JP2005051955A - Hybrid power generation system of solar energy generation and wind power generation - Google Patents

Hybrid power generation system of solar energy generation and wind power generation Download PDF

Info

Publication number
JP2005051955A
JP2005051955A JP2003283256A JP2003283256A JP2005051955A JP 2005051955 A JP2005051955 A JP 2005051955A JP 2003283256 A JP2003283256 A JP 2003283256A JP 2003283256 A JP2003283256 A JP 2003283256A JP 2005051955 A JP2005051955 A JP 2005051955A
Authority
JP
Japan
Prior art keywords
power generation
power
output
wind power
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003283256A
Other languages
Japanese (ja)
Inventor
Minoru Kuroiwa
實 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003283256A priority Critical patent/JP2005051955A/en
Publication of JP2005051955A publication Critical patent/JP2005051955A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that: in a conventional hybrid power generation system, (1) the rate of the utilization of the system cannot be sufficiently improved while surplus power is apparently utilized effectively by the use of a capacitor, but there has been some case that charged power has not been fully utilized because chargeable conditions are not easily satisfied, and (2) wind power generation has not been brought into successful utilization because there has not been provided a charging means adapted to the frequent rise and fall of power that is one of characteristics of the power generation efficiency of the wind power generation. <P>SOLUTION: Parallel generation is made possible by arranging a boosting and step-down machine improved in controllability at the output side of the wind power generation. The surplus power and power not satisfying a DC-AC converter input specification are accumulated by employing the capacitor, the generation output of the system is discharged when the output is less than a sales contract power value, and the efficiency of the system is improved as a whole. The system is made to be the one for constant monitor and control by arranging a control device for controlling a large number of apparatuses. Furthermore, an electric double-layer capacitor is employed in addition to a normal battery as a member of the capacitor, thus improving a storage property. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、太陽光発電装置と風力発電装置並びに制御装置より成るハイブリッド発電システムの発電電力を、直交変換器を介して内部消費に供給しさらに外部電力系統に連系する方法に関する。 The present invention relates to a method of supplying generated power of a hybrid power generation system including a solar power generation device, a wind power generation device, and a control device to internal consumption via an orthogonal converter and further connecting to an external power system.

太陽光発電と風力発電は、いずれもクリーンな自然エネルギーを利用する発電であるが、そのため気象条件によって影響を受けるものであり、直交変換器を介して外部の商用電力系統に連系して用いるのが効率的である。この効率を高めるための各種方法が提起されているが、気象条件の激しい変動に対応して細かく制御する考案は、今日まで殆ど提起されていない。
特許公開2000−116007号公報
Solar power generation and wind power generation are both power generation that uses clean natural energy, but are therefore affected by weather conditions, and are used in conjunction with an external commercial power system via an orthogonal converter. Is efficient. Various methods have been proposed to increase this efficiency, but few devices have been proposed to date for fine control in response to severe changes in weather conditions.
Japanese Patent Publication No. 2000-116007

図2は、特許公開2000−116007号を例に従来技術による太陽光発電と風力発電より成るハイブリッド電源システムの回路構成を示すブロック図である。図2において、太陽光発電装置21と風力発電装置26は交流連系して外部電力系統に接続するが、風力発電26が所定の出力に満たない時には蓄電器30に充電し、蓄電器30の電圧VB が所定の電圧に上昇していて風力発電26の出力がないときには、入切ボックス28、29を閉じて放電し出力の低下を助ける。蓄電器30の電圧VB が所定の電圧まで放電によって低下したときは入切ボックス28を開いて放電を停止し、風力発電装置26によって再び蓄電器30を充電する。 FIG. 2 is a block diagram showing a circuit configuration of a hybrid power supply system including solar power generation and wind power generation according to the prior art, taking Japanese Patent Publication No. 2000-116007 as an example. In FIG. 2, the solar power generation device 21 and the wind power generation device 26 are AC-connected and connected to the external power system. However, when the wind power generation 26 is less than the predetermined output, the capacitor 30 is charged and the voltage V of the capacitor 30 is charged. When B rises to a predetermined voltage and there is no output from the wind power generation 26, the on / off boxes 28 and 29 are closed and discharged to help lower the output. When the voltage V B of the battery 30 drops to a predetermined voltage due to the discharge, the on / off box 28 is opened to stop the discharge, and the battery 30 is charged again by the wind power generator 26.

上述した運転方法によるとハイブリッド発電システムの利用率を十分に向上させることが出来ない。一見、蓄電器の利用により余剰電力を有効に活用できるようであるが、放電できる条件がなかなか整わないため充電した電力が生かされないケースがある。さらに風力発電の発電効率の特徴である頻繁な電力の上昇下降に対応した充電手段を保有していないので風力発電の有効活用が不十分である。   According to the operation method described above, the utilization rate of the hybrid power generation system cannot be sufficiently improved. At first glance, it seems that surplus power can be used effectively by using a capacitor, but there are cases where the charged power is not utilized because the conditions under which discharge can be performed are difficult. Furthermore, since there is no charging means corresponding to the frequent rise and fall of electric power, which is a characteristic of the power generation efficiency of wind power generation, effective use of wind power generation is insufficient.

本発明は上述した従来技術の欠点を解消し、ハイブリッド発電システムの発電効率を高めるものである。   The present invention eliminates the above-mentioned drawbacks of the prior art and improves the power generation efficiency of the hybrid power generation system.

