生される場合には、その細胞を溶解し、その溶解物からインターロイキン−18変異体タンパク質を分離し、精製すればよい。
【0039】
インターロイキン−18変異体タンパク質が別のタンパク質(タグとして機能する)との融合タンパク質の形態で発現される場合には、融合タンパク質を分離及び精製した後に、因子Xaや酵素(エンテロキナーゼ)処理をすることにより、別のタンパク質を切断し、目的とするインターロイキン−18変異体タンパク質を得ることができる。
【0040】
インターロイキン−18変異体タンパク質の分離及び精製は、公知の方法により行うことができる。公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDS−ポリアクリルアミドゲル電気泳動法などの分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。
【0041】
5.インターロイキン−18タンパク質のアンタゴニストとしての利用
本発明のインターロイキン−18変異体タンパク質のうち、野生型インターロイキン−18タンパク質と比較して、インターフェロンγ誘導活性が低く、かつ、インターロイキン−18受容体のαサブユニット(IL−18Rα)に対する結合活性が低くないものは、インターロイキン−18タンパク質のアンタゴニストとして利用できる。インターロイキン−18タンパク質のアンタゴニストは、インターロイキン−18タンパク質に起因する疾患(例えば、自己免疫疾患、アレルギー、神経障害など)の予防及び/又は治療に用いることができる。現在までのところ、インターロイキン−18タンパク質のアンタゴニストとして利用可能な物質が見つかっていないので、本発明のインターロイキン−18変異体タンパク質の産業的な利用価値は高い。
【0042】
6.医薬組成物
本発明のインターロイキン−18変異体タンパク質及びその塩は、インターロイキン−18タンパク質に起因する疾患(例えば、自己免疫疾患、アレルギー、神経障害など)あるいはインターロイキン−18タンパク質の投与により症状の改善が見られる疾患(例えば、C型肝炎、腫瘍など)の予防及び/又は治療に用いることができる。
【0043】
本発明のインターロイキン−18変異体タンパク質又はその塩は単独で、あるいは、薬理学的に許容され得る担体、希釈剤もしくは賦形剤とともに、適当な剤型の医薬組成物として、哺乳動物(例えば、ヒト、ウサギ、イヌ、ネコ、ラット、マウス)に対して経口的または非経口的に投与することができる。投与量は投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、成人の過剰な免疫応答(例えば、花粉症)の予防・治療のために使用する場合には、インターロイキン−18変異体タンパク質又はその塩を1回量として通常0.1〜10.0 μg/kg体重程度、好ましくは1.0 μg/kg体重程度を、1週間に3回程度の頻度で、好ましくは2日に1回程度の頻度で、静脈注射により投与(好ましくは、連続または隔日投与)するとよい。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合にはその症状に応じて増量してもよい。
【0044】
経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤などがあげられる。かかる組成物は常法により製造することができ、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有してもよい。例えば、錠剤用の担体、賦形剤としては、乳糖、でんぷん、庶糖、ステアリン酸マグネシウムなどがあげられる。
【0045】
非経口投与のための組成物としては、例えば、注射剤、坐剤などがあげられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤などの剤型であるとよい。かかる注射剤は常法、すなわちインターロイキン−18変異体タンパク質又はその塩を通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁または乳化することによって調製される。注射用の水性液としては生理食塩水、ブドウ糖やその他の補助薬を含む等張液などがあげられ、適当な溶解補助剤、例えば、アルコール(例えば、エタノール)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤(例えば、ポリソルベート80、HCO−50(polyoxyethylene(50mol)adduct of hydrogenated castor oil))などと併用してもよい。油性液としてはゴマ油、大豆油などがあげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどを併用してもよい。調製された注射液は通常適当なアンプルに充填される。直腸投与に用いられる坐剤は、インターロイキン−18変異体タンパク質又はその塩を通常の坐薬用基剤に混合することによって調製することができる。
【0046】
上記の経口用または非経口用医薬組成物は、有効成分の投与量に適合するような投薬単位の剤形に調製されるとよい。かかる投薬単位の剤形としては、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤などが挙げられ、それぞれの投薬単位剤形当り通常0.125〜1.000 mg、特に注射剤では0.125〜1.000 mg、その他の剤形では0.125〜1.000 mgのインターロイキン−18変異体タンパク質又はその塩が含有されていることが好ましい。
【0047】
また、上記の医薬組成物は、インターロイキン−18変異体タンパク質又はその塩との配合により好ましくない相互作用を生じない限り、他の有効成分を含有してもよい。
【0048】
7.抗体
本発明のインターロイキン−18変異体タンパク質又はその塩に対する抗体は、本発明のインターロイキン−18変異体タンパク質又はその塩の検出及び/又は定量に利用することができる。
【0049】
本発明のインターロイキン−18変異体タンパク質又はその塩に対する抗体は、慣用のプロトコールを用いて、本発明のインターロイキン−18変異体タンパク質又はその塩またはそのエピトープを含む断片を動物に投与することにより得られる。
【0050】
本発明の抗体は、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体のいずれであってもよい。
【0051】
ポリクローナル抗体を作製するには、公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(タンパク質抗原)とキャリアー蛋白質との複合体をつくり、動物に投与(免疫)を行ない、該免疫動物から本発明のタンパク質に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2〜6週毎に1回ずつ、計約3〜10回程度行なわれる。ポリクローナル抗体は、免疫動物の血液、腹水など、好ましくは血液から採取することができる。ポリクローナル抗体の分離精製は、免疫グロブリンの分離精製法(例えば、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相あるいはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法)に従って行なうことができる。
【0052】
モノクローナル抗体は、Nature (1975) 256: 495、Science (1980) 208: 692−に記載されている、G. Koehler及びC. Milsteinのハイブリドーマ法により作製することができる。すなわち、動物を免疫した後、免疫動物の脾臓から抗体産生細胞を単離し、これを骨髄腫細胞と融合させることによりモノクローナル抗体産生細胞を調製する。さらに、インターロイキン−18変異体タンパク質又はその塩と特異的に反応するが、他の抗原タンパク質とは実質的に交差反応しない抗体を産生する細胞系を単離するとよい。この細胞系を培養し、培養物から所望のモノクローナル抗体を取得することができる。モノクローナル抗体の精製は、上記の免疫グロブリンの分離精製法に従って行なうことができる。
【0053】
一本鎖抗体を作製する技法は、米国特許第4,946,778号に記載されている。
【0054】
ヒト化抗体を作製する技法は、Biotechnology 10, 1121−, 1992; Biotechnology 10, 169−, 1992に記載されている。
【0055】
8.スクリーニング法
本発明は、野生型インターロイキン18の3次元構造座標を提供する。野生型インターロイキン18の3次元構造座標は表A及び表Bに示される。表A及び/又は表Bに示す3次元構造座標の全部又は一部を使用して、インターロイキン−18タンパク質と結合する物質をスクリーニングすることができる。
【0056】
インターロイキン−18タンパク質と結合する物質は、天然物又は合成品のいずれであってもよく、高分子化合物又は低分子化合物のいずれであってもよい。
【0057】
インターロイキン−18タンパク質と結合する物質は、インターロイキン−18タンパク質の生物学的活性を調節しうる。インターロイキン−18タンパク質と結合することにより、インターロイキン−18タンパク質の生物学的活性を減少ないし消失させる物質は、インターロイキン−18タンパク質に起因する疾患(例えば、自己免疫疾患、アレルギー、神経障害など)の予防及び/又は治療に用いることができる。インターロイキン−18タンパク質と結合することにより、インターロイキン−18タンパク質の生物学的活性を維持ないし向上させる物質は、インターロイキン−18タンパク質の投与により症状の改善が見られる疾患(例えば、C型肝炎、腫瘍など)の予防及び/又は治療に用いることができる。
【0058】
例えば、表A及び/又は表Bに示す3次元構造座標の全部又は一部を利用して、コンピュータにより、インターロイキン−18タンパク質と結合する物質を同定、検索、評価又は設計することができる。
【0059】
スクリーニングに用いるコンピュータは特に限定されるものではなく、スクリーニングのプログラムが動作するものであればよい。
【0060】
スクリーニングのプログラムとしては、DOCK(Science, 1992, 257, 1078)、Gold4、 Glide、FlexX(J.Mol. Biol., 1996, 261, 470)、AutoDock(J. Comput. Chem., 1998, 19, 1639)、ICM(J. Comput. Chem., 1994, 15, 488)、Ludiなどを例示することができる。
【0061】
スクリーニングにより選択されたインターロイキン−18タンパク質と結合する物質は、その物質の種類に応じて、公知の手法で製造するとよい。
【0062】
次いで、生物学的活性(例えば、インターフェロンγ誘導活性など)、インターロイキン−18タンパク質の受容体との相互作用(例えば、IL−18Rαに対する解離定数)を調べるとよい。インターフェロンγ誘導活性及びIL−18Rαに対する解離定数を調べる方法は後述の実施例に記載されている。
【0063】
9.インターロイキン−18タンパク質と結合する物質の探索法
配列番号1のアミノ酸配列からなる野生型インターロイキン−18タンパク質又は本発明のインターロイキン−18変異体タンパク質のアミノ酸配列において、13番目のアミノ酸、17番目のアミノ酸、33番目のアミノ酸、35番目のアミノ酸及び132番目のアミノ酸からなる第1のアミノ酸残基群、2番目のアミノ酸、4番目のアミノ酸、5番目のアミノ酸、8番目のアミノ酸、58番目のアミノ酸、60番目のアミノ酸及び104番目のアミノ酸からなる第2のアミノ酸残基群、ならびに79番目のアミノ酸、84番目のアミノ酸及び98番目のアミノ酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸残基と被験物質との相互作用を調べることにより、インターロイキン−18タンパク質と結合する物質を探索することができる。
【0064】
被験物質は、天然物又は合成品のいずれであってもよく、高分子化合物又は低分子化合物のいずれであってもよい。
【0065】
インターロイキン−18タンパク質と結合する物質は、インターロイキン−18タンパク質の生物学的活性を調節しうる。インターロイキン−18タンパク質と結合することにより、インターロイキン−18タンパク質の生物学的活性を減少ないし消失させる物質は、インターロイキン−18タンパク質に起因する疾患(例えば、自己免疫疾患、アレルギー、神経障害など)の予防及び/又は治療に用いることができる。インターロイキン−18タンパク質と結合することにより、インターロイキン−18タンパク質の生物学的活性を維持ないし向上させる物質は、インターロイキン−18タンパク質の投与により症状の改善が見られる疾患(例えば、C型肝炎、腫瘍など)の予防及び/又は治療に用いることができる。
【0066】
野生型インターロイキン−18タンパク質又は本発明のインターロイキン−18変異体タンパク質のアミノ酸配列における上記部位のアミノ酸残基と被験物質との相互作用は、X線結晶構造解析、核磁気共鳴(NMR)、中性子回折などの立体構造解析、電子顕微鏡や原子間力顕微鏡などの複合体の形状を観察する方法、表A及び/又は表Bに示すインターロイキン−18タンパク質の立体構造(あるいは、公知の立体構造でもよい)に対する任意の構造の被験物質との安定な結合様式をコンピュータでシュミレートするドッキングスタディなどの手法などを用いることができる。
【0067】
例えば、NMRシグナルを指標として、以下の(1)〜(4)の手順でインターロイキン−18タンパク質と結合する物質を探索することができる。
(1)配列番号1のアミノ酸からなる野生型インターロイキン−18タンパク質若しくはその断片又は本発明のインターロイキン−18変異体タンパク質若しくはその断片のアミノ酸配列中の13番目のアミノ酸、17番目のアミノ酸、33番目のアミノ酸、35番目のアミノ酸及び132番目のアミノ酸からなる第1のアミノ酸残基群、2番目のアミノ酸、4番目のアミノ酸、5番目のアミノ酸、8番目のアミノ酸、58番目のアミノ酸、60番目のアミノ酸及び104番目のアミノ酸からなる第2のアミノ酸残基群、ならびに79番目のアミノ酸、84番目のアミノ酸及び98番目のアミノ酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸残基をNMR観測可能な同位体(例えば、13C、15Nなど)で標識したものを用意する。