上記した課題を解決するための手段として、直交変換器を介して外部電力系統に連系運転するハイブリッド発電システムにおいて、太陽光発電装置の直流出力と風力発電装置の直流出力の双方を、入切スイッチを介して直流連系した構成並びにその作動を制御する方法を以下に述べる。(1)並列発電:日中に太陽光発電の出力があるときには、風力発電の出力電圧を太陽光発電装置の出力電圧に合わせて直流並列接続をして直交変換器入力とする。(2)太陽光単独発電:風力発電の出力が太陽光発電に達しない時には風力の直流並列接続を遮断する。(3)風力単独発電:夜間など太陽光発電装置の出力がないときには太陽光発電出力端子を遮断して風力発電の出力のみを直交変換器への入力とする。(4)非接続:太陽光発電、風力発電がともに所定の電圧に達しないで正規出力できない状態。(5)充電:前記の(1)及び(3)のときに風力発電の出力が高く、内部消費を差引いても余力があるときは外部電力系統に送り出し販売するがこのときの販売電力は販売契約電力値以下に定められているのでその余剰電力はシステム内の蓄電器に充電する。(6)弱充電:前記の非接続状態中に風力発電電力が弱いながらも充電できるレベルの値以上のときは、充電状態に移行して蓄電器に充電する。(7)放電:前記(6)において蓄電した電力量が所定のレベル以上に達していてかつ、システムからの出力が所定の出力値より低いときに放電状態に移行する。以上述べて来たような太陽光発電、風力発電の直流並列接続並びに各単独接続、非接続、充電、放電並びにそれらの運転制御を特徴とする太陽光発電と風力発電とのハイブリッド発電システムを構成することである。   As a means for solving the above-described problems, in a hybrid power generation system that is connected to an external power system through an orthogonal converter, both the direct current output of the solar power generation apparatus and the direct current output of the wind power generation apparatus are turned on and off. A configuration in which a DC connection is made via a switch and a method for controlling the operation will be described below. (1) Parallel power generation: When there is an output of solar power generation during the day, a DC parallel connection is made to match the output voltage of the wind power generation with the output voltage of the solar power generation device and used as an orthogonal transformer input. (2) Solar power generation: When the output of wind power generation does not reach solar power generation, the DC parallel connection of wind power is cut off. (3) Single wind power generation: When there is no output of the solar power generation device such as at night, the solar power generation output terminal is shut off and only the output of the wind power generation is input to the orthogonal converter. (4) Not connected: A state in which neither solar power generation nor wind power generation reaches a predetermined voltage and normal output is not possible. (5) Charging: When (1) and (3) above, the output of wind power generation is high, and if there is enough power even if internal consumption is deducted, it is sent to the external power system and sold, but the sales power at this time is sold Since it is determined to be equal to or less than the contracted power value, the surplus power is charged in a battery in the system. (6) Weak charge: When the wind power generated during the non-connected state is not less than a value that can be charged while being weak, the state shifts to the charge state and charges the battery. (7) Discharge: When the amount of power stored in (6) reaches a predetermined level or more and the output from the system is lower than a predetermined output value, the state is changed to a discharge state. A hybrid power generation system of solar power generation and wind power generation, characterized by the direct current parallel connection of solar power generation and wind power generation as described above, and individual connection, disconnection, charging, discharging, and operation control thereof. It is to be.

上記したようなシステムによリ、従来のいずれかの出力のみを出力として選択するのでなく条件に応じて蓄電器に充電を行い、出力に際しては太陽光発電、風力発電、蓄電器の三者の何れからも並列的に同時に接続して取り出すことが可能となり、ハイブリッド発電として最高効率を引き出すことが出来る。 With the system as described above, instead of selecting only one of the conventional outputs as an output, the capacitor is charged according to the conditions, and at the time of output from any of the three of the photovoltaic power generation, wind power generation, and the storage device Can be connected and extracted simultaneously in parallel, and maximum efficiency can be obtained as hybrid power generation.

風力発電の出力側に制御性のよい昇降圧器を設けることにより、有効な並列発電が可能になった。また蓄電器を採用して、短時間での上昇下降の激しい規格未満電力並びに余剰電力を蓄電し、風力出力がないときに放電することによりシステム全体の効率を高めることが出来る。多数の機器を制御するため制御装置を設けて常時監視・常時制御のシステムとしている。さらに蓄電器の部材として電気二重層コンデンサを活用し蓄電特性を高めている。以上により高い効率のハイブリッド発電システムを実現することが可能になった。   By providing a step-up / down booster with good controllability on the output side of wind power generation, effective parallel power generation has become possible. Moreover, by adopting a capacitor, it is possible to increase the efficiency of the entire system by storing less than standard power and surplus power that are rapidly rising and falling in a short time and discharging when there is no wind power output. In order to control a large number of devices, a control device is provided to provide a continuous monitoring and constant control system. In addition, electric double layer capacitors are used as members of the electric storage device to improve the electric storage characteristics. As a result, it has become possible to realize a highly efficient hybrid power generation system.

本発明である太陽光発電と風力発電によるハイブリッド発電システムの構成並びに制御方法について、以下に例を用いて説明するが、本発明はこれらの例に限るものではない。   A configuration and a control method of a hybrid power generation system using solar power generation and wind power generation according to the present invention will be described below using examples, but the present invention is not limited to these examples.

図1は本発明の発電システムの電力並びに信号の回路構成を示すブロック図である。図1において1は太陽光発電装置を示し、2は太陽光発電装置の電力出力を直交変換器に送るか否かの切換えを行う入切ボックスであり、3は電力出力を直交変換器に繋げる接続箱である。図1の4は直交変換器であり直流電力を交流電力に変換し、電圧を所定のレベルにする装置である。5は制御装置であり太陽光発電装置の出力部5s1および風力発電装置6に繋がる昇降圧器7の出力側5s2の電圧を取り込んで、昇降圧器7の出力電圧の制御ならびに4ヶの入切ボックス2、8、10、14の接続の入切を制御する。昇降圧器7、13に対して制御信号線5c2、5c6を配線し、入切ボックス2、8、10,14に対して制御信号線5c1、5c3、5c4、5c7を配線する。また当発電システムの出力側を制御するため内部電力消費17の電流値を5s4により検出し、直交変換器4の出力電流を5s6により検出し、さらに分電盤16の外部電力系統への接合部の電流を5s5により検出する。風力発電装置6の発電出力は入切ボックス8を介し接続箱9を経て直交変換器4に太陽光発電1の出力と並列に接続されている。昇降圧器7の出力は10の入切ボックスにも接続されており、システムの状態によって制御装置5の制御指令により5c4を介して入りとなった場合は蓄電器12に電力が充電される。充電された電力は蓄電器12の充電状態を5s3により感知して、そのレベルにより昇降圧器13、入切ボックス14、接続箱15を介して直交変換器4に接続され電力出力する。直交変換器4はシステムの安定的な運転のため開始電圧と停止電圧とは異なった値を儲け、その入り切りにヒステリシス特性を持たせている。即ち直交変換器4が停止状態から稼動状態に入るのには該器への入力電圧が一定の高さSINが必要であり、稼動状態から停止状態に戻る時にはSOUTが必要であるが、SINがSOUTよりも大きい数値に設定してあり、これによりハンチングなどを避けてシステムの安定的な運転をしている。 FIG. 1 is a block diagram showing a circuit configuration of power and signals of the power generation system of the present invention. In FIG. 1, 1 is a solar power generation device, 2 is an on / off box for switching whether or not the power output of the solar power generation device is sent to the orthogonal transformer, and 3 is a power output connected to the orthogonal transformer. It is a connection box. Reference numeral 4 in FIG. 1 denotes a quadrature converter, which is an apparatus that converts DC power to AC power and sets the voltage to a predetermined level. Reference numeral 5 denotes a control device, which takes in the voltage on the output side 5s2 of the buck-boost 7 connected to the output unit 5s1 of the photovoltaic power generator and the wind power generator 6, and controls the output voltage of the buck-boost 7 and the four on / off boxes 2 , 8, 10, and 14 are controlled. Control signal lines 5c2, 5c6 are wired to the boosters 7 and 13, and control signal lines 5c1, 5c3, 5c4, 5c7 are wired to the on / off boxes 2, 8, 10, 14. Further, in order to control the output side of the power generation system, the current value of the internal power consumption 17 is detected by 5s4, the output current of the orthogonal transformer 4 is detected by 5s6, and the distribution panel 16 is connected to the external power system. Is detected by 5s5. The power generation output of the wind power generator 6 is connected in parallel with the output of the photovoltaic power generation 1 to the orthogonal transformer 4 via the connection box 9 via the on / off box 8. The output of the step-up / step-down device 7 is also connected to the on / off box 10, and when the power is turned on via 5 c 4 according to the control command of the control device 5 depending on the state of the system, the capacitor 12 is charged with electric power. The charged electric power senses the charged state of the battery 12 by 5s3, and is connected to the orthogonal transformer 4 via the step-up / step-down voltage regulator 13, the on / off box 14, and the connection box 15 according to the level, and outputs electric power. The orthogonal transformer 4 has different values for the start voltage and the stop voltage for stable operation of the system, and has hysteresis characteristics at the on / off. That is, for the orthogonal transformer 4 to enter the operating state from the stopped state, the input voltage to the device needs to have a certain height S IN , and when returning from the operating state to the stopped state, S OUT is required. S iN is Yes set to a number greater than S OUT, thereby has a stable operation of the system to avoid hunting.