(2)(1)で用意した標識タンパク質又はその断片のNMRシグナルを得る。(3)被験物質を(1)で用意した標識タンパク質又はその断片と接触させてから、NMRシグナルを得る。
(4)(2)で得られたNMRシグナルと(3)で得られたNMRシグナルの違いに基づいて、被験物質とインターロイキン−18タンパク質との相互作用を評価する。
【0068】
あるいはまた、野生型インターロイキン−18タンパク質又は本発明のインターロイキン−18変異体タンパク質のアミノ酸配列における上記部位のアミノ酸残基と相互作用する物質(化合物)を、化学構造のデータベース(例えば、”Cambridge Crystal Database”, ”RCSB Protein Database”, Chemical Abstractなど)から選択することができる。この場合、本発明の野生型インターロイキン−18タンパク質の3次元構造座標またはその一部を利用する。その立体構造において、インターロイキン−18タンパク質と結合できる点を、1または2以上の官能基との相互作用の有利性に関して特徴化する。次いで、この特徴化に基づいてインターロイキン−18タンパク質と有利な相互作用をしうる1または2以上の官能基を含む候補化合物を探すため、化学構造のデータベースを探索する。インターロイキン−18タンパク質の立体構造との有利な相互作用の点に最もよく適合する構造を持つ化合物がこうして同定される。このような探索は、DOCK(J. Med. Chem. (1986) 29, 2149−2153)、SYBYL(トライポス社)などのソフトウェアを用いて、コンピュータ上で行うことができる。
【0069】
【実施例】
以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。
【0070】
[実施例1]
大腸菌を用いてヒトインターロイキン18 (hIL−18)を発現させ、アフィニティークロマトグラフィーおよびゲル濾過カラムクロマトグラフィーによって精製した。栄養培地および最小培地における収量はそれぞれ1.1 mg/Lおよび0.8 mg/Lであった。
【0071】
材料および方法
大腸菌中で hIL−18 を発現するプラスミドの構築
健常なボランティアから得た血液サンプルからmRNAを抽出し、そして逆転写酵素(MMLV)およびオリゴdTプライマーを用いて72℃で60分間cDNAを合成した。成熟hIL−18のコード領域(157残基)をPCRによって増幅し、増幅された断片をTベクター(Invitrogen)中にクローン化した。BamHI制限部位および因子Xa開裂部位を成熟hIL−18配列の直前に、そしてEcoRI制限部位を終止コドンの後に挿入するためのプライマーを設計した。得られた増幅産物を再度Tベクター中にクローン化し、BamHIおよびEcoRIで切断し、次に電気泳動によって精製した。精製産物をpGEX−4T−1ベクター(Pharmacia)中にサブクローン化し、このクローンのDNA配列を両方向配列決定によって確認した。このクローンをpGEX−4T−Xa−hIL−18と名づけた(図1)。
【0072】
発現
BL−21(DE3)(Novagen)を製造者の指示にしたがってpGEX−4T−Xa−hIL−18によって形質転換した。以下に記述するようにタンパク質を発現させた。すなわち、形質転換された各コロニーを、100μg/mlのアンピシリンを含有する5 mlのLB培地(培地1リットルあたりトリプトン10 g、酵母抽出物5 gおよびNaCl 10 g)中で培養し、600 nmにおける光学密度(OD600)が0.5に達するまで37℃で振とうした。次に、イソプロピルチオ−β−D−ガラクトシド(IPTG)を最終濃度1 mMで添加することよってタンパク質産生を誘導した。IPTGを添加する前に、各培養物の1 mlを別の滅菌試験管に移し、次のステップまで別々にインキュベートした。タンパク質を3時間誘導した後、各培養物の20μlをSDS−PAGEによる発現分析用のサンプルとして用いた。SDS−PAGEによって測定された最も高い発現レベルを有するコロニーを選択した。そして、インキュベートしておいた、IPTGで処理していない1 mlの培養物を次の一晩培養のための種子として用いた。500 mlのフラスコに入れた100μg/mlのアンピシリンを含有する200 mlのLB培地を用いて、37℃で、100 rpmで振とうしながら一晩(約12時間)培養を実施した。得られた培地を5,000 gで10分間遠心にかけ、大腸菌ペレットを100μg/mlのアンピシリンを含有する2 LのLB培地中に移した。この培養物を37℃で、OD600が0.45に達するまでインキュベートし、氷水浴中で25℃まで冷却した。OD600が0.5に達した時、IPTG(最終濃度 1 mM)を培地に添加した。培養物を25℃で、100 rpmで振とうしながら、5時間インキュベートした。得られた培養物を5,000 gで10分間遠心にかけ、大腸菌ペレットを精製に用いるまで−80℃で保存した。
【0073】
精製
上記の細菌細胞ペレットを、該ペレット1グラムあたり1 mMのPefaBloc (Roche)を含有する10 mlの溶菌バッファー(50 mM Tris−HCl, pH 8.0, 400 mM KCl, 10 mM 2−メルカプトエタノール (2−ME), 1mM EDTA) に再懸濁した。融解した細胞を氷水浴中で10分間超音波処理する(10秒間処理し50秒間間隔を置くサイクルで)ことによって完全に溶菌し、次に300,000 gで30分間4℃で遠心した。透明な溶菌液を0.45μmフィルターおよび0.2μmフィルター (Millipore)で濾過し、濾液をGSTアフィニティーカラム(床容量:10 ml、Pharmacia)に通した。次に、200 mlの溶菌バッファー、10 mlの洗浄1バッファー(50 mM Tris−HCl, pH 8.0, 400 mM KCl, 10 mM 2−ME, 1 mM EDTA, 0.5% Triton−X−100)、100 mlの溶菌バッファー、10 ml の洗浄2バッファー(50 mM Tris−HCl, pH 8.0, 1M KCl, 10 mM 2−ME, 1 mM EDTA)、および100 ml の溶菌バッファーを用いてカラムを洗浄した。10 mlの溶出バッファー (50 mM Tris−HCl, pH 8.0, 10 mM グルタチオン(GSH)) を上記GSTカラムと共に10分間インキュベートした後、ゆっくり溶出させた。この手順を5回繰り返した。回収した溶出液中のタンパク質の量を測定し、タンパク質含有画分をCentriplus−30 (Amicon)を用いた遠心(3,000 g、4℃)により溶液量が1 ml未満になるまで濃縮した。高塩バッファー(50 mM Tris−HCl, pH 8.0, 1.5 M NaCl)および100 mM EDTA (pH8.0) をそれぞれ10%(v/v) および 1%(v/v)の割合で濃縮タンパク質溶液に添加した。ヒト因子Xa (Funakoshi)をタンパク質の最終重量に対して1% (w/w)の割合で添加し、4℃で12時間インキュベートしてGST融合タンパク質を開裂した。製造者の指示にしたがって計算したところ、この融合タンパク質の量はO.D.280で0.5 mg/mlであった。開裂したタンパク質を、Sephacryl S−100 26/60 (Pharmacia) およびゲル濾過バッファー(50 mM リン酸, pH 6.0, 150 mM KCl, 10 mM 2−ME, 1 mM EDTA)を用いてゲル濾過した。所望の画分を回収し、PefaBloc(最終濃度1 mM)と混合し、Centricon−10 (Amicon) を用いた遠心(6,000 g、4℃)により容量が約300μlになるまで濃縮し、そしてさらなる実験に用いるまで4℃で保存した。hIL−18の吸光度定数(6160)を用いて、精製hIL−18タンパク質の濃度を推定した。
【0074】
最小培地における発現
最小培地における発現は、以下の組成物を用いて実施した:0.1 Mリン酸バッファー(pH 7.0); 9 mM CaC1, 100 mM MgSO, 5 mM FeCl および 15 mM クエン酸ナトリウムからなる2価カチオン; 10 mM CuSO, 80 mM 塩化マンガンおよび 10 mM 硫酸亜鉛; 1.5 mg/ml塩酸チアミン、および100 mg/ml アンピシリン。唯一の窒素源および炭素源として、塩化アンモニウム(1.9 mM)および0.25%グルコースをそれぞれ添加した。水およびリン酸バッファーを最初にオートクレーブで処理し、次に残りの成分を濾過滅菌して加えた。発現および精製プロトコールは、LB培地における培養の項に記述したものと同一であった。
【0075】
結果
発現および精製
典型的には、培養は2 Lの培養を3回実施し、合計6 L培養した。培地は、誘導の5時間後にOD600=1.0を示した。そして、6 Lの培養物から15 gの大腸菌ペレットが得られた。LB培地における融合タンパク質の産生は、SDS−PAGEの結果、予想された分子量(43 kDa)を有するバンドとして明確に観察された(図2a)。
【0076】
融合タンパク質は大腸菌中に高度に発現されたが、37℃で発現させた場合、該タンパク質の殆どは封入体として沈殿した(図2b)。最大収量を得るため、いくつかの誘導温度が試された。15℃等の低温では、封入体は全く形成されなかったが、発現レベルが非常に低かった。発現レベルと可溶性の間で妥協して、25℃での誘導が最良の収量をもたらした。我々はこれ以降の実験ではこの温度を用いた(図2b)。
【0077】
第1ステップにおいては、GSTアフィニティーカラムを用いてGST−hIL−18融合タンパク質を捕獲した。溶出したタンパク質はGST−hIL−18を約90%の純度で含有していた。溶出したタンパク質の量は約20 mgであった(図2c)。この融合タンパク質を濃縮し、200μgの因子Xaによって開裂した。還元剤は因子Xaの開裂能に影響を及ぼした。我々は使用する作用物質の濃度および種類を最適化した。GSHおよび2MEはDTTと比較して上記開裂を妨げなかった(図3)。開裂は4℃では約16時間で完了した。
【0078】
開裂したタンパク質をゲル濾過クロマトグラフィーにかけたところ、2つの主要なピーク(P1およびP2)を示した(図4a)。P1はGSTタンパク質に対応し、P2はIL−18に対応していた(図4b)。IL−18タンパク質の収量は、6 Lの培養物から6.6 mgであった(1.1 mg/L)。SDS−PAGEによって推定したところ、このタンパク質はほぼ98%の純度を有していた。
【0079】
最小培地を用いた場合、誘導の5時間後にOD600=0.85を示した。最小培地における融合タンパク質の発現レベルは、LB培地における発現レベルに類似していた。その後に実施したタンパク質の精製は、LB培地に産生されたのとほぼ同じ量のタンパク質(0.8 mg/L)が産生されたことを示した。
【0080】
[実施例2]
IL−18による受容体活性化を理解するための第1ステップとして、本発明者らはNMR分光法を用いてヒトIL−18の溶液構造を決定した。その構造は、IL−18のβトレフォイル折り畳みがIL−1ファミリーメンバー(IL−1βおよびIL−1RA、等)のそれと類似しているが、表面残基は全く異なることを示している。本発明者らはまた、IL−18の表面に暴露されている50個の残基について点突然変異体を構築した。これらの突然変異体を用いた受容体結合および細胞応答分析は、3つの部位の存在を明らかにした;こららのうち2つの部位はIL−18Rα結合に重要であり、そして第3の部位は細胞応答に関与するがIL−18Rα結合には関与しない。IL−18の構造および受容体結合部位をIL−1ファミリーメンバーのそれらと比較して、本発明者らはIL−18とIL−18Rαとの相互作用のモデルを提案する。
【0081】
IL−18の構造
残基34−43の構造を除いて、IL−18の構造は十分明らかになった。IL−18は、3組の、1つの短いαヘリックス(H1)および1つの310ヘリックス (H2)を有する捻られた4本鎖シートを形成する12本の鎖(S1−S12)からなる。これら3つのβシートは、βトレフォイル折り畳みを形成するように相互にパッキングされている(図5)。ループ(残基34−42)はタンパク質本体から外へ拡がっており、そして小さい異核NOE(核オーバーハウザー効果)値(0.49+/−0.025)によって、及び長距離NOEの欠如によって特徴づけられるようにフレキシブルであるように思われる。
【0082】
中程度の配列同一性(17%)にかかわらず、IL−18の全体的な構成は、疎水性残基の保存に基づいて以前に予測されたように、IL−1β(図6a)等のIL−1ファミリーメンバーの構成と顕著な類似性を示す。IL−18とIL−1βの間で二次構造エレメントにおける70個のCα原子の根平均二乗変位が1.60Åであることは、IL−18とIL−1βが同一の構造クラスに属する関連するタンパク質であることを示している。しかし、鎖S3−S4、S4−S5、S7−S8およびS11−S12間の数個のセグメントの長さ及びコンホメーションは、IL−18およびIL−1の間で実質的に異なっている。
【0083】
IL−18受容体αの接触部位
IL−18機能にとって重要な残基を同定するため、本発明者らは一連の突然変異体を作製し、そしてIFN−γ産生を誘導し、IL−18Rαと結合するそれらの能力を分析した(表1)。本発明者らは、IL−18の表面に暴露された残基の殆どをカバーする50個の残基を選択した。作製した50個の突然変異体タンパク質のうち15個は、有意に低下したIFN−γ産生を誘導する能力を示した。活性の実質的低下を示した突然変異体のそれぞれについて、15Nで標識したタンパク質を調製し、H−15N相関スペクトルを野生型IL−18のそれと比較した。これらの突然変異体の全ては、突然変異によって天然の折り畳みが破壊された証拠を何ら示さなかった。
【0084】
IFN−γ産生誘導能の低下を示した15個の突然変異体のうち12個は、受容体結合活性においても有意な低下を示した(表1)。これらの残基は、部位Iおよび部位IIと称する2つの別個の表面パッチを形成する(図6b左)。5個の残基(Arg13、Asp17、Met33、Asp35およびAsp132)によって形成される部位Iは、βトレフォイル折り畳みのコアバレル(barrel、胴)の片側に位置し、他方、7個の残基(Phe2、Lys4、Leu5、Lys8、Arg58、Met60およびArg104)によって形成される部位IIはβバレルの頂部に位置する。最近、Kimらは、Glu6またはLys53の電荷を逆にする突然変異がIL−18の生物学的活性を変化させることを示した。これら2つの残基は、部位IIとしての同一表面上に位置している。このことは、部位IIを形成する残基が受容体結合に重要であることを示唆している。