次に具体的なシステムの制御の働きを図3に沿って説明する。図3は本システムにおける制御の状態推移図であり、円は状態を示し、矢印は状態から状態への遷移を示す。aからhまでの各円形は本ハイブリッド発電システムの運転の状態即ち接続状態を示す。aは並列接続で太陽光発電と風力発電がともに出力稼動して接続され運転している状態である。bの太陽光単独接続は太陽光発電装置のみが出力稼動して単独で直交変換器に接続され電力出力している状態、cの風力単独接続は風力発電装置のみが出力稼動して直交変換器に接続されている状態、dの両方非接続は太陽光発電装置、風力発電装置の何れも出力側に接続されていない状態である。さらにeは並列接続時に風力電力が出て販売契約電力以上出力する時に蓄電器に充電を行う状態であり、fは風力単独接続時に発電電力が販売契約電力以上出力する時に蓄電器に充電を行う状態である。システムの出力が販売契約電力との関係でどの状態にあるかを常時監視するようになっており、そのためのデータを5s4、5s5、5s6から得る。gは太陽光単独接続状態のときに風力発電出力は有っても主力側に接続できない弱いレベルのときに、その電力を充電するいわゆる弱充電の状態であり、hも両方非接続状態のときに風力発電が弱いレベルで有りその電力を充電するいわゆる弱充電の状態である。本システムはシステム全体が正常に動作しているとき、ある任意の瞬間において上記8ヶの状態中の何れか一つの状態を必ず選択する制御を行う。 Next, a specific system control operation will be described with reference to FIG. FIG. 3 is a state transition diagram of control in this system, in which circles indicate states and arrows indicate transitions from state to state. Each circle from a to h indicates the operation state, that is, the connection state of the hybrid power generation system. a is a state in which solar power generation and wind power generation are both connected and operated in parallel connection. In the case of the single solar connection of b, only the solar power generation device operates and outputs power alone and connected to the orthogonal converter, and in the case of the single wind connection of c, only the wind power generation device operates and outputs the quadrature converter. The state where both the solar power generator and the wind power generator are not connected to the output side is a state where both the solar power generator and the wind power generator are not connected. Furthermore, e is a state in which the power storage device is charged when wind power is output in parallel connection and is output more than the sales contract power, and f is a state in which the power storage device is charged when the generated power is output in excess of the sales contract power in the single wind connection. is there. The system output is constantly monitored in relation to the sales contract power, and data for that is obtained from 5s4, 5s5, and 5s6. g is a so-called weak charge state where the power is charged at a weak level that cannot be connected to the main power side even when wind power generation output is present in a single solar connection state, and h is also in a non-connection state Wind power generation is at a weak level, and it is a so-called weak charge state in which the power is charged. When the entire system is operating normally, the present system performs control to always select any one of the eight states at any given moment.

次に各状態間の遷移について説明する。本システムに於いてはある任意の状態から他の状態に遷移するのに、定められたルート以外には何も条件を付加しない。例えばcの状態からbの状態に遷移するとき、1)c⇒b、2)c⇒a⇒b、3)c⇒d⇒b、4)c⇒a⇒d⇒b、5)c⇒d⇒a⇒bの5通りのルートが考えられるが、本システムの制御は状況によりこの5通りのルートの何れであっても可能である。   Next, transition between the states will be described. In this system, no condition other than a predetermined route is added to transition from an arbitrary state to another state. For example, when transitioning from the c state to the b state, 1) c⇒b, 2) c⇒a⇒b, 3) c⇒d⇒b, 4) c⇒a⇒d⇒b, 5) c⇒d There are five possible routes ⇒a⇒b, but this system can be controlled by any of these five routes depending on the situation.

遷移の生起要因は主として太陽光と風力の自然条件であり、従として制御上の要因がある。生起要因の決定マップの概念を図4に示す。図4は横軸に太陽光の強度、縦軸に風力の強度をとり、太陽光強度×風力強度の平面上の区切られた領域で特定の運転状態が決定されることを示している。図4のグラフで横軸上のSINは太陽光発電が有効に機能する限界の強度を示し、太陽光強度が低い状態から高い状態になる時SINの値をもって太陽光発電が可能の領域になる。逆に太陽光強度が高い状態から低い状態に移るときSOUTをもって太陽光発電が不可能の領域になる。縦軸上のWとWは夫々風力発電有効風速と風力発電危険風速をしめす。風力強度がWとWの間にあるとき風力発電が有効に機能する。これらSIN、SOUT、W、Wの値は個々のシステムに特有のものである。図4の領域41、42は風力がW以上のとき風車が破損する危険があるため風車を停止するか風車の回転に一定の制限を加える。前記領域41の状態は図3の状態dに対応する。図4の領域42では太陽光単独発電を行い、該領域42は図3の状態bに対応する。領域41,42の状態において風車を停止せずに風車の回転に制限を加えた場合は領域43、45の範囲と考える。図4の領域43では風力単独発電を行い、該領域43は図3の状態cに対応する。 The factors that cause the transition are mainly natural conditions of sunlight and wind power, and there are secondary control factors. The concept of the occurrence factor determination map is shown in FIG. FIG. 4 shows that a specific operating state is determined in a divided area on a plane of sunlight intensity × wind intensity, with the intensity of sunlight on the horizontal axis and the intensity of wind power on the vertical axis. S IN on the horizontal axis in the graph of Figure 4 shows the intensity of the limits photovoltaic to function effectively, the region of possible solar power with the value of S IN when the sunlight intensity is high state from a low state become. Conversely sunlight intensity is in the region of the impossible photovoltaic with S OUT when going from a high state to a low state. W L and W U on the vertical axis indicate wind power generation effective wind speed and wind power generation dangerous wind speed, respectively. Wind power generation works effectively when the wind intensity is between W L and W U. These values of S IN , S OUT , W L and W U are specific to each system. In the areas 41 and 42 in FIG. 4, there is a risk that the windmill is damaged when the wind force is equal to or greater than W U , so the windmill is stopped or a certain restriction is imposed on the rotation of the windmill. The state of the region 41 corresponds to the state d in FIG. In the region 42 in FIG. 4, solar power generation is performed, and the region 42 corresponds to the state b in FIG. If the rotation of the windmill is limited without stopping the windmill in the state of the areas 41 and 42, it is considered as the range of the areas 43 and 45. In the region 43 of FIG. 4, wind power generation is performed, and the region 43 corresponds to the state c of FIG.