【0085】
IL−1β:IL−1RI複合体の構造および突然変異データは、IL−1βがIL−1RIに対して2つの界面部位(部位Aおよび部位B)をもつことを示した(図6d)。部位Aは、受容体の細胞外部分の2つのアミノ末端免疫グロブリンドメインと接しており、また部位Bは第3の免疫グロブリン部位と接している(図7a)。IL−18およびIL−1βの三次および一次構造の比較は、IL−18の部位Iおよび部位IIがIL−1βの部位Aおよび部位Bにそれぞれ対応することを示した。なぜなら、これらの部位は配列および三次構造から見て等価に位置しているからである。
【0086】
これらの考察は、本発明者らがIL−1β:IL−1RI複合体(PDBコード: 1ITB)およびIL−18の座標を用いて図7bに示すIL−18:IL−18Rα複合体のモデルを構築することを可能とした。IL−1RIおよびIL−18Rαの細胞外ドメインの間では配列同一性が22%で、また特徴的アミノ酸(システイン等)が保存されているため、IL−18Rαの三次構造のモデル化はかなり簡単に行なわれた。IL−18:IL−18Rα複合体の得られたモデルは、IL−1β:IL−1RIの結晶構造に良く似ており、またIL−18のここに示す突然変異データに一致している。
【0087】
静電相補性が、IL−18およびIL−1βの受容体結合の特異性を説明するかもしれない。IL−18の部位Iおよびその周辺における分子表面は負に帯電している。他方、モデル中のこの部位に接しているIL−18Rαの分子表面は、高度に陽に帯電している(図6b、c)。突然変異試験は、IL−18上の電荷が受容体結合に重要であることを示した:IL−18のAsp17、Asp35またはAsp132のアラニンとの置換は、受容体結合を顕著に抑制した。対照的に、IL−1βの部位Aは陽に帯電しており(図6e)、そしてIL−1RIの界面は負に帯電している。サイトカインの受容体結合部位の静電状態は、受容体識別に寄与するのかもしれない。
【0088】
IL−18受容体βの可能な結合部位
突然変異誘発試験は、残基Lys79、Lys84およびAsp98は機能的に重要であるが、IL−18Rαとの結合には密接な関係がないことをも明らかにした。これらの残基のそれぞれの突然変異体はIL−18Rαと結合可能であるが、IFN−γ誘導活性を喪失していた(表1)。これらの残基はバレルの底部でクラスター化しており、部位IIの反対側(部位IIIと称する)に位置する(図6b)。IL−18:IL−18Rα複合体のモデルにおいて、IL−18の部位IIIは溶媒に暴露されていて、IL−18Rαと反対の方向を向いている(図7b)。したがって、部位IIIを形成する残基のアラニン置換がIL−18Rα結合に殆ど影響を及ぼさないという考察は、このモデルと一致する(表1、図7b)。
【0089】
では、部位IIIを形成する残基の機能は何であろうか?本発明者らは、これらの残基はIL−18Rβとの結合に重要であると推定する。IL−18RβとIL−18Rαとの会合はIL−18受容体シグナル伝達の開始に必須である2,3。IL−18は、IL−18RαとIL−18Rβの会合を誘導し、そしてそれらの細胞質ドメインの同型的相互作用を容易にしてシグナル伝達プロセスを開始させるものと考えられる。細胞質ドメインを欠く末端切断型IL−18Rβは、IL−18シグナル伝達を抑制することが示された10
【0090】
部位IIIがIL−18RαとIL−18Rβの会合に関与しているかどうかを突き止めるため、本発明者らは表面プラズモン共鳴測定を実施した。IL−18Rβのみでは、IL−18ともIL−18Rαとも結合できない(図7c、d)。しかし、IL−18の存在下では、IL−18Rβはセンサー上に固定したIL−18Rαに結合することができ、IL−18RβがIL−18:IL−18Rα複合体と会合して三次複合体を形成することを示す(図7d)。次に、本発明者らは部位IIIを形成する残基の突然変異がIL−18:IL−18Rα:IL−18Rβ三次複合体の形成に及ぼす効果を調べた。Lys79、Lys84またはAsp98のうちいずれかの突然変異は、IL−18RβとIL−18:IL−18Rα複合体との会合度に大幅な低下を引き起こす。これは、部位IIIの残基が三次複合体の形成に重要であることを示唆している(図7d)。IL−18のこれらの残基は帯電した側鎖を有し、特徴的な陽および負に帯電した表面パッチを形成する(図6b、c)。IL−18のIL−18Rαとの接触部位、およびIL−18の2つの受容体サブユニットの一次構造がIL−1βのそれらと類似しているので、類推上、IL−1β残基であるLys77、Leu82およびGlu96(これらはIL−18の部位IIIを構成する残基に対応する)はIL−1AcPと界面表面を形成しうる。そして、該表面はIL−1AcPとIL−1RI:IL−1β複合体との会合を媒介する。
【0091】
【表1】

Figure 2005052021
【0092】
方法
サンプル調製。15N標識化および15N/13C標識化野生型IL−18タンパク質は、GST融合タンパク質として発現させた。アフィニティークロマトグラフィーによる精製後、因子Xaを用いた消化によりGSTタグを除去した。NMR測定用のサンプルは、典型的には、50 mM Tris−HClバッファー(pH 6.0)中の1−2 mMタンパク質、150 mM KClおよびHO/O (90%/10%)またはO中の10 mM DTTからなった。
【0093】
各アミノ酸がアラニンに置換された50種類の突然変異体IL−18タンパク質を、野生型タンパク質と同じ方法で調製した。突然変異させるべき残基は、IL−1/IL−18ファミリーメンバーとの配列アライメント、IL−18、IL−1β(PDBコード: 2I1B)およびIL−1β:IL−1RI複合体(PDBコード: 1ITB)の間の構造比較、および以前に報告されたIL−1に関する突然変異誘発データに基づいて選択された。
NMR分光測定。全てのNMRスペクトルは、Bruker DMX500、DRX500またはDRX800 NMR分光計を用いて303Kで得た。主鎖および側鎖のH、13Cおよび15N共鳴の帰属を決めるため、一連の三次元実験を実施した12。ValおよびLeu残基のメチル基の立体特異的帰属の決定は、以前に記述されたように実施した13。距離制限は、混合時間を100 msとした15N、15N−、15N、13C−または1313C−分解4D NOESY実験から得た12
構造計算。得られた主鎖共鳴の帰属は、鎖S3とS4の間のセグメント周辺にマイナーなコンホメーションの存在を示した。これは恐らくAla42−Pro43ペプチド結合のシス/トランス異性化のためであろう。主要な及びマイナーなコンホメーションの間の1Hおよび15N化学シフトの差は、比較的小さい。本発明者らは主要なコンホメーションについてのみ構造制限を得た。最初に、プログラムDYANA(バージョン1.5)を用いて、構造計算およびNOEピークの帰属決定を反復的でかつ手作業による方法で実施した14。主鎖ねじり角度制限は、HNHA12およびTALOSプログラムのHNHαから得た。His、Phe、TyrおよびTrpのねじり角度χ1は、C’CおよびNCの結合定数から推定した16。手作業によって全体的な折り畳みを決定した後、CANDIDアルゴリズムを用いて残りのNOEピークの帰属を決定し17、2289個の意味のあるNOE上部距離制限を得た。これらの制限を用いて、CNSのプログラム(バージョン1.1)によって最終構造を計算した18。この段階で、ゆっくり交換しつつある(exchanging)主鎖アミドに由来する水素結合制限を、N−O原子対には2.8−3.4Åの距離制限として、またHN−O原子対には1.8−2.4Åの距離制限としてそれぞれ加えた。非立体特異的に割当てられたプロトンは、流動性(floating)キラリティーおよびΣ(r−6−1/6総計として処理された。合計100個の構造を精巧化し、そして20個の最もエネルギーの低い構造をMOLMOL19、AQUAおよびPROCHECK−NMRソフトウエア20を用いて分析した20(表2)。
【0094】
【表2】
Figure 2005052021
IFN−γ誘導および受容体結合アッセイ。野生型および突然変異体IL−18タンパク質を、IFN−γ産生を誘導する能力について以前に記述されたように21調べた。野生型および突然変異体IL−18のIL−18受容体に対するin vitroアフィニティーを、BIACORE3000 (Pharamacia Biosensor AB)を用いた表面プラスモン共鳴実験によって25℃で測定した。すなわち、アミン結合法により抗ヒトIgG Fc抗体 (Rockland)をCM5センサーチップに結合させることによって特異的結合表面を調製した。次に、組換えIL−18α/FcまたはIL−18β/Fcキメラタンパク質(R&D Systems)をチップ上に固定した。結合密度は200共鳴単位(RU)までに制限した。IL−18サンプルをHBS−EP (10 mM HEPES, pH 7.4, NaCl 150 mM, 3.0 mM EDTA, 0.005% (v/v)界面活性剤P−20)で希釈した。野生型および突然変異体IL−18タンパク質のIL−18Rαに対する解離定数分析のためには、異なる量のサンプルを平衡相が得られるまで2 μl/分の速度でセンサーチップ上に注いだ。0.2 M グリシン−HCl (pH 1.5)を60秒ずつ2回パルスすることによってセンサー表面を再生した。スキャッチャード(Scatchard)プロットによって解離定数を測定した。三量体性複合体形成能を評価するため、最初にIL−18タンパク質をIL−18Rα結合部位が飽和するまでセンサーチップに注いだ。次に、同一量のIL−18タンパク質をIL−18Rβタンパク質(3.12−100 nM)と混合して注いだ。
モデル化。IL−18:IL−18Rα複合体のモデル化は、IL−18の構造およびIL−1β:IL−1RI複合体(PDBコード: 1ITB)の結晶構造に基づいて行なわれた。モデルの構築および構造検証のためにMOE22を用いた。IL−18のNMR構造およびIL−18Rαのモデル化された構造の座標をIL−1β:IL−1RI複合体の上に重ね合わせた。IL−18:IL−18Rα複合体モデルは、Cornellら24によって記述された、全原子フォースフィールドを用いるAMBER 5.0パッケージ23を用いた300 Kにおける70 psの分子力学計算によって精巧化された。最終構造をさらにエネルギー最小化した。
座標。座標をProtein Data Bankに寄託した(登録コード:1JOS)。その座標を表A及びBに示す。表Aには、20回の構造計算によって出てきた構造の座標を示す。NMRによる構造計算では異なる計算によって発生した構造を複数提示し、その構造間の収束を精度と見なす。表Bには、表Aの3次元構造座標の平均値に少し化学エネルギーを使っての補正をしたものを示す。
【0095】
表A
野生型IL−18の3次元構造座標(20回の構造計算によって出てきた構造)
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
【0096】
表B
野生型IL−18の3次元構造座標(表Aの3次元構造座標の平均値に少し化学エネルギーを使っての補正をしたもの)
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
【0097】
表Aは、最初の行(すなわち、MODEL X(Xは1〜20のいずれかの整数)の表示)ならびに最後から1行及び2行(すなわち、TER及びENDMDLの表示)を除いて、各原子の3次元座標を記述している。また、表Bは、最終行(すなわち、ENDの表示)を除いて、各原子の3次元座標を記述している。1列目のATOMはこの行が原子座標の行であることを示し、2列目は、その原子の順番を、3列目はアミノ酸残基等における原子の区別を、4列目はアミノ酸残基等を、5列目はその原子を含むアミノ酸残基の番号を、6、7、8列目はその原子の座標(Å単位)を示している。最終行は、この表の終わりの行であることを示している。なお、本表は当業者にとって一般的に用いられている表記法であるプロテイン・データ・バンクの形式に従って記述している。(9、10列目はデータベースの形式に合わせるための数字であり、本発明においては特に意味のある数字ではなく、9列目はすべて1.00を、10列目はすべて0.00を使用した。)
【0098】
引用文献
1. Okamura, H. et al. Nature. 378, 88−91 (1995)
2.Dinarello, CA. Eur. Cytokine Netw. 11, 483−6 (2000)
3. Nakanishi, K., Yoshimoto, T., Tsutsui H. & Okamura, H. Cytokine Growth Factor Rev. 12, 53−72. (2001)
4. Konishi, H. et al. Proc. Natl. Acad. Sci. USA. 99:11340−5. (2002)
5. Wigginton JM, et al. J. Immunol. 169:4467−4474. (2002)
6. Vigers, G.P., Anderson, L.J., Caffes, P. & Brandhuber, B.J. Nature. 386, 190−194 (1997)
7. Schreuder, H. et al. Nature. 386, 194−200 (1997)
8. Bazan, J.F., Timans, J.C. & Kastelein, R.A. Nature. 379, 591 (1996)
9. Kim, SH. et al.J. Biol. Chem. 277, 10998−1003 (2002)
10. Born, TL., Thomassen, E., Bird, TA. & Sims, JE. J. Biol. Chem. 273, 29445−29450 (1998)
11. Evans, R.J. et al. J. Biol. Chem. 270, 11477−11483 (1995)
12. Cavanagh, J., Fairbrother, W.J., Palmer, A.G.III. & Skelton, N.J. Protein NMR
Spectroscopy. (Academic Press, San Diego;1996)
13. Hu, W. & Zuiderweg, E.R.P. J. Magn. Reson. B, 113, 70−75 (1996)
14. Guntert, P., Mumenthaler, C. & Wuthrich, K. J. Mol. Biol. 273, 283−298 (1997)
15. Cornilescu, G., Delaglio, F. & Bax, A. J. Biomol. NMR. 13, 289−302. (1999)
16. Hu, J.−S., Grzesiek, S., and Bax, A. (1997) J. Am. Chem. Soc. 119, 1803−1804
17. Herrmann, T., Guntert, P. & Wuthrich, K. J. Mol. Biol. 319, 209−227.(2002).
18. Brunger, A.T. et al. Acta Crystallog. D54, 905−921.(1998)
19. Koradi, R., Billeter, M. & Wuethrich, K. J. Mol. Graph. 14, 51−55 (1996)
20. Laskowski, R.A., Rullman, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J.
Biomol. NMR 8, 477−486 (1996)
21. Shikano, H. et al.Clin. Exp. Allergy. 31, 1263−1270 (2001)
22. MOE (The Molecular Operating Environment. Chemical Computing Group Inc., Montreal; 1999)
23. Case, D. A. et al. AMBER 5 (University of California, San Francisco; 1997)
24. Cornell, W. et al.J. Am. Chem. Soc. 117, 5179−5197 (1995)
【0099】
【発明の効果】
本発明により、インターロイキン−18タンパク質の新規な変異体が提供された。この変異体は、インターロイキン−18タンパク質のアンタゴニストとして利用することができる。
【0100】
また、本発明により、野生型インターロイキン−18タンパク質の3次元構造座標が提供された。この座標を利用することにより、新規な薬剤のスクリーニングができるようになった。
【0101】
【配列表】
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
【0102】
【配列表フリーテキスト】
配列番号1は、野生型IL−18のアミノ酸配列を示す。
【0103】
配列番号2は、野生型IL−18のDNA配列を示す。
【0104】
配列番号3〜17は、IL−18の変異体のDNA配列を示す。
【0105】
配列番号18は、IL−18の最適化cDNAのDNA配列を示す。
【図面の簡単な説明】
【図1】図1は、GST−hIL−18融合タンパク質の発現ベクター(pGEX−4T−Xa−hIL−18)を図式的に表わす。
【図2】図2は、GST−hIL−18の発現および精製を示す。a) IPTGによる誘導の5時間後のGST−hIL−18融合タンパク質の発現のSDS−PAGE。b) 異なる発現温度における封入体の形成。c) GSTアフィニティーカラムを用いたGST−hIL−18の精製。溶出したGST−hIL−18 タンパク質は90%以上の純度を有する。sup:細胞溶解物の上清; pel: 該溶解物のペレット。矢印はGST−hIL−18タンパク質を示す。
【図3】図3は、GST−hIL−18融合タンパク質の開裂を示す。種々の濃度のGSH、DTTまたは 2−MEを用いた開裂試験のSDS−PAGE。(−)および(+)は、それぞれ因子Xaの不存在および存在を示す。A: GST−hIL−18 タンパク質;B: GST タンパク質;C: hIL−18 タンパク質。
【図4】図4は、ゲル濾過カラム (Sephacryl S−100, 26/60)による精製を示す。a)ゲル濾過カラムに流速2 ml/分で通液し、4 mlごとにフラクションを回収したクロマトグラム。b) P1およびP2に由来する精製サンプルのSDS−PAGE分析。A: GST タンパク質;B: hIL−18タンパク質。
【図5】ヒトIL−18の溶液構造。a. 20個の立体の最終構造の最も適した主鎖重ね合わせ。残基1−157の主鎖原子を重ね合わせている。b. MOLMOLを用いて描いた、IL−18の立体のNMR構造の模式的リボン図。
【図6】IL−18の突然変異分析。a. ヒトIL−18およびIL−1βの配列アライメント。その突然変異が生物学的活性の重大な低下を引き起こしたヒトIL−18およびIL−1βの残基を星印で示す。ヒトIL−18およびIL−1β(PDBコード:2I1B)の二次構造エレメントをそれぞれ最上部および最下部に示す。保存された残基を四角で囲んで黄色で示す。b. その突然変異が活性の重大な低下を引き起こしたIL−18残基の表面表示。部位I、IIおよびIIIの残基をそれぞれ赤色、橙色および青色で示す。c. 溶媒が近づきうる表面上の静電ポテンシャルの分布。青色は陽性ポテンシャルに対応し、赤色は陰性ポテンシャルに対応する。両パネルとも、分子は図5の配向と同一の配向で(左)、および縦軸を中心として180度回転させて(右)示してある。d. IL−1βの構造。その突然変異が活性の重大な低下を引き起こしたIL−1β残基の表面表示。部位AおよびBの残基をそれぞれ赤色および橙色で示す。e. 溶媒が近づきうる表面上の静電ポテンシャルの分布。
【図7】IL−18:IL−18Rα複合体のモデル、ならびにIL−18、IL−18RαおよびIL−18Rβの相互作用。a. IL−1β:IL−1RI複合体(PDBコード: 1ITB)の結晶構造。部位AおよびBのIL−1β残基をそれぞれ赤色および橙色で示す。b. IL−18:IL−18Rα複合体のモデル化された構造。部位I、IIおよびIIIの残基をそれぞれ赤色、橙色および青色で示す。c. 野生型IL−18の固定化IL−18RαまたはIL−18Rβに対する表面プラスモン共鳴の容量応答曲線。野生型IL−18の濃度も示す。d. IL−Rβの、固定化IL−18Rαと野生型IL−18の複合体に対する、または部位III突然変異体タンパク質に対する、表面プラスモン共鳴の応答曲線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to interleukin-18 mutant proteins.
[0002]
[Prior art]
Interleukin-18 (IL-18), a cytokine called interferon-gamma inducing factor, enhances IFN-gamma production, Fas-mediated cytotoxicity against natural killer cells, and developmental regulation of helper T lymphocyte type 1 It has pleiotropic immunoregulatory functions (Non-Patent Documents 1 to 3).
[0003]
IL-18, which is functionally similar to IL-12 in terms of IFN-γ production, is associated with severe inflammatory diseases. It has been inferred that abnormal expression of IL-18 is related to serious inflammatory diseases such as autoimmune diseases, allergies or neuropathy (Non-Patent Documents 2 to 4). Successful therapeutic approaches such as tumor suppression in mice using IL-18 have been reported (Non-Patent Document 5). The function of IL-18 in vivo is closely related to the function of IL-12. Thus, IL-18 deficient mice show a phenotype similar to that of IL-12 deficient mice. However, IL-18 and its receptor do not show any structural similarity to IL-12 and its receptor, respectively (Non-patent Documents 2 and 3). In contrast, IL-1β and IL-18 show moderate sequence similarity (17% identity), despite lacking significant functional similarity in terms of IFN-γ production. Furthermore, the polypeptide processing mechanisms of IL-18 and IL-1 share a common feature, namely that both precursor caspase-1 cleavage is essential for maturation (Non-Patent Documents 2 and 3). ). The receptors for both IL-1β and IL-18 belong to the IL-1 receptor family. Thus, intracellular signaling pathways for responding to these cytokines share the same downstream mediators such as TRAF6 and NF-κB2,3. Activation of these receptors requires heterodimerization of two structurally related but distinct immunoglobulin-like chains; the initiation of the IL-18 pathway requires IL- 18 receptor α (IL-18Rα; formerly called IL-1Rrp1) and receptor β (IL-18Rβ; formerly called IL-1AcPL) are required (non-patent literature). 2 and 3), IL-1 receptor type I (IL-1RI) and IL-1 accessory protein (IL-1AcP) are required for initiation of the IL-1 pathway. The interaction between IL-1 and IL-1RI was elucidated by the crystal structure of these complexes (Non-patent Documents 6 and 7). However, the recognition of IL-1AcP by IL-1 and, therefore, the activation mechanism of the IL-1 pathway is still unclear (Non-Patent Documents 2 and 3).
[0004]
Moreover, there is no report regarding the three-dimensional structure of interleukin 18.
[0005]
[Non-Patent Document 1]
Okamura, H .; et al. Nature. 378, 88-91 (1995)
[0006]
[Non-Patent Document 2]
Dinarello, CA. Eur. Cytokine Netw. 11, 483-6 (2000)
[0007]
[Non-Patent Document 3]
Nakanishi, K .; Yoshimoto, T .; Tsutsui H., et al. & Okamura, H .; Cytokine Growth Factor Rev. 12, 53-72. (2001)
[0008]
[Non-Patent Document 4]
Konishi, H .; et al. Proc. Natl. Acad. Sci. USA. 99: 11340-5. (2002)
[0009]
[Non-Patent Document 5]
Wiggington JM, et al. J. et al. Immunol. 169: 4467-4474. (2002)
[0010]
[Non-Patent Document 6]
Vigers, G.G. P. , Anderson, L .; J. et al. , Caffes, P.M. & Brandhuber, B.B. J. et al. Nature. 386, 190-194 (1997)
[0011]
[Non-Patent Document 7]
Schreuder, H.C. et al. Nature. 386, 194-200 (1997)
[0012]
[Problems to be solved by the invention]
The present invention improves the understanding of the biological activity of interleukin-18 (ie, receptor activation of IL-18) by analyzing the three-dimensional structure of interleukin-18, and is used for screening new drug candidates. The purpose is to make it available.
[0013]
Another object of the present invention is to obtain a mutant having altered biological activity of interleukin-18.
[0014]
[Means for Solving the Problems]
The present inventors determined the solution structure of IL-18 as a first step to understand the receptor activation mechanism of IL-18. IL-18 is folded into a structure similar to the β-1 trefoil (trefoil) structure of IL-1. Extensive mutagenesis has revealed that there are three sites important for receptor activation. Two of them function as a binding site for IL-18Rα and are located at a location similar to the IL-1RI binding site of IL-1. On the other hand, the third site is involved in IL-18β binding. These structures and mutagenesis data provide the basis for understanding the heterodimerization of receptor subunits required for receptor activation induced by IL-18. The present invention has been completed based on these findings.
[0015]
The gist of the present invention is as follows.
[1] The interleukin-18 mutant protein or salt thereof described in (a) or (b) below.
(A) In the amino acid sequence of SEQ ID NO: 1, the first amino acid residue group consisting of the 13th arginine, the 17th aspartic acid, the 33rd methionine, the 35th aspartic acid and the 132nd aspartic acid Phenylalanine, 4th lysine, 5th leucine, 8th lysine, 58th arginine, 60th methionine and 104th arginine second amino acid residue group, and 79th lysine, 84th Interleukin-18 comprising an amino acid sequence in which at least one amino acid selected from three amino acid residue groups consisting of a third amino acid residue group consisting of lysine and 98th aspartic acid is substituted with another amino acid Mutant protein
(B) in the amino acid sequence of the protein of (a), consisting of an amino acid sequence in which one or several amino acids other than the amino acids contained in the first to third amino acid residues are deleted, substituted or added; Interleukin-18 mutant protein having a biological activity of leukin-18 protein lower or higher than wild type interleukin-18 protein consisting of the amino acid sequence of SEQ ID NO: 1
[2] DNA encoding the protein according to [1].
[3] A recombinant vector containing the DNA according to [2].
[4] A transformant comprising the recombinant vector according to [3].
[5] A method for producing an interleukin-18 mutant protein comprising culturing a host transformed with the DNA according to [2] and collecting the interleukin-18 mutant protein from the culture.
[6] An antagonist of interleukin-18 protein comprising the interleukin-18 mutant protein or a salt thereof according to [1].
[7] A pharmaceutical composition comprising the interleukin-18 mutant protein or a salt thereof according to [1] as an active ingredient.
[8] An antibody against the interleukin-18 mutant protein or a salt thereof according to [1].
[9] A method for screening a substance that binds to the interleukin-18 protein using all or part of the three-dimensional structure coordinates shown in Table A and / or Table B.
[10] In the amino acid sequence of the wild-type interleukin-18 protein consisting of the amino acid sequence of SEQ ID NO: 1 or the interleukin-18 mutant protein according to claim 1, the 13th amino acid, the 17th amino acid, the 33rd amino acid A first amino acid residue group consisting of the 35th amino acid and the 132nd amino acid, the 2nd amino acid, the 4th amino acid, the 5th amino acid, the 8th amino acid, the 58th amino acid, the 60th amino acid, and Selected from the second amino acid residue group consisting of the 104th amino acid and the three amino acid residue groups consisting of the 79th amino acid, the 84th amino acid and the third amino acid residue group consisting of the 98th amino acid Examining the interaction of at least one amino acid residue with a test substance; Method for searching a substance which binds to interleukin -18 protein.
[11] A DNA represented by the nucleotide sequence of SEQ ID NO: 18.
[0016]
In the present specification, the “mutant protein” means a protein that is different from the reference protein but retains the essential properties of the reference protein. A typical mutant protein differs in amino acid sequence from the reference protein.
[0017]
The “interleukin-18 protein” generally means an interleukin-18 protein (wild type) consisting of the amino acid sequence of SEQ ID NO: 1 and mutant proteins thereof.
[0018]
By “biological activity of interleukin-18 protein” is meant the metabolic or physiological function of interleukin-18 protein, including enhanced activity of IFN-γ production, Fas-mediated cells against natural killer cells. In addition to the pleiotropic immunoregulatory function including the cytotoxicity and developmental regulation of helper T lymphocyte type 1, the activity as an antigen and the activity as an immunogen are also included.
[0019]
“Antagonist” refers to a substance that reduces or eliminates the activity of a substance having biological activity.
[0020]
“Antibody” means a protein that is induced in an organism by an immune reaction as a result of antigen stimulation and has an activity of specifically binding to an immunogen (antigen). Examples include antibodies, chimeric antibodies, single chain antibodies, humanized antibodies, and Fab or Fab fragments.
[0021]
“Screening” means selecting a target substance, which includes identification, search, evaluation, design, etc. of the target substance.
[0022]
“Interaction” means that a force works between two or more objects (for example, atoms and molecules). Examples of the interaction include hydrophilic interaction (for example, hydrogen bond, salt bridge), hydrophobic interaction (for example, hydrophobic bond), electrostatic interaction, van der Waals interaction, and the like.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1. Interleukin-18 mutant protein
The present invention provides the following (a) or (b) interleukin-18 mutant protein or a salt thereof.
(A) In the amino acid sequence of SEQ ID NO: 1, the first amino acid residue group consisting of the 13th arginine, the 17th aspartic acid, the 33rd methionine, the 35th aspartic acid and the 132nd aspartic acid Phenylalanine, 4th lysine, 5th leucine, 8th lysine, 58th arginine, 60th methionine and 104th arginine second amino acid residue group, and 79th lysine, 84th Interleukin-18 comprising an amino acid sequence in which at least one amino acid selected from three amino acid residue groups consisting of a third amino acid residue group consisting of lysine and 98th aspartic acid is substituted with another amino acid Mutant protein
(B) in the amino acid sequence of the protein of (a), consisting of an amino acid sequence in which one or several amino acids other than the amino acids contained in the first to third amino acid residues are deleted, substituted or added; Interleukin-18 mutant protein having a biological activity of leukin-18 protein lower or higher than wild type interleukin-18 protein consisting of the amino acid sequence of SEQ ID NO: 1
As the interleukin-18 mutant protein of (a), in the amino acid sequence of SEQ ID NO: 1, the 13th arginine, the 17th aspartic acid, the 33rd methionine, the 35th aspartic acid, the 132nd aspartic acid, 2nd phenylalanine, 4th lysine, 5th leucine, 8th lysine, 58th arginine, 60th methionine, 104th arginine, 79th lysine, 84th lysine and 98th aspartic acid Examples include those in which at least one amino acid is substituted with any one of alanine, valine, isoleucine, proline, tryptophan, glycine, serine, threonine, cysteine, glutamine, asparagine, tyrosine, histidine, or glutamic acid.
The interleukin-18 mutant protein in which the biological activity of the interleukin-18 protein in (b) is lower than that of the wild type interleukin-18 protein can be used as an antagonist of the interleukin-18 protein. The antagonist of interleukin-18 protein can be used for the prevention and / or treatment of diseases caused by interleukin-18 protein (for example, autoimmune diseases, allergies, neuropathies, etc.).
The interleukin-18 mutant protein in which the biological activity of the interleukin-18 protein in (b) is higher than that of the wild-type interleukin-18 protein can be used as an agonist of the interleukin-18 protein. An “agonist” refers to a substance that has the same affinity and / or biological activity of a substance for its receptor. The agonist of interleukin-18 protein can be used for the prevention and / or treatment of diseases (for example, hepatitis C, tumor, etc.) whose symptoms are improved by administration of interleukin-18 protein.
[0024]
The salt of the interleukin-18 mutant protein of the present invention is particularly preferably a pharmacologically acceptable acid addition salt. Pharmacologically acceptable acid addition salts include salts with inorganic acids (eg hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), organic acids (eg acetic acid, formic acid, propionic acid, fumaric acid, maleic acid). Examples thereof include salts with acid, succinic acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, and benzenesulfonic acid.