図4の領域44では風力単独発電の発電出力が大きく内部消費を差し引いてもなお余剰電力があるとき該余剰電力を外部電力系統に販売するが、該販売電力が販売契約電力値を超えた場合に予め用意された蓄電器に充電するものであり、該領域は図3の状態fに対応する。図4の領域45では並列発電を行い、該領域45は図3の状態aに対応する。図4の領域46では並列発電の発電出力が大きく内部消費を差し引いてもなお余剰電力があるとき該余剰電力を外部電力系統に販売するが、該販売電力が販売契約電力値を超えた場合に予め用意された蓄電器に充電するものであり、該領域は図3の状態eに対応する。 In the region 44 of FIG. 4, when the power output of wind power generation is large and internal consumption is subtracted, the surplus power is sold to the external power system when there is surplus power, but the sold power exceeds the sales contract power value. In this case, the battery prepared in advance is charged, and this region corresponds to the state f in FIG. In region 45 in FIG. 4, parallel power generation is performed, and region 45 corresponds to state a in FIG. In the area 46 of FIG. 4, when the power generation output of the parallel power generation is large and the internal consumption is subtracted, the surplus power is sold to the external power system when there is surplus power, but the sold power exceeds the sales contract power value. The battery prepared in advance is charged, and this region corresponds to the state e in FIG.

図4の領域47では太陽光、風力の何れも発電せず、該領域は図3の状態dに対応する。図4の領域48では直交変換器に入力するレベルまでは電圧を揚げられないが充電できるレベルの風力発電が得られるとき充電を行うもので、該領域は図3の弱充電hに対応する。図4の領域49では太陽光単独発電を行い図3のbの状態に対応する。図4の領域50では直交変換器に入力するレベルまでは電圧を揚げられないが充電できるレベルの風力発電が得られるとき充電を行うもので、該領域は図3の太陽光単独発電+弱充電gに対応する。 In the region 47 in FIG. 4, neither sunlight nor wind power is generated, and this region corresponds to the state d in FIG. In the region 48 of FIG. 4, charging is performed when wind power generation at a level that can be charged is obtained although the voltage cannot be raised up to the level input to the orthogonal transformer, and this region corresponds to the weak charging h of FIG. In the region 49 of FIG. 4, solar power generation is performed, which corresponds to the state of FIG. In the region 50 of FIG. 4, charging is performed when wind power generation of a level that can be charged is obtained, but the voltage cannot be raised up to the level input to the orthogonal converter, and this region is solar single power generation + weak charging of FIG. corresponding to g.

図5はシステムの放電・非放電を説明している。gは非放電状態でありシステムは放電しない。jは蓄電した電力を放電する状態であり、該状態は図3のの各状態とは独立に制御されるが、例外が設けられている。その例外は図3のe,fに対して放電状態を重ねることはないことである。即ち充電が行われるのはシステム出力が電力の販売契約電力値を超えないようにするためであり、その時はシステム出力は制限値に達しており、それ以上に放電してシステムの出力を高める余地はない。 FIG. 5 illustrates the discharge / non-discharge of the system. g is a non-discharge state and the system does not discharge. j is a state in which the stored electric power is discharged, and this state is controlled independently of each state in FIG. 3, but there is an exception. The exception is that the discharge state does not overlap with e and f in FIG. In other words, charging is performed so that the system output does not exceed the power sales contract power value. At that time, the system output has reached the limit value, and there is room for further discharge to increase the system output. There is no.

システムが前記のe,fの充電状態でなくて且つ蓄電器の容量が一定の値を超え、システム出力が販売契約電力値に満たない場合には制御装置5は放電を指示して。放電状態にはいる。放電は蓄電器の蓄電容量が所定の値以下になるまで続けられる。 When the system is not in the above-described charged state of e and f, the capacity of the battery exceeds a certain value, and the system output does not satisfy the sales contract power value, the control device 5 gives an instruction to discharge. It is in a discharged state. The discharge is continued until the storage capacity of the storage battery becomes a predetermined value or less.

つぎに本発明に於けるシステムの具体的働きについて例を用いて述べる。まずこの例では前述したSIN、SOUTは夫々100V、60Vであり、WとWは夫々電圧換算で100V、200Vであるとする。SIN、SOUTの値は直交変換器の特性によるものであり開始電圧を100V、停止電圧を60Vとしているからであり、開始はスイッチ開の状態からスイッチ閉にすること、また停止はスイッチ閉の状態からスイッチ開の状態にすることである。 Next, the specific operation of the system according to the present invention will be described using an example. First, in this example, it is assumed that S IN and S OUT described above are 100 V and 60 V, respectively, and W L and W U are 100 V and 200 V, respectively, in terms of voltage. This is because the values of S IN and S OUT depend on the characteristics of the orthogonal transformer, and the start voltage is 100 V and the stop voltage is 60 V. The start is to switch from the open state to the switch, and the stop is to close the switch. It is to make the switch open from this state.