[0025]
The interleukin-18 mutant protein and its salt of the present invention can be produced by a known method. For example, as described in 2 below, DNA encoding interleukin-18 mutant protein is obtained, and the obtained DNA is incorporated into an appropriate expression vector and then introduced into an appropriate host to obtain a recombinant protein. By producing it, an interleukin-18 mutant protein can be produced (for example, Satoshi Saigo, Yoko Sano, CURRENT PROTOCOLS Compact Edition, Molecular Biology Experiment Protocol, I, II, III, Maruzen Co., Ltd .: (See Original, Ausubel, FM et al., Short Protocols in Molecular Biology, Third Edition, John Wiley & Sons, Inc., New York).
[0026]
Alternatively, the interleukin-18 mutant protein and salts thereof of the present invention can also be produced according to known peptide synthesis methods.
[0027]
2. DNA encoding interleukin-18 mutant protein
The DNA encoding the interleukin-18 mutant protein of the present invention may be any DNA as long as it contains a base sequence encoding the interleukin-18 mutant protein of the present invention. Examples of the DNA encoding the interleukin-18 mutant protein of the present invention include DNA represented by any one of the nucleotide sequences of SEQ ID NOs: 3 to 17.
[0028]
The DNA encoding the interleukin-18 mutant protein of the present invention can be produced, for example, as follows.
[0029]
MRNA is extracted from healthy human blood and cDNA is synthesized using reverse transcriptase and oligo dT primers. The coding region of mature hIL-18 (residue 157) is amplified by PCR. The obtained PCR product is DNA encoding wild-type hIL-18 protein. One example of the amino acid sequence and base sequence of DNA encoding wild-type hIL-18 protein is shown in SEQ ID NOs: 1 and 2, respectively.
[0030]
DNA encoding the hIL-18 mutant protein can be prepared by mutating the coding region (157 residues) of mature hIL-18 by point mutagenesis. The mutated mature hIL-18 coding region (residue 157) is amplified by PCR. The obtained PCR product is DNA encoding the hIL-18 mutant protein. Examples of the base sequence of DNA encoding hIL-18 mutant protein are shown in SEQ ID NOs: 3-17. DNAs having the nucleotide sequences of SEQ ID NOs: 3 to 17, respectively, in the amino acid sequence of SEQ ID NO: 1, the second phenylalanine, the fourth lysine, the fifth leucine, the eighth lysine, the thirteenth arginine, the seventeenth Aspartic acid, 33rd methionine, 35th aspartic acid, 58th arginine, 60th methionine, 79th lysine, 84th lysine, 98th aspartic acid, 104th arginine and 132th asparagine It encodes an interleukin-18 mutant protein consisting of an amino acid sequence in which the acid is substituted with alanine. The DNA encoding the above hIL-18 mutant protein was prepared based on the wild type hIL-18 gene, but instead of the wild type hIL-18 gene, an optimized cDNA was designed and synthesized, Based on this, DNA encoding the interleukin-18 mutant protein can also be prepared. An example of the optimized cDNA sequence is shown in SEQ ID NO: 18. It has been confirmed that the expression / production of interleukin-18 protein is greatly improved (5 times or more) by using this optimized cDNA.
[0031]
3. Recombinant vector
A recombinant vector containing a DNA encoding the interleukin-18 mutant protein of the present invention can be obtained by a known method (for example, described in Molecular Cloning 2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). Method), by inserting the DNA encoding the interleukin-18 mutant protein of the present invention into an appropriate expression vector.
[0032]
As expression vectors, plasmids derived from E. coli (eg, pBR322, pBR325, pUC12, pUC13), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, pC194), yeast-derived plasmids (eg, pSH19, pSH15), λ phage, etc. Bacteriophages, animal viruses such as retroviruses and vaccinia viruses, insect pathogenic viruses such as baculoviruses, and the like can be used.
[0033]
A promoter, enhancer, splicing signal, poly A addition signal, selection marker, SV40 replication origin, etc. may be added to the expression vector.
[0034]
The expression vector may be a fusion protein expression vector. Various fusion protein expression vectors are commercially available, such as pGEX series (Amersham Pharmacia Biotech), pET CBD Fusion System 34b-38b (Novagen), pET Dsb Fusion Systems 39b and 40b (Novagen 41st), FET GST. and 42 (Novagen).
[0035]
4). Transformant
A transformant can be obtained by introducing a recombinant vector containing DNA encoding the interleukin-18 mutant protein of the present invention into a host.
[0036]
Hosts include bacterial cells (eg, Escherichia, Bacillus, Bacillus, etc.), fungal cells (eg, yeast, Aspergillus, etc.), insect cells (eg, S2 cells, Sf cells, etc.), animal cells (eg, CHO cells, COS cells, HeLa cells, C127 cells, 3T3 cells, BHK cells, HEK293 cells, etc.), plant cells, and the like.
[0037]
To introduce a recombinant vector into a host, Molecular Cloning 2nd Edition, J. MoI. Sambrook et al. Cold Spring Harbor Lab. Press, 1989 (for example, calcium phosphate method, DEAE-dextran method, transfection method, microinjection method, lipofection method, electroporation method, transduction method, scrape loading method, shotgun method, etc.) or infection Can be performed.
[0038]
The transformant can be cultured in a medium, and the interleukin-18 mutant protein can be collected from the culture. When the interleukin-18 mutant protein is secreted into the medium, the medium may be recovered, and the interleukin-18 mutant protein may be separated from the medium and purified. When the interleukin-18 mutant protein is produced in the transformed cell, the cell may be lysed, and the interleukin-18 mutant protein may be separated from the lysate and purified.
[0039]
When the interleukin-18 mutant protein is expressed in the form of a fusion protein with another protein (functioning as a tag), the fusion protein is separated and purified, and then treated with factor Xa or an enzyme (enterokinase). By doing so, another protein can be cut | disconnected and the target interleukin-18 mutant protein can be obtained.
[0040]
Separation and purification of the interleukin-18 mutant protein can be performed by known methods. Known separation and purification methods include differences in molecular weight such as methods utilizing solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis. Methods that use, methods that use charge differences such as ion exchange chromatography, methods that use specific affinity such as affinity chromatography, methods that use hydrophobic differences such as reversed-phase high-performance liquid chromatography, etc. A method using the difference in isoelectric point, such as electric point electrophoresis, is used.
[0041]
5. Use of interleukin-18 protein as an antagonist
Among the interleukin-18 mutant proteins of the present invention, the interferon γ-inducing activity is low as compared to the wild-type interleukin-18 protein, and the interleukin-18 receptor α subunit (IL-18Rα) Those having low binding activity can be used as antagonists of interleukin-18 protein. The antagonist of interleukin-18 protein can be used for the prevention and / or treatment of diseases caused by interleukin-18 protein (for example, autoimmune diseases, allergies, neuropathies, etc.). To date, since no substance that can be used as an antagonist of interleukin-18 protein has been found, the industrial utility value of the interleukin-18 mutant protein of the present invention is high.
[0042]
6). Pharmaceutical composition
The interleukin-18 mutant protein and the salt thereof of the present invention can be improved in symptoms caused by interleukin-18 protein (for example, autoimmune disease, allergy, neuropathy, etc.) or administration of interleukin-18 protein. It can be used for the prevention and / or treatment of diseases found (eg, hepatitis C, tumors, etc.).
[0043]
The interleukin-18 mutant protein of the present invention or a salt thereof alone or in combination with a pharmacologically acceptable carrier, diluent or excipient, can be used as a pharmaceutical composition of an appropriate dosage form for mammals (for example, , Human, rabbit, dog, cat, rat, mouse) orally or parenterally. The dose varies depending on the administration subject, target disease, symptom, administration route, and the like. For example, when used for the prevention / treatment of an excessive immune response (eg, hay fever) in adults, interleukin-18 is used. The mutant protein or a salt thereof as a single dose is usually about 0.1 to 10.0 μg / kg body weight, preferably about 1.0 μg / kg body weight at a frequency of about 3 times a week, preferably 2 It may be administered by intravenous injection (preferably, continuously or every other day) about once a day. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
[0044]
Compositions for oral administration include solid or liquid dosage forms, specifically tablets (including dragees and film-coated tablets), pills, granules, powders, capsules (including soft capsules), syrups Agents, emulsions, suspensions and the like. Such a composition can be produced by a conventional method, and may contain a carrier, diluent or excipient usually used in the pharmaceutical field. For example, examples of carriers and excipients for tablets include lactose, starch, sucrose, and magnesium stearate.
[0045]
Examples of the composition for parenteral administration include injections and suppositories, and injections include dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, and intravenous injections. It is good to be. Such an injection is prepared by a conventional method, that is, by dissolving, suspending or emulsifying interleukin-18 mutant protein or a salt thereof in a sterile aqueous or oily liquid usually used for injection. Aqueous solutions for injection include isotonic solutions containing physiological saline, glucose and other adjuvants, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, propylene glycol, Polyethylene glycol), nonionic surfactants (for example, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) added of hydrogenated castor oil)) and the like. Examples of the oily liquid include sesame oil and soybean oil, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent. The prepared injection solution is usually filled in a suitable ampoule. A suppository used for rectal administration can be prepared by mixing interleukin-18 mutant protein or a salt thereof with an ordinary suppository base.
[0046]
The above oral or parenteral pharmaceutical composition may be prepared in dosage unit form so as to be compatible with the dose of the active ingredient. Such dosage unit dosage forms include tablets, pills, capsules, injections (ampoules), suppositories, etc., and usually 0.125 to 1.000 mg, especially injections, for each dosage unit form. Is preferably 0.125 to 1.000 mg, and other dosage forms are preferably 0.125 to 1.000 mg of interleukin-18 mutant protein or a salt thereof.
[0047]
Moreover, said pharmaceutical composition may contain another active ingredient, unless an unfavorable interaction is produced by blending with interleukin-18 mutant protein or a salt thereof.
[0048]
7). antibody
The antibody against the interleukin-18 mutant protein or salt thereof of the present invention can be used for detection and / or quantification of the interleukin-18 mutant protein or salt thereof of the present invention.
[0049]
The antibody against the interleukin-18 mutant protein of the present invention or a salt thereof can be obtained by administering a fragment containing the interleukin-18 mutant protein of the present invention or a salt thereof or an epitope thereof to an animal using a conventional protocol. can get.
[0050]
The antibody of the present invention may be any of a polyclonal antibody, a monoclonal antibody, a chimeric antibody, a single chain antibody, and a humanized antibody.
[0051]
In order to produce a polyclonal antibody, it can be produced according to a known method or a method analogous thereto. For example, a complex of an immunizing antigen (protein antigen) and a carrier protein is prepared, administered (immunized) to an animal, and an antibody-containing substance against the protein of the present invention is collected from the immunized animal, and the antibody is separated and purified. Can be manufactured. Complete Freund's adjuvant or incomplete Freund's adjuvant may be administered in order to enhance antibody production ability upon administration. Administration is usually performed once every about 2 to 6 weeks, about 3 to 10 times in total. The polyclonal antibody can be collected from blood, ascites, etc. of an immunized animal, preferably blood. Polyclonal antibodies can be separated and purified by immunoglobulin separation and purification methods (for example, salting-out method, alcohol precipitation method, isoelectric precipitation method, electrophoresis method, adsorption / desorption method using ion exchanger, ultracentrifugation method, gel filtration method, A specific purification method in which only an antibody is collected using an antigen-binding solid phase or an active adsorbent such as protein A or protein G, and the antibody is obtained by dissociating the binding.
[0052]
Monoclonal antibodies are described in G. Nature (1975) 256: 495, Science (1980) 208: 692-. Koehler and C.H. It can be produced by the Milstein hybridoma method. That is, after immunizing an animal, antibody-producing cells are isolated from the spleen of the immunized animal and fused with myeloma cells to prepare monoclonal antibody-producing cells. In addition, cell lines that produce antibodies that react specifically with the interleukin-18 mutant protein or salt thereof but do not substantially cross-react with other antigenic proteins may be isolated. This cell line can be cultured, and the desired monoclonal antibody can be obtained from the culture. Purification of the monoclonal antibody can be performed according to the above-described method for separating and purifying immunoglobulin.
[0053]
Techniques for making single chain antibodies are described in US Pat. No. 4,946,778.
[0054]
Techniques for making humanized antibodies are described in Biotechnology 10, 1121-, 1992; Biotechnology 10, 169-, 1992.
[0055]
8). Screening method
The present invention provides the three-dimensional structural coordinates of wild type interleukin 18. The three-dimensional structural coordinates of wild-type interleukin 18 are shown in Table A and Table B. All or part of the three-dimensional structural coordinates shown in Table A and / or Table B can be used to screen for substances that bind to interleukin-18 protein.
[0056]
The substance that binds to interleukin-18 protein may be either a natural product or a synthetic product, and may be either a high molecular compound or a low molecular compound.
[0057]
A substance that binds to an interleukin-18 protein can modulate the biological activity of the interleukin-18 protein. Substances that reduce or eliminate the biological activity of interleukin-18 protein by binding to interleukin-18 protein are diseases caused by interleukin-18 protein (for example, autoimmune diseases, allergies, neuropathies, etc.) ) Can be used for prevention and / or treatment. Substances that maintain or improve the biological activity of interleukin-18 protein by binding to interleukin-18 protein are diseases whose symptoms are improved by administration of interleukin-18 protein (eg, hepatitis C). , Tumor etc.) and / or treatment.
[0058]
For example, using all or part of the three-dimensional structural coordinates shown in Table A and / or Table B, a substance that binds to interleukin-18 protein can be identified, searched, evaluated, or designed by a computer.
[0059]
The computer used for screening is not particularly limited as long as the screening program operates.
[0060]
As a screening program, DOCK (Science, 1992, 257, 1078), Gold4, Glide, FlexX (J. Mol. Biol., 1996, 261, 470), AutoDock (J. Comput. Chem., 1998, 19, 1639), ICM (J. Comput. Chem., 1994, 15, 488), Ludi, and the like.
[0061]
A substance that binds to the interleukin-18 protein selected by the screening may be produced by a known technique according to the type of the substance.
[0062]
Next, biological activity (for example, interferon γ-inducing activity), interaction with interleukin-18 protein receptor (for example, dissociation constant for IL-18Rα) may be examined. Methods for examining interferon γ-inducing activity and dissociation constants for IL-18Rα are described in the examples below.
[0063]
9. Search method for substances that bind to interleukin-18 protein
In the amino acid sequence of the wild type interleukin-18 protein consisting of the amino acid sequence of SEQ ID NO: 1 or the interleukin-18 mutant protein of the present invention, the 13th amino acid, the 17th amino acid, the 33rd amino acid, the 35th amino acid And the first amino acid residue group consisting of the 132nd amino acid, the second amino acid, the fourth amino acid, the fifth amino acid, the eighth amino acid, the 58th amino acid, the 60th amino acid and the 104th amino acid. A second amino acid residue group, and at least one amino acid residue selected from the three amino acid residue groups consisting of the third amino acid residue group consisting of the 79th amino acid, the 84th amino acid and the 98th amino acid By examining the interaction between the group and the test substance, interleukin- Substance binding to the 8 protein can be searched.
[0064]
The test substance may be either a natural product or a synthetic product, and may be either a high molecular compound or a low molecular compound.
[0065]
A substance that binds to an interleukin-18 protein can modulate the biological activity of the interleukin-18 protein. Substances that reduce or eliminate the biological activity of interleukin-18 protein by binding to interleukin-18 protein are diseases caused by interleukin-18 protein (for example, autoimmune diseases, allergies, neuropathies, etc.) ) Can be used for prevention and / or treatment. Substances that maintain or improve the biological activity of interleukin-18 protein by binding to interleukin-18 protein are diseases whose symptoms are improved by administration of interleukin-18 protein (eg, hepatitis C). , Tumor etc.) and / or treatment.
[0066]
The interaction between the amino acid residue at the above site in the amino acid sequence of the wild-type interleukin-18 protein or the interleukin-18 mutant protein of the present invention and the test substance is determined by X-ray crystal structure analysis, nuclear magnetic resonance (NMR), Three-dimensional structure analysis such as neutron diffraction, a method of observing the shape of a complex such as an electron microscope or an atomic force microscope, three-dimensional structures of interleukin-18 proteins shown in Table A and / or Table B (or known three-dimensional structures) It is possible to use a technique such as a docking study in which a stable binding mode with a test substance having an arbitrary structure is simulated by a computer.
[0067]
For example, using the NMR signal as an index, a substance that binds to the interleukin-18 protein can be searched by the following procedures (1) to (4).
(1) 13th amino acid, 17th amino acid, 33 in the amino acid sequence of the wild type interleukin-18 protein or fragment thereof comprising the amino acid of SEQ ID NO: 1 or the interleukin-18 mutant protein or fragment thereof of the present invention; 1st amino acid residue group consisting of amino acid 35, amino acid 35 and amino acid 132, 2nd amino acid, 4th amino acid, 5th amino acid, 8th amino acid, 58th amino acid, 60th amino acid A second amino acid residue group consisting of the amino acid of 104 and the 104th amino acid, and three amino acid residue groups consisting of the third amino acid residue group consisting of the 79th amino acid, 84th amino acid and 98th amino acid An isotope capable of NMR observation of at least one selected amino acid residue (for example,13C,15Prepare a label labeled with N).
(2) Obtain an NMR signal of the labeled protein or fragment thereof prepared in (1). (3) An NMR signal is obtained after contacting the test substance with the labeled protein prepared in (1) or a fragment thereof.
(4) Based on the difference between the NMR signal obtained in (2) and the NMR signal obtained in (3), the interaction between the test substance and the interleukin-18 protein is evaluated.
[0068]
Alternatively, a substance (compound) that interacts with the amino acid residue at the above site in the amino acid sequence of the wild-type interleukin-18 protein or the interleukin-18 mutant protein of the present invention can be obtained from a chemical structure database (for example, “Cambridge”). Crystal Database ”,“ RCSB Protein Database ”, Chemical Abstract, etc.). In this case, the three-dimensional structural coordinates of the wild-type interleukin-18 protein of the present invention or a part thereof is used. In its conformation, the point of being able to bind to interleukin-18 protein is characterized with respect to the advantage of interaction with one or more functional groups. A database of chemical structures is then searched to search for candidate compounds containing one or more functional groups that can interact favorably with the interleukin-18 protein based on this characterization. Compounds with structures that best fit the point of favorable interaction with the interleukin-18 protein conformation are thus identified. Such a search can be performed on a computer using software such as DOCK (J. Med. Chem. (1986) 29, 2149-2153), SYBYL (Tripos).
[0069]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.
[0070]
[Example 1]
Human interleukin 18 (hIL-18) was expressed using E. coli and purified by affinity chromatography and gel filtration column chromatography. Yields in nutrient medium and minimal medium were 1.1 mg / L and 0.8 mg / L, respectively.
[0071]
Materials and methods
In E. coli hIL-18 Of a plasmid that expresses
MRNA was extracted from blood samples obtained from healthy volunteers and cDNA was synthesized using reverse transcriptase (MMLV) and oligo dT primers for 60 minutes at 72 ° C. The coding region of mature hIL-18 (residue 157) was amplified by PCR and the amplified fragment was cloned into a T vector (Invitrogen). Primers were designed to insert a BamHI restriction site and a factor Xa cleavage site immediately before the mature hIL-18 sequence and an EcoRI restriction site after the stop codon. The resulting amplification product was again cloned into the T vector, cut with BamHI and EcoRI, and then purified by electrophoresis. The purified product was subcloned into the pGEX-4T-1 vector (Pharmacia) and the DNA sequence of this clone was confirmed by bidirectional sequencing. This clone was named pGEX-4T-Xa-hIL-18 (FIG. 1).
[0072]
Expression
BL-21 (DE3) (Novagen) was transformed with pGEX-4T-Xa-hIL-18 according to the manufacturer's instructions. The protein was expressed as described below. That is, each transformed colony was cultured in 5 ml LB medium (10 g tryptone per liter medium, 5 g yeast extract and 10 g NaCl) at 100 nm containing 100 μg / ml ampicillin. Shake at 37 ° C. until the optical density (OD600) reached 0.5. Next, protein production was induced by adding isopropylthio-β-D-galactoside (IPTG) at a final concentration of 1 mM. Prior to the addition of IPTG, 1 ml of each culture was transferred to a separate sterile tube and incubated separately until the next step. After inducing the protein for 3 hours, 20 μl of each culture was used as a sample for expression analysis by SDS-PAGE. Colonies with the highest expression level measured by SDS-PAGE were selected. The 1 ml culture that had been incubated and not treated with IPTG was then used as seed for the next overnight culture. Cultivation was performed overnight (about 12 hours) using 200 ml of LB medium containing 100 μg / ml ampicillin in a 500 ml flask at 37 ° C. with shaking at 100 rpm. The resulting medium was centrifuged at 5,000 g for 10 minutes and the E. coli pellet was transferred into 2 L of LB medium containing 100 μg / ml ampicillin. The culture was incubated at 37 ° C. until OD600 reached 0.45 and cooled to 25 ° C. in an ice water bath. When OD600 reached 0.5, IPTG (final concentration 1 mM) was added to the medium. The culture was incubated at 25 ° C. with shaking at 100 rpm for 5 hours. The resulting culture was centrifuged at 5,000 g for 10 minutes and the E. coli pellet was stored at −80 ° C. until used for purification.
[0073]
Purification
The bacterial cell pellet was added to 10 ml lysis buffer (50 mM Tris-HCl, pH 8.0, 400 mM KCl, 10 mM 2-mercaptoethanol (1 mM) per gram of the pellet containing 1 mM PefaBloc (Roche). 2-ME), 1 mM EDTA). Thawed cells were completely lysed by sonication in an ice-water bath for 10 minutes (with a cycle of 10 seconds and 50 seconds apart), then centrifuged at 300,000 g for 30 minutes at 4 ° C. The clear lysate was filtered through 0.45 μm filter and 0.2 μm filter (Millipore), and the filtrate was passed through a GST affinity column (bed volume: 10 ml, Pharmacia). Next, 200 ml of lysis buffer, 10 ml of wash 1 buffer (50 mM Tris-HCl, pH 8.0, 400 mM KCl, 10 mM 2-ME, 1 mM EDTA, 0.5% Triton-X-100) ), 100 ml lysis buffer, 10 ml wash 2 buffer (50 mM Tris-HCl, pH 8.0, 1 M KCl, 10 mM 2-ME, 1 mM EDTA), and column with 100 ml lysis buffer Was washed. 10 ml of elution buffer (50 mM Tris-HCl, pH 8.0, 10 mM glutathione (GSH)) was incubated with the GST column for 10 minutes and then slowly eluted. This procedure was repeated 5 times. The amount of protein in the recovered eluate was measured, and the protein-containing fraction was concentrated by centrifugation (3,000 g, 4 ° C.) using Centriplus-30 (Amicon) until the amount of the solution became less than 1 ml. High salt buffer (50 mM Tris-HCl, pH 8.0, 1.5 M NaCl) and 100 mM EDTA (pH 8.0) at a rate of 10% (v / v) and 1% (v / v), respectively. Added to the concentrated protein solution. Human factor Xa (Funakoshi) was added at a rate of 1% (w / w) based on the final weight of the protein and incubated at 4 ° C. for 12 hours to cleave the GST fusion protein. The amount of this fusion protein was calculated according to the manufacturer's instructions. D. It was 0.5 mg / ml at 280. The cleaved protein was gel filtered using Sephacryl S-100 26/60 (Pharmacia) and gel filtration buffer (50 mM phosphoric acid, pH 6.0, 150 mM KCl, 10 mM 2-ME, 1 mM EDTA). . The desired fractions are collected, mixed with PefaBloc (final concentration 1 mM), concentrated by centrifugation (6,000 g, 4 ° C.) using Centricon-10 (Amicon) to a volume of about 300 μl, and Stored at 4 ° C. until used in further experiments. The concentration of purified hIL-18 protein was estimated using the absorbance constant of hIL-18 (6160).
[0074]
Expression in minimal medium
Expression in minimal medium was performed using the following composition: 0.1 M phosphate buffer (pH 7.0); 9 mM CaC12, 100 mM MgSO4, 5 mM FeCl3  And a divalent cation consisting of 15 mM sodium citrate; 10 mM CuSO4, 80 mM manganese chloride and 10 mM zinc sulfate; 1.5 mg / ml thiamine hydrochloride, and 100 mg / ml ampicillin. As the only nitrogen and carbon sources, ammonium chloride (1.9 mM) and 0.25% glucose were added, respectively. Water and phosphate buffer were first treated in an autoclave, then the remaining ingredients were added by filter sterilization. The expression and purification protocol was the same as described in the section on culture in LB medium.
[0075]
result
Expression and purification
Typically, the culture was performed 3 times with 2 L, and a total of 6 L was cultured. The medium showed OD600 = 1.0 after 5 hours of induction. A 15 g E. coli pellet was then obtained from the 6 L culture. Production of the fusion protein in LB medium was clearly observed as a band with the expected molecular weight (43 kDa) as a result of SDS-PAGE (FIG. 2a).
[0076]
The fusion protein was highly expressed in E. coli, but most of the protein precipitated as inclusion bodies when expressed at 37 ° C. (FIG. 2b). Several induction temperatures were tried to obtain maximum yield. At low temperatures such as 15 ° C., no inclusion bodies were formed, but the expression level was very low. Compromising between expression levels and solubility, induction at 25 ° C resulted in the best yield. We used this temperature in subsequent experiments (Figure 2b).
[0077]
In the first step, GST-hIL-18 fusion protein was captured using a GST affinity column. The eluted protein contained GST-hIL-18 with a purity of about 90%. The amount of protein eluted was approximately 20 mg (Figure 2c). The fusion protein was concentrated and cleaved with 200 μg factor Xa. The reducing agent affected the cleavage ability of factor Xa. We have optimized the concentration and type of agent used. GSH and 2ME did not interfere with the cleavage compared to DTT (FIG. 3). Cleavage was complete in about 16 hours at 4 ° C.
[0078]
The cleaved protein was subjected to gel filtration chromatography and showed two major peaks (P1 and P2) (FIG. 4a). P1 corresponded to GST protein and P2 corresponded to IL-18 (FIG. 4b). The yield of IL-18 protein was 6.6 mg (1.1 mg / L) from a 6 L culture. As estimated by SDS-PAGE, the protein had a purity of approximately 98%.
[0079]
When using minimal medium, OD600 = 0.85 was shown 5 hours after induction. The expression level of the fusion protein in the minimal medium was similar to the expression level in the LB medium. Subsequent protein purification indicated that approximately the same amount of protein (0.8 mg / L) was produced as was produced in LB medium.
[0080]
[Example 2]
As a first step in understanding receptor activation by IL-18, we determined the solution structure of human IL-18 using NMR spectroscopy. The structure shows that the IL-18 β-trefoil fold is similar to that of IL-1 family members (IL-1β and IL-1RA, etc.), but the surface residues are quite different. We also constructed point mutants for 50 residues exposed on the surface of IL-18. Receptor binding and cellular response analysis using these mutants revealed the presence of three sites; two of these are important for IL-18Rα binding and the third site is It is involved in cellular responses but not IL-18Rα binding. Comparing the structure of IL-18 and the receptor binding site with those of IL-1 family members, we propose a model for the interaction between IL-18 and IL-18Rα.
[0081]
Structure of IL-18
With the exception of the structure of residues 34-43, the structure of IL-18 was fully apparent. IL-18 consists of three sets, one short α-helix (H1) and one 310It consists of 12 strands (S1-S12) that form a twisted 4-stranded sheet with a helix (H2). These three β sheets are packed together to form a β trefoil fold (FIG. 5). The loop (residues 34-42) extends out of the protein body and is characterized by a small heteronuclear NOE (nuclear overhauser effect) value (0.49 +/− 0.025) and by a lack of long-range NOE Seems to be flexible.
[0082]
Despite moderate sequence identity (17%), the overall organization of IL-18 is such as that of IL-1β (FIG. 6a), as previously predicted based on the conservation of hydrophobic residues. Shows striking similarities with the composition of IL-1 family members8. The fact that the root mean square displacement of 70 Cα atoms in the secondary structure element between IL-18 and IL-1β is 1.60Å is related to that IL-18 and IL-1β belong to the same structural class It shows that it is a protein. However, the length and conformation of several segments between chains S3-S4, S4-S5, S7-S8 and S11-S12 are substantially different between IL-18 and IL-1.