本ハイブリッド発電システムの運転状態の実施例を夜間の風力単独発電から朝の凪で無発電、日中の並列運転、夕方並列運転から風力単独運転に至る例で説明する。夜明け前は弱めの風があり風力単独運転cで運転され、70〜90Vの範囲の出力が出ていた。この間、昇降圧器7は稼動せずに運転していた。やがて少しずつ東の空が白む頃、なぎとなり風車が停止して風力発電の出力が0Vとなり両方非接続dとなった。30分ほど後に反対向きの風が出て風力単独接続cの状態となって運転が続き63〜70Vの出力がしばらく続き、辺りが明るくなり太陽の角度が徐々に高さを増して遂に太陽光発電出力5s1が100Vに達した。このとき制御装置5はまず昇降装置7に対して電圧降下の指令を出し、センサ5s2が100Vを検出するまで電圧を降下させる。 An example of the operating state of the hybrid power generation system will be described with an example from nighttime wind power generation to no power generation in the morning mist, daytime parallel operation, evening parallel operation to wind power single operation. Before dawn, there was a weak wind and it was operated by wind power alone operation c, and an output in the range of 70 to 90 V was output. During this time, the step-up / step-down device 7 was operated without being operated. Eventually, when the eastern sky gradually turned white, the windmill stopped and the output of the wind power generation became 0V, and both were disconnected d. About 30 minutes later, a wind in the opposite direction came out and the operation continued in the state of single wind c connection, and the output of 63-70V continued for a while, the surroundings became brighter, the sun angle gradually increased, and finally sunlight The power generation output 5s1 has reached 100V. At this time, the control device 5 first issues a voltage drop command to the lifting device 7 and drops the voltage until the sensor 5s2 detects 100V.

つぎに入切ボックス2を接続してシステムは並列接続aとなり並列発電をする。この時点から制御装置5の制御指令により昇降圧器7が働いて、センサ5s2の電圧値はセンサ5s1の電圧値に合わせるように制御される。日中は多くの時間で並列発電aが継続するが、何回かの中断があり太陽光単独接続bとなるがその手順は以下のように進められる。風が弱まってきたとき制御装置5は昇降圧器7に5c2を通じて指令を出して昇圧するが、それでも太陽光発電のレベルに達しないときには、5c3を通じて制御信号を出し、入切ボックス8を切断する。これにより太陽光単独接続の状態bになる。しかし風力発電は太陽光発電のレベルには届かないながらも出力しており、この電力を有効利用するため入切ボックス10を閉じて蓄電器に充電するいわゆる弱充電状態gとなる。この弱充電gの状態での風力の揺らぎに対応した有効な充電を本システムの電力二重層コンデンサが果たしている。夕方は再び風力が回復して並列発電が続けられた。やがて太陽が西に傾き、徐々に太陽光も弱まってきて、遂にその出力が60Vをわったとき、制御装置5により5c1を通じて入切ボックス2が切断され、風力単独接続cに切り替えられた。 Next, the on / off box 2 is connected, and the system becomes parallel connection a to generate power in parallel. From this time point, the voltage booster 7 is activated by the control command of the control device 5, and the voltage value of the sensor 5s2 is controlled to match the voltage value of the sensor 5s1. The parallel power generation a continues for many hours during the day, but there are several interruptions and the solar single connection b is reached, but the procedure proceeds as follows. When the wind has weakened, the control device 5 issues a command to the step-up / step-down booster 7 through 5c2 to increase the pressure. However, if the level still does not reach the level of solar power generation, a control signal is output through 5c3 to cut the on / off box 8. Thereby, it will be in the state b of sunlight single connection. However, wind power generation is output even though it does not reach the level of solar power generation. In order to effectively use this power, the on / off box 10 is closed and a so-called weakly charged state g is reached in which the battery is charged. The power double layer capacitor of the present system performs effective charging corresponding to the fluctuation of wind power in the state of weak charging g. In the evening, wind power recovered again and parallel power generation continued. Eventually, the sun tilted to the west and the sunlight gradually weakened. When the output finally exceeded 60V, the control device 5 cut the on / off box 2 through 5c1 and switched to the wind power single connection c.

以上例を用いて述べて来たように本発明になるハイブリッド発電システムは有効に機能して効率の良い発電ができる。 As described above using the example, the hybrid power generation system according to the present invention functions effectively and can generate power efficiently.

太陽光発電と風力発電のハイブリッド発電システムの回路ブロック図である。It is a circuit block diagram of a hybrid power generation system of solar power generation and wind power generation. 従来の太陽光発電と風力発電のハイブリッド発電システムの回路ブロック図である。It is a circuit block diagram of the conventional hybrid power generation system of solar power generation and wind power generation. ハイブリッド発電システムにおいて電気回路の接続を制御する考え方を示す状態遷移図である。It is a state transition diagram which shows the view which controls the connection of an electric circuit in a hybrid electric power generation system. ハイブリッド発電システムにおいて自然環境の変動に対するシステム制御領域の分割方法を示す制御領域マップである。It is a control area map which shows the division | segmentation method of the system control area with respect to the fluctuation | variation of natural environments in a hybrid electric power generation system. ハイブリッド発電システムにおいて放電の考え方を示す状態遷移図である。It is a state transition diagram which shows the view of discharge in a hybrid electric power generation system.