[0083]
Contact site of IL-18 receptor α
To identify residues that are important for IL-18 function, we generated a series of mutants and analyzed their ability to induce IFN-γ production and bind IL-18Rα ( Table 1). We selected 50 residues that covered most of the residues exposed on the surface of IL-18. Of the 50 mutant proteins generated, 15 showed the ability to induce significantly reduced IFN-γ production. For each of the mutants that showed a substantial decrease in activity,15Prepare a protein labeled with N,1H-15The N correlation spectrum was compared with that of wild type IL-18. None of these mutants showed any evidence that the natural fold was destroyed by the mutation.
[0084]
Twelve of the 15 mutants that showed a reduction in IFN-γ production inducing ability also showed a significant reduction in receptor binding activity (Table 1). These residues form two separate surface patches, designated site I and site II (FIG. 6b left). Site I, formed by 5 residues (Arg13, Asp17, Met33, Asp35 and Asp132), is located on one side of the core barrel of the β-trefoil fold, while 7 residues (Phe2, Site II formed by Lys4, Leu5, Lys8, Arg58, Met60 and Arg104) is located at the top of the β barrel. Recently, Kim et al. Showed that mutations that reverse the charge of Glu6 or Lys53 alter the biological activity of IL-18.9. These two residues are located on the same surface as site II. This suggests that the residues forming site II are important for receptor binding.
[0085]
The structure and mutation data of the IL-1β: IL-1RI complex showed that IL-1β has two interface sites (site A and site B) to IL-1RI (FIG. 6d). Site A touches the two amino-terminal immunoglobulin domains of the extracellular portion of the receptor, and site B touches the third immunoglobulin site (FIG. 7a). Comparison of the tertiary and primary structures of IL-18 and IL-1β indicated that IL-18 site I and site II correspond to IL-1β site A and site B, respectively. This is because these sites are equivalently located in terms of sequence and tertiary structure.
[0086]
These considerations indicate that we use the IL-1β: IL-1RI complex (PDB code: 1ITB) and IL-18 coordinates to model the IL-18: IL-18Rα complex shown in FIG. Made it possible to build. Modeling the tertiary structure of IL-18Rα is fairly simple because of the 22% sequence identity between the IL-1RI and IL-18Rα extracellular domains and the conservation of characteristic amino acids (such as cysteine). It was done. The resulting model of the IL-18: IL-18Rα complex is very similar to the crystal structure of IL-1β: IL-1RI and is consistent with the mutation data presented here for IL-18.
[0087]
Electrostatic complementarity may explain the specificity of IL-18 and IL-1β receptor binding. The molecular surface at site I of IL-18 and its periphery is negatively charged. On the other hand, the molecular surface of IL-18Rα in contact with this site in the model is highly positively charged (FIGS. 6b and 6c). Mutation studies showed that the charge on IL-18 was important for receptor binding: replacement of IL-18 with Asp17, Asp35, or Asp132 with alanine significantly suppressed receptor binding. In contrast, site A of IL-1β is positively charged (FIG. 6e) and the IL-1RI interface is negatively charged. The electrostatic state of the receptor binding site of cytokines may contribute to receptor discrimination.
[0088]
Possible binding sites for IL-18 receptor β
Mutagenesis studies also revealed that residues Lys79, Lys84 and Asp98 are functionally important, but are not closely related to binding to IL-18Rα. Each mutant of these residues was able to bind IL-18Rα but lost IFN-γ-inducing activity (Table 1). These residues are clustered at the bottom of the barrel and are located on the opposite side of site II (referred to as site III) (FIG. 6b). In a model of the IL-18: IL-18Rα complex, site III of IL-18 is exposed to the solvent and points in the opposite direction to IL-18Rα (FIG. 7b). Thus, the notion that alanine substitution of the residue forming site III has little effect on IL-18Rα binding is consistent with this model (Table 1, FIG. 7b).
[0089]
So what is the function of the residues that form site III? We assume that these residues are important for binding to IL-18Rβ. Association of IL-18Rβ and IL-18Rα is essential for initiation of IL-18 receptor signaling2, 3. IL-18 is thought to induce the association of IL-18Rα and IL-18Rβ, and facilitate the homotypic interaction of their cytoplasmic domains to initiate the signaling process.3. Truncated IL-18Rβ lacking the cytoplasmic domain has been shown to suppress IL-18 signaling.10.
[0090]
In order to determine if site III is involved in the association of IL-18Rα and IL-18Rβ, we performed surface plasmon resonance measurements. IL-18Rβ alone cannot bind to IL-18 or IL-18Rα (FIGS. 7c and d). However, in the presence of IL-18, IL-18Rβ can bind to IL-18Rα immobilized on the sensor, and IL-18Rβ associates with the IL-18: IL-18Rα complex to form a tertiary complex. It shows forming (FIG. 7d). Next, we examined the effect of mutations in the residues forming site III on the formation of the IL-18: IL-18Rα: IL-18Rβ tertiary complex. Mutations of either Lys79, Lys84 or Asp98 cause a significant decrease in the degree of association of IL-18Rβ with the IL-18: IL-18Rα complex. This suggests that the residue at site III is important for tertiary complex formation (FIG. 7d). These residues of IL-18 have charged side chains and form characteristic positive and negatively charged surface patches (FIG. 6b, c). Since the contact site of IL-18 with IL-18Rα and the primary structure of the two receptor subunits of IL-18 are similar to those of IL-1β, by analogy, the IL-1β residue Lys77 , Leu82 and Glu96, which correspond to the residues that make up site III of IL-18, can form an interfacial surface with IL-1AcP. The surface then mediates the association of IL-1AcP with the IL-1RI: IL-1β complex.
[0091]
[Table 1]
Figure 2005052021
[0092]
Method
Sample preparation.15N labeling and15N /13C-labeled wild type IL-18 protein was expressed as a GST fusion protein. After purification by affinity chromatography, the GST tag was removed by digestion with factor Xa. Samples for NMR measurements are typically 1-2 mM protein, 150 mM KCl and H in 50 mM Tris-HCl buffer (pH 6.0).2O /2H2O (90% / 10%) or2H2It consisted of 10 mM DTT in O.
[0093]
Fifty mutant IL-18 proteins with each amino acid replaced with alanine were prepared in the same manner as the wild type protein. Residues to be mutated are sequence alignment with IL-1 / IL-18 family members, IL-18, IL-1β (PDB code: 2I1B) and IL-1β: IL-1RI complex (PDB code: 1ITB) ), And based on previously reported mutagenesis data for IL-1.
NMR spectroscopy. All NMR spectra were obtained at 303K using a Bruker DMX500, DRX500 or DRX800 NMR spectrometer. Main chain and side chain1H,13C and15To determine the assignment of N resonances, a series of three-dimensional experiments were performed.12. Determination of the stereospecific assignment of the methyl group of Val and Leu residues was performed as previously described.13. For distance limitation, the mixing time was 100 ms.15N,15N-,15N,13C- or13C13Obtained from C-decomposed 4D NOESY experiment12.
Structural calculation. The resulting main chain resonance assignments indicated the presence of minor conformations around the segment between chains S3 and S4. This is probably due to cis / trans isomerization of the Ala42-Pro43 peptide bond. The difference in 1H and 15N chemical shifts between the major and minor conformations is relatively small. We obtained structural limitations only for the main conformation. First, using the program DYANA (version 1.5), structural calculations and NOE peak assignment determinations were performed in an iterative and manual manner.14. Main chain torsion angle limit is HANHA12And the TALOS program3JHNHObtained from α. The twist angle χ1 of His, Phe, Tyr and Trp is3JC'Cand3JNCEstimated from the coupling constant of16. After manually determining the overall fold, the CANDID algorithm is used to determine the attribution of the remaining NOE peaks.17, 2289 meaningful NOE upper distance limits were obtained. Using these restrictions, the final structure was calculated by the CNS program (version 1.1).18. At this stage, the hydrogen bond limitation derived from the main chain amide that is slowly exchanging is a distance limit of 2.8-3.4−3 for the N—O atom pair and for the HN—O atom pair. Each was added as a distance limit of 1.8-2.4 km. Protons assigned non-stereospecifically have a floating chirality and Σ (r-6)-1/6Processed as a grand total. Refined a total of 100 structures, and the 20 lowest energy structures MOLMOL19, AQUA and PROCHECK-NMR software 2020(Table 2).
[0094]
[Table 2]
Figure 2005052021
IFN-γ induction and receptor binding assay. Wild-type and mutant IL-18 proteins were previously described for their ability to induce IFN-γ production.21Examined. In vitro affinity of wild type and mutant IL-18 to the IL-18 receptor was measured at 25 ° C. by surface plasmon resonance experiments using a BIACORE 3000 (Pharmacia Biosensor AB). Specifically, a specific binding surface was prepared by binding an anti-human IgG Fc antibody (Rockland) to a CM5 sensor chip by an amine binding method. Next, recombinant IL-18α / Fc or IL-18β / Fc chimeric protein (R & D Systems) was immobilized on the chip. The binding density was limited to 200 resonance units (RU). IL-18 samples were diluted with HBS-EP (10 mM HEPES, pH 7.4, NaCl 150 mM, 3.0 mM EDTA, 0.005% (v / v) surfactant P-20). For dissociation constant analysis of IL-18Rα of wild type and mutant IL-18 protein, different amounts of sample were poured onto the sensor chip at a rate of 2 μl / min until an equilibrium phase was obtained. The sensor surface was regenerated by pulsing 0.2 M glycine-HCl (pH 1.5) twice for 60 seconds. The dissociation constant was measured by a Scatchard plot. In order to evaluate the ability to form a trimeric complex, IL-18 protein was first poured onto the sensor chip until the IL-18Rα binding site was saturated. The same amount of IL-18 protein was then mixed and poured with IL-18Rβ protein (3.12-100 nM).
Modeling. The IL-18: IL-18Rα complex was modeled based on the structure of IL-18 and the crystal structure of the IL-1β: IL-1RI complex (PDB code: 1ITB). MOE for model construction and structural verification22Was used. The coordinates of the NMR structure of IL-18 and the modeled structure of IL-18Rα were superimposed on the IL-1β: IL-1RI complex. The IL-18: IL-18Rα complex model is described by Cornell et al.24AMBER 5.0 package using all-atom force field described by23Was refined by molecular mechanics calculation at 70 Kps at 300 K. The final structure was further energy minimized.
Coordinate. Coordinates were deposited with the Protein Data Bank (registration code: 1 JOS). The coordinates are shown in Tables A and B. Table A shows the coordinates of the structure obtained by 20 structural calculations. In the structure calculation by NMR, a plurality of structures generated by different calculations are presented, and convergence between the structures is regarded as accuracy. Table B shows the average value of the three-dimensional structural coordinates in Table A corrected slightly using chemical energy.
[0095]
Table A
Three-dimensional structure coordinates of wild type IL-18 (structures obtained by 20 structural calculations)
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
[0096]
Table B
Wild-type IL-18 3D structure coordinates (average of 3D structure coordinates in Table A corrected with a little chemical energy)
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
[0097]
Table A shows each atom except for the first row (ie, MODEL X (where X is an integer from 1 to 20)) and the last row 1 and 2 (ie, TER and ENDMDL). The three-dimensional coordinates are described. Table B describes the three-dimensional coordinates of each atom except for the last line (that is, display of END). ATOM in the first column indicates that this row is a row of atomic coordinates, the second column shows the order of the atoms, the third column shows the distinction of atoms in amino acid residues, etc., and the fourth column shows the amino acid residues. The fifth column shows the number of the amino acid residue containing the atom, and the sixth, seventh and eighth columns show the coordinates of the atom (in units of Å). The last line indicates the last line of this table. This table is described according to the format of the protein data bank, which is a notation commonly used by those skilled in the art. (9th and 10th columns are numbers to match the format of the database. In the present invention, the numbers are not particularly meaningful, and the 9th column uses all 1.00 and the 10th column uses all 0.00. did.)
[0098]
Cited references
1. Okamura, H .; et al. Nature. 378, 88-91 (1995)
2. Dinarello, CA. Eur. Cytokine Netw. 11, 483-6 (2000)
3. Nakanishi, K .; Yoshimoto, T .; Tsutsui H., et al. & Okamura, H .; Cytokine Growth Factor Rev. 12, 53-72. (2001)
4). Konishi, H .; et al. Proc. Natl. Acad. Sci. USA. 99: 11340-5. (2002)
5. Wiggington JM, et al. J. et al. Immunol. 169: 4467-4474. (2002)
6). Vigers, G.G. P. , Anderson, L .; J. et al. , Caffes, P.M. & Brandhuber, B.B. J. et al. Nature. 386, 190-194 (1997)
7). Schreuder, H.C. et al. Nature. 386, 194-200 (1997)
8). Bazan, J.M. F. Timans, J .; C. & Kastelein, R.A. A. Nature. 379, 591 (1996)
9. Kim, SH. et al. J. et al. Biol. Chem. 277, 10998-1003 (2002)
10. Born, TL. Thomasassen, E .; , Bird, TA. & Sims, JE. J. et al. Biol. Chem. 273, 29445-29450 (1998)
11. Evans, R.A. J. et al. et al. J. et al. Biol. Chem. 270, 11477-11484 (1995)
12 Cavanagh, J.A. Fairbrother, W .; J. et al. Palmer, A .; G. III. & Skelton, N.A. J. et al. Protein NMR
Spectroscopy. (Academic Press, San Diego; 1996)
13. Hu, W.H. & Zuiderweg, E .; R. P. J. et al. Magn. Reson. B, 113, 70-75 (1996)
14 Guntert, P.A. , Mumenthaler, C.M. & Wutrich, K. J. et al. Mol. Biol. 273, 283-298 (1997)
15. Cornilescu, G.M. Delaglio, F .; & Bax, A.A. J. et al. Biomol. NMR. 13, 289-302. (1999)
16. Hu, J. et al. -S. , Grzesiek, S .; , And Bax, A.A. (1997) J. MoI. Am. Chem. Soc. 119, 1803-1804
17. Herrmann, T .; Guntert, P .; & Wutrich, K. J. et al. Mol. Biol. 319, 209-227. (2002).
18. Brunger, A.M. T.A. et al. Acta Crystallog. D54, 905-921. (1998)
19. Koradi, R.A. Billerter, M .; & Wethrich, K. J. et al. Mol. Graph. 14, 51-55 (1996)
20. Laskowski, R.A. A. Rullman, J .; A. C. MacArthur, M .; W. , Kaptein, R .; & Thornton, J.A. M.M. J. et al.
Biomol. NMR 8, 477-486 (1996)
21. Shikano, H .; et al. Clin. Exp. Allergy. 31, 1263-1270 (2001)
22. MOE (The Molecular Operating Environment. Chemical Computing Group Inc., Montreal; 1999)
23. Case, D.C. A. et al. AMBER 5 (University of California, San Francisco; 1997)
24. Cornell, W.C. et al. J. et al. Am. Chem. Soc. 117, 5179-5197 (1995)
[0099]
【The invention's effect】
According to the present invention, a novel variant of interleukin-18 protein was provided. This mutant can be used as an antagonist of interleukin-18 protein.
[0100]
In addition, according to the present invention, the three-dimensional structural coordinates of the wild type interleukin-18 protein are provided. By using these coordinates, it became possible to screen for new drugs.
[0101]
[Sequence Listing]
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
Figure 2005052021
[0102]
[Sequence Listing Free Text]
SEQ ID NO: 1 shows the amino acid sequence of wild type IL-18.
[0103]
SEQ ID NO: 2 shows the DNA sequence of wild type IL-18.
[0104]
SEQ ID NOs: 3-17 show the DNA sequences of IL-18 variants.
[0105]
SEQ ID NO: 18 shows the DNA sequence of IL-18 optimized cDNA.
[Brief description of the drawings]
FIG. 1 schematically represents an expression vector for a GST-hIL-18 fusion protein (pGEX-4T-Xa-hIL-18).
FIG. 2 shows GST-hIL-18 expression and purification. a) SDS-PAGE of expression of GST-hIL-18 fusion protein 5 hours after induction with IPTG. b) Formation of inclusion bodies at different expression temperatures. c) Purification of GST-hIL-18 using a GST affinity column. The eluted GST-hIL-18 protein has a purity of 90% or more. sup: cell lysate supernatant; pel: pellet of the lysate. Arrow indicates GST-hIL-18 protein.
FIG. 3 shows cleavage of GST-hIL-18 fusion protein. SDS-PAGE of cleavage tests with various concentrations of GSH, DTT or 2-ME. (-) And (+) indicate the absence and presence of factor Xa, respectively. A: GST-hIL-18 protein; B: GST protein; C: hIL-18 protein.
FIG. 4 shows purification by gel filtration column (Sephaacryl S-100, 26/60). a) A chromatogram in which a fraction is collected every 4 ml after passing through a gel filtration column at a flow rate of 2 ml / min. b) SDS-PAGE analysis of purified samples from P1 and P2. A: GST protein; B: hIL-18 protein.
FIG. 5: Solution structure of human IL-18. a. The most suitable main chain superposition of 20 steric final structures. The main chain atoms of residues 1-157 are superimposed. b. The schematic ribbon figure of the solid NMR structure of IL-18 drawn using MOLMOL.
FIG. 6: Mutation analysis of IL-18. a. Sequence alignment of human IL-18 and IL-1β. Residues of human IL-18 and IL-1β where the mutation caused a significant decrease in biological activity are indicated with an asterisk. The secondary structural elements of human IL-18 and IL-1β (PDB code: 2I1B) are shown at the top and bottom, respectively. Conserved residues are shown in yellow surrounded by a square. b. Surface representation of the IL-18 residue whose mutation caused a significant decrease in activity. Residues at sites I, II and III are shown in red, orange and blue, respectively. c. Distribution of electrostatic potential on the surface where the solvent can approach. Blue corresponds to positive potential and red corresponds to negative potential. In both panels, the molecules are shown in the same orientation as in FIG. 5 (left) and rotated 180 degrees about the vertical axis (right). d. Structure of IL-1β. Surface representation of the IL-1β residue whose mutation caused a significant decrease in activity. Residues at sites A and B are shown in red and orange, respectively. e. Distribution of electrostatic potential on the surface where the solvent can approach.
FIG. 7: Model of IL-18: IL-18Rα complex and interaction of IL-18, IL-18Rα and IL-18Rβ. a. Crystal structure of IL-1β: IL-1RI complex (PDB code: 1ITB). The IL-1β residues at sites A and B are shown in red and orange, respectively. b. Modeled structure of IL-18: IL-18Rα complex. Residues at sites I, II and III are shown in red, orange and blue, respectively. c. Capacitance response curve of surface plasmon resonance for wild-type IL-18 to immobilized IL-18Rα or IL-18Rβ. The concentration of wild type IL-18 is also shown. d. Response curve of surface plasmon resonance for IL-Rβ, for immobilized IL-18Rα and wild-type IL-18 complex, or for site III mutant protein.

Claims (11)

以下の(a)又は(b)のインターロイキン−18変異体タンパク質又はその塩。
(a)配列番号1のアミノ酸配列において、13番目のアルギニン、17番目のアスパラギン酸、33番目のメチオニン、35番目のアスパラギン酸及び132番目のアスパラギン酸からなる第1のアミノ酸残基群、2番目のフェニルアラニン、4番目のリシン、5番目のロイシン、8番目のリシン、58番目のアルギニン、60番目のメチオニン及び104番目のアルギニンからなる第2のアミノ酸残基群、ならびに79番目のリシン、84番目のリシン及び98番目のアスパラギン酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸が他のアミノ酸に置換されているアミノ酸配列からなるインターロイキン−18変異体タンパク質
(b)(a)のタンパク質のアミノ酸配列において、第1〜3のアミノ酸残基群に含まれるアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつインターロイキン−18タンパク質の生物学的活性が配列番号1のアミノ酸配列からなる野生型インターロイキン−18タンパク質よりも低いあるいは高いインターロイキン−18変異体タンパク質
The following (a) or (b) interleukin-18 mutant protein or a salt thereof.
(A) In the amino acid sequence of SEQ ID NO: 1, the first amino acid residue group consisting of the 13th arginine, the 17th aspartic acid, the 33rd methionine, the 35th aspartic acid and the 132nd aspartic acid Phenylalanine, 4th lysine, 5th leucine, 8th lysine, 58th arginine, 60th methionine and 104th arginine second amino acid residue group, and 79th lysine, 84th Interleukin-18 comprising an amino acid sequence in which at least one amino acid selected from three amino acid residue groups consisting of a third amino acid residue group consisting of lysine and 98th aspartic acid is substituted with another amino acid In the amino acid sequence of the protein of mutant protein (b) (a) It consists of an amino acid sequence in which one or several amino acids other than those contained in the first to third amino acid residues are deleted, substituted or added, and the biological activity of the interleukin-18 protein is SEQ ID NO: 1. Interleukin-18 mutant protein having lower or higher wild-type interleukin-18 protein consisting of the amino acid sequence of
請求項1記載のタンパク質をコードするDNA。DNA encoding the protein according to claim 1. 請求項2記載のDNAを含有する組換えベクター。A recombinant vector containing the DNA according to claim 2. 請求項3記載の組換えベクターを含む形質転換体。A transformant comprising the recombinant vector according to claim 3. 請求項2記載のDNAで形質転換した宿主を培養し、培養物からインターロイキン−18変異体タンパク質を採取することを含むインターロイキン−18変異体タンパク質の製造方法。A method for producing an interleukin-18 mutant protein comprising culturing a host transformed with the DNA according to claim 2 and collecting the interleukin-18 mutant protein from the culture. 請求項1記載のインターロイキン−18変異体タンパク質又はその塩からなるインターロイキン−18タンパク質のアンタゴニスト。An interleukin-18 protein antagonist comprising the interleukin-18 mutant protein or a salt thereof according to claim 1. 請求項1記載のインターロイキン−18変異体タンパク質又はその塩を有効成分として含有する医薬組成物。A pharmaceutical composition comprising the interleukin-18 mutant protein according to claim 1 or a salt thereof as an active ingredient. 請求項1記載のインターロイキン−18変異体タンパク質又はその塩に対する抗体。The antibody with respect to the interleukin-18 mutant protein or its salt of Claim 1. 表A及び/又は表Bに示す3次元構造座標の全部又は一部を使用して、インターロイキン−18タンパク質と結合する物質をスクリーニングする方法。A method for screening a substance that binds to interleukin-18 protein using all or part of the three-dimensional structural coordinates shown in Table A and / or Table B. 配列番号1のアミノ酸配列からなる野生型インターロイキン−18タンパク質又は請求項1記載のインターロイキン−18変異体タンパク質のアミノ酸配列において、13番目のアミノ酸、17番目のアミノ酸、33番目のアミノ酸、35番目のアミノ酸及び132番目のアミノ酸からなる第1のアミノ酸残基群、2番目のアミノ酸、4番目のアミノ酸、5番目のアミノ酸、8番目のアミノ酸、58番目のアミノ酸、60番目のアミノ酸及び104番目のアミノ酸からなる第2のアミノ酸残基群、ならびに79番目のアミノ酸、84番目のアミノ酸及び98番目のアミノ酸からなる第3のアミノ酸残基群からなる3つのアミノ酸残基群より選択される少なくとも1つのアミノ酸残基と被験物質との相互作用を調べることを含む、インターロイキン−18タンパク質と結合する物質を探索する方法。In the amino acid sequence of the wild type interleukin-18 protein consisting of the amino acid sequence of SEQ ID NO: 1 or the interleukin-18 mutant protein according to claim 1, the 13th amino acid, the 17th amino acid, the 33rd amino acid, the 35th amino acid The first amino acid residue group consisting of the amino acid and the 132nd amino acid, the second amino acid, the fourth amino acid, the fifth amino acid, the eighth amino acid, the 58th amino acid, the 60th amino acid and the 104th amino acid A second amino acid residue group consisting of amino acids, and at least one selected from three amino acid residue groups consisting of a third amino acid residue group consisting of the 79th amino acid, the 84th amino acid and the 98th amino acid Interrogation, which involves examining the interaction between amino acid residues and test substances Method for searching a substance binding to the down -18 protein. 配列番号18の塩基配列で表されるDNA。DNA represented by the nucleotide sequence of SEQ ID NO: 18.
JP2003206609A 2003-08-07 2003-08-07 Interleukin-18 mutant protein Pending JP2005052021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206609A JP2005052021A (en) 2003-08-07 2003-08-07 Interleukin-18 mutant protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206609A JP2005052021A (en) 2003-08-07 2003-08-07 Interleukin-18 mutant protein

Publications (1)

Publication Number Publication Date
JP2005052021A true JP2005052021A (en) 2005-03-03

Family

ID=34363417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206609A Pending JP2005052021A (en) 2003-08-07 2003-08-07 Interleukin-18 mutant protein

Country Status (1)

Country Link
JP (1) JP2005052021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376489B2 (en) 2012-09-07 2016-06-28 Novartis Ag IL-18 binding molecules
WO2022172944A1 (en) 2021-02-10 2022-08-18 国立大学法人 長崎大学 Novel human interleukin-18 variant and use therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376489B2 (en) 2012-09-07 2016-06-28 Novartis Ag IL-18 binding molecules
US10081677B2 (en) 2012-09-07 2018-09-25 Novartis Ag IL-18 binding molecules
US11111293B2 (en) 2012-09-07 2021-09-07 Novartis Ag IL-18 binding molecules
WO2022172944A1 (en) 2021-02-10 2022-08-18 国立大学法人 長崎大学 Novel human interleukin-18 variant and use therefor

Similar Documents

Publication Publication Date Title
US9260496B2 (en) Fibronectin based scaffold domain proteins that bind IL-23
US8722618B2 (en) IL4/IL13 binding repeat proteins and uses
CA2874646C (en) Non-natural consensus albumin binding domains
JP2008515776A (en) Anti-IL-13 antibody, crystal of anti-IL-13 antibody and complex containing the antibody
US10640549B2 (en) Recombinant antibodies that recognize the C-terminal domains of Ebola virus nucleoprotein
MX2011001909A (en) Engineered anti-il-13 antibodies, compositions, methods and uses.
AU2011311946B2 (en) Polypeptides and their use in treating and limiting respiratory syncytial virus infection
JP5445975B2 (en) Soluble variant of the TNF receptor
ES2352339T3 (en) DEFENSE PROTEINS.
JP2005052021A (en) Interleukin-18 mutant protein
Cui et al. Site-directed mutagenesis of the toxin from the Chinese scorpion Buthus martensii Karsch (BmKAS): insight into sites related to analgesic activity
US20180141994A1 (en) Toll-like receptor 2 binding epitope and binding member thereto
US20120094935A1 (en) Methods for creating or identifying compounds that bind tumor necrosis factor alpha
JP2023525200A (en) Designed IL-2 variants
CA2718634A1 (en) Antibodies against interleukin-10-like cytokines and uses therefor
Scheide-Noeth et al. Structural basis of interleukin-5 inhibition by the small cyclic peptide AF17121
JP2009526535A (en) New CC chemokine antagonist
US7553809B2 (en) Fc receptor modulators and uses thereof
US20240210419A1 (en) Compositions and methods for detecting and regulating fibronectin-integrin interactions and signaling
JPWO2009017255A1 (en) Specific control of Toll-like receptor / interleukin-18 signal by mutated MyD88 protein
CA2418913A1 (en) Peptide mimetics
Ciura et al. Computational Design of a Highly-Specific HVEM-Based Inhibitor of LIGHT Protein
Patiño Gonzalez Functional Studies and X-Ray Structure Analysis of Human Interleukin-5 Receptor Alpha and Human Interleukin-5 Complex
JP2020536934A (en) Respiratory Syncytial Virus G Protein Central Conservation Region Three-dimensional Epitope
石本直偉士 et al. Structural basis of CXC chemokine receptor 1 ligand binding and activation