符号の説明Explanation of symbols

1 太陽光発電装置
2 入切スイッチ
4 直交変換器
5 制御装置
6 風力発電装置
7 昇降圧器
8 入切スイッチ
10 入切スイッチ
11 電流制御器
12 蓄電器
13 昇降圧器
14 入切スイッチ
17 内部電力消費
DESCRIPTION OF SYMBOLS 1 Photovoltaic generator 2 On / off switch 4 Orthogonal converter 5 Control apparatus 6 Wind power generator 7 Buck-boost 8 On / off switch 10 On / off switch 11 Current controller 12 Capacitor 13 Buck-boost 14 On / off switch 17 Internal power consumption

Claims (4)

直交変換器を介して系統電源と連系運転する太陽光発電装置の直流出力と風力発電装置の直流出力を入切スイッチを介して直流連系したハイブリッド発電システムにおいて、風力発電の出力側に電圧の昇降圧器を設けて太陽光発電の出力電圧レベルと同等に調整して直流連系することにより、太陽光発電装置出力と風力発電装置出力の並列接続による電力容量の加算出力を可能にし、直交変換器を介して内部消費及び外部電力系統に連系し、また自然環境の変動に対応して太陽光単独発電または風力単独発電の出力のみの運転状態にも対応して制御することを特徴とする太陽光発電と風力発電のハイブリッド発電システム。 In a hybrid power generation system in which the direct current output of a solar power generator that is connected to the system power supply via an orthogonal converter and the direct current output of the wind power generator are connected to each other via an on / off switch, a voltage is applied to the output side of the wind power generation. By installing a step-up / step-down regulator and adjusting it to the same level as the output voltage level of photovoltaic power generation, it is possible to add power capacity by connecting the photovoltaic power generator output and wind power generator output in parallel, making it orthogonal It is linked to internal consumption and external power system via a converter, and also controls corresponding to the operating state of only solar power generation or wind power generation in response to changes in the natural environment. Hybrid power generation system of solar power generation and wind power generation. 前記風力発電の出力部に蓄電器を設けて、並列発電または風力単独発電時に発電電力が販売契約電力値を超えて外部電力系統に出力されることがないようにシステム内に充電し、また風力発電電圧が太陽光発電出力電圧に達しないときにその弱い風力発電電力を充電し、該ハイブリッド発電システム全体の出力が弱いときに放電することによりハイブリッド発電システムの効率を高めることを特徴とする請求項1に記載の太陽光発電と風力発電とのハイブリッド発電システム。 Capacitor is provided at the output part of the wind power generation to charge the system so that the generated power does not exceed the sales contract power value and output to the external power system at the time of parallel power generation or wind power generation alone. The hybrid power generation system is improved in efficiency by charging the weak wind power generated when the voltage does not reach the photovoltaic power generation output voltage and discharging when the output of the entire hybrid power generation system is weak. The hybrid power generation system of solar power generation and wind power generation according to 1. 運転制御方法として並列発電、太陽光単独発電、風力単独発電、非接続の4ヶの運転状態を設け、さらに風力発電が非接続の時に該風力発電の弱い発電電力をシステム内の蓄電器に蓄積する弱充電の状態2ヶ、またさらに外部電力系統へ販売するときに販売契約電力値を超過しないようにシステム内の蓄電器に電力の蓄積を行う充電状態2ヶを含め計8ヶの運転状態のいずれかを選択するような運転制御方法、並びに販売電力が契約電力以内に収まる範囲内で随時に放電を行う運転制御方法を特徴とする請求項1並びに請求項2に記載の太陽光発電と風力発電とのハイブリッド発電システム。 Four operation states of parallel power generation, solar power generation, wind power generation, and non-connection are provided as operation control methods, and when the wind power generation is not connected, weak generated power of the wind power generation is stored in a battery in the system. Any of 8 operating states including 2 weakly charged states and 2 charged states where power is stored in the battery in the system so that the sales contract power value is not exceeded when selling to an external power system. The solar power generation and wind power generation according to claim 1 and 2, characterized by an operation control method for selecting the power supply, and an operation control method for performing discharge at any time within a range where the sales power is within contract power. And hybrid power generation system. 請求項2に述べた蓄電器の構成として通常バッテリ−に加え電気二重層コンデンサを組合わせる形態で使用することにより、ノコギリ状の上昇下降の激しい電力であってもロスが少ない充電が提供されることを特徴とする請求項2に記載の太陽光発電と風力発電とのハイブリッド発電システム。   By using an electric double layer capacitor in combination with a normal battery as a configuration of the electric storage device described in claim 2, it is possible to provide charging with little loss even with a sawtooth-like electric power that rises and falls sharply. The hybrid power generation system of solar power generation and wind power generation according to claim 2.
JP2003283256A 2003-07-31 2003-07-31 Hybrid power generation system of solar energy generation and wind power generation Pending JP2005051955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283256A JP2005051955A (en) 2003-07-31 2003-07-31 Hybrid power generation system of solar energy generation and wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283256A JP2005051955A (en) 2003-07-31 2003-07-31 Hybrid power generation system of solar energy generation and wind power generation

Publications (1)

Publication Number Publication Date
JP2005051955A true JP2005051955A (en) 2005-02-24

Family

ID=34268193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283256A Pending JP2005051955A (en) 2003-07-31 2003-07-31 Hybrid power generation system of solar energy generation and wind power generation

Country Status (1)

Country Link
JP (1) JP2005051955A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847878A (en) * 2010-06-07 2010-09-29 哈尔滨卓尔科技有限公司 Connected grid wind-light complementation control inverting device
CN101629548B (en) * 2009-08-19 2011-06-01 无锡市新区梅村镇同春太阳能光伏农业种植园 Complementary power supply device of solar photovoltaic power generation and wind power generation on coastal beaches
CN102255390A (en) * 2011-07-20 2011-11-23 上海瑞华(集团)有限公司 Household energy storing device containing super capacitor and power cell
WO2012074143A1 (en) * 2010-11-29 2012-06-07 (주)준성이엔알 Small-scale hybrid electricity generating system
WO2012120595A1 (en) * 2011-03-04 2012-09-13 三菱重工業株式会社 Wind power generation system and wind power generation apparatus
KR101181403B1 (en) 2011-02-15 2012-09-19 ㈜코리아에너텍 Grid-Connected generating system with photovoltaic and wind power hybrid generation and generator thereof
CN104269874A (en) * 2014-10-07 2015-01-07 黄友锋 Power control system
CN104868496A (en) * 2015-05-25 2015-08-26 华南理工大学 Optical record active power cooperation output method based on expansion QV node trend
CN104980090A (en) * 2014-05-26 2015-10-14 长沙理工大学 Wind-photovoltaic complementary power generation device with hybrid energy storage system
CN106438200A (en) * 2016-12-06 2017-02-22 内蒙古工业大学 Solar energy and wind energy comprehensive power generation system
CN114174674A (en) * 2019-08-01 2022-03-11 李允源 Hybrid power generation system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629548B (en) * 2009-08-19 2011-06-01 无锡市新区梅村镇同春太阳能光伏农业种植园 Complementary power supply device of solar photovoltaic power generation and wind power generation on coastal beaches
CN101847878A (en) * 2010-06-07 2010-09-29 哈尔滨卓尔科技有限公司 Connected grid wind-light complementation control inverting device
CN103228910A (en) * 2010-11-29 2013-07-31 株式会社濬晟E&R Small-scale hybrid electricity generating system
WO2012074143A1 (en) * 2010-11-29 2012-06-07 (주)준성이엔알 Small-scale hybrid electricity generating system
KR101181403B1 (en) 2011-02-15 2012-09-19 ㈜코리아에너텍 Grid-Connected generating system with photovoltaic and wind power hybrid generation and generator thereof
WO2012120595A1 (en) * 2011-03-04 2012-09-13 三菱重工業株式会社 Wind power generation system and wind power generation apparatus
CN102792581A (en) * 2011-03-04 2012-11-21 三菱重工业株式会社 Wind power generation system and wind power generation apparatus
US8324751B2 (en) 2011-03-04 2012-12-04 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and wind turbine generator
JP5276718B2 (en) * 2011-03-04 2013-08-28 三菱重工業株式会社 Wind power generation system and wind power generation apparatus
CN102255390A (en) * 2011-07-20 2011-11-23 上海瑞华(集团)有限公司 Household energy storing device containing super capacitor and power cell
CN104980090A (en) * 2014-05-26 2015-10-14 长沙理工大学 Wind-photovoltaic complementary power generation device with hybrid energy storage system
CN104269874A (en) * 2014-10-07 2015-01-07 黄友锋 Power control system
CN104868496A (en) * 2015-05-25 2015-08-26 华南理工大学 Optical record active power cooperation output method based on expansion QV node trend
CN106438200A (en) * 2016-12-06 2017-02-22 内蒙古工业大学 Solar energy and wind energy comprehensive power generation system
CN106438200B (en) * 2016-12-06 2023-06-27 内蒙古工业大学 Solar energy and wind energy integrated power generation system
CN114174674A (en) * 2019-08-01 2022-03-11 李允源 Hybrid power generation system

Similar Documents

Publication Publication Date Title
JP5028517B2 (en) DC power supply system
JP5726555B2 (en) Solar power system
JP4369450B2 (en) Power supply system
US9866022B2 (en) Power supply system
CA2389116A1 (en) Control system for a renewable energy system
JP2016515375A (en) Method for automatically starting a power plant comprising a plurality of inverters connectable to an AC electric grid
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
WO2012128252A1 (en) Power storage system
JP2007166818A (en) Power supply system and control method thereof
JP2005051955A (en) Hybrid power generation system of solar energy generation and wind power generation
JPH09191565A (en) Dc distribution system
JP2007077895A (en) Windmill auxiliary driving device
CN106159980B (en) Power generation system and energy management method
JP5841279B2 (en) Electric power charging device
JP5794115B2 (en) POWER SUPPLY DEVICE, POWER CONTROL SYSTEM, AND ELECTRIC DEVICE STARTUP METHOD
JP2007049855A (en) Power supply system for electrical equipment inside tunnel
JP2013099207A (en) Control apparatus and control method
JP5477744B2 (en) Private power generation system
JP3122815U (en) Power storage device
JP6556482B2 (en) Power storage control system
JP2007300728A (en) Power generating device
WO2020161766A1 (en) Direct-current power supply system
JP7165507B2 (en) DC power supply system
JP2002171669A (en) Power system stabilizer and its control method
KR102323937B1 (en) An energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106