JP2005051111A - Mesa type semiconductor device - Google Patents

Mesa type semiconductor device Download PDF

Info

Publication number
JP2005051111A
JP2005051111A JP2003282640A JP2003282640A JP2005051111A JP 2005051111 A JP2005051111 A JP 2005051111A JP 2003282640 A JP2003282640 A JP 2003282640A JP 2003282640 A JP2003282640 A JP 2003282640A JP 2005051111 A JP2005051111 A JP 2005051111A
Authority
JP
Japan
Prior art keywords
mesa
type semiconductor
region
semiconductor device
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282640A
Other languages
Japanese (ja)
Inventor
Shingo Hashizume
真吾 橋詰
Hidekazu Nakamura
秀和 中村
Shigetoshi Soda
茂稔 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003282640A priority Critical patent/JP2005051111A/en
Publication of JP2005051111A publication Critical patent/JP2005051111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mesa type semiconductor device capable of realizing very high reliability which can prevent an increase of a leakage current and a decrease of withstand voltage, and of realizing a low cost due to a groove structure made fine. <P>SOLUTION: A mesa type npn bipolar transistor of the present invention comprises an n-type semiconductor region 1 as a collector region, an n<SP>+</SP>-type semiconductor region 2, a p-type semiconductor region 3 as a base region, and an n<SP>+</SP>-type semiconductor region 4 as an emitter region. A mesa groove 6 is provided around the base region 3 and the emitter region 4 to expose a pn junction. The surface of the mesa groove is covered with a thermal oxide film 7 and an aluminum field plate 8. Further, the mesa groove 6 undergoes wet etching to the depth of ≥1.0×10<SP>17</SP>cm<SP>-3</SP>impurity concentration in the n<SP>+</SP>-type semiconductor region 2, and impurity concentration at a mesa bottom is set to ≤1.0×10<SP>18</SP>cm<SP>-3</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高耐圧の半導体装置に係わり、特に高耐圧化および高信頼性化かつ低価格化を図る半導体装置に関する。   The present invention relates to a high-breakdown-voltage semiconductor device, and more particularly to a semiconductor device that achieves high breakdown voltage, high reliability, and low price.

メサ型半導体装置を高耐圧化、高信頼性化するための種々の技術は従来から提案されている。   Various techniques for increasing the breakdown voltage and reliability of a mesa semiconductor device have been proposed.

例えば、メサ型半導体装置の高耐圧化に関する技術として、特許文献1に記載された技術が知られている。この従来技術は、メサ溝内壁をガラスで被膜した半導体装置の製造方法において、メサ溝を形成したのちに熱処理により、pn接合部を当初の位置より移動させることにより、高耐圧が得られるとしている。   For example, a technique described in Patent Document 1 is known as a technique related to increasing the breakdown voltage of a mesa semiconductor device. According to this prior art, in a method for manufacturing a semiconductor device in which the inner wall of a mesa groove is coated with glass, a high breakdown voltage can be obtained by moving the pn junction from the initial position by heat treatment after the mesa groove is formed. .

さらに、メサ型の半導体装置の高耐圧化に関する他の従来技術として、特許文献2に記載された技術が知られている。この従来技術は、一定の幅内に隣接する2つのメサ溝を設け、2通信のメサ溝の中間に凸状の部分を設け、この凸状の部分を半導体基板の表面よりも低くなるようにエッチングにより形成することにより、ダイシング時にガラス内部にクラックが入らないようにして、半導体装置の信頼性の向上と高耐圧化とを図るものである。   Further, as another conventional technique related to increasing the breakdown voltage of a mesa type semiconductor device, a technique described in Patent Document 2 is known. In this prior art, two adjacent mesa grooves are provided within a certain width, a convex part is provided in the middle of the two communication mesa grooves, and the convex part is made lower than the surface of the semiconductor substrate. By forming by etching, cracks are prevented from entering the glass during dicing, thereby improving the reliability of the semiconductor device and increasing the breakdown voltage.

また、メサ型半導体装置の高信頼性に関する他の従来技術として、特許文献3に記載された技術が知られている。この従来技術は、メサ溝内に電気泳動法によるガラス粉末付着および焼成で第一層目のガラス被膜を形成したのち、再度電気泳動法、焼成により第二層目のガラス被膜を積層すると、欠陥がないガラス被膜が得られ、高信頼性が実現できるものとされている。   Further, as another conventional technique related to high reliability of a mesa semiconductor device, a technique described in Patent Document 3 is known. In this conventional technique, when a glass coating of the first layer is formed by electrophoretic glass powder deposition and firing in the mesa groove, a second glass coating is deposited again by electrophoresis and firing. It is supposed that a glass coating without any problem can be obtained and high reliability can be realized.

さらに、メサ型半導体装置の高耐圧、高信頼性化に関する従来技術として、特許文献4に記載された技術が知られている。この従来技術は、メサ部半導体領域表面にガラス被膜中の第III族元素が拡散された領域を有することでガラス被膜中の電荷密度を調整し、逆バイアス高温試験においてリーク電流低下やリーク電流の低減が実現されるものとされている。
特開昭60−186071号公報 特開平7−221049号公報 特開平8−222558号公報 特開平10−27917号公報
Furthermore, a technique described in Patent Document 4 is known as a conventional technique related to high breakdown voltage and high reliability of a mesa semiconductor device. This conventional technique adjusts the charge density in the glass coating by having a region in which the Group III element in the glass coating is diffused on the surface of the mesa semiconductor region, and reduces the leakage current and leakage current in the reverse bias high temperature test. Reduction is supposed to be realized.
JP 60-186071 A Japanese Unexamined Patent Publication No. 7-2221049 JP-A-8-222558 JP-A-10-27917

しかしながら、上記従来技術では、溝部の半導体表面にガラスを有する半導体装置がほとんどで、ガラスを有する半導体装置はプロセスが複雑になりコストがかかる。   However, in the above prior art, most of the semiconductor devices have glass on the semiconductor surface of the groove, and the semiconductor devices having glass are complicated and costly.

さらに、特許文献1〜3に記載された従来技術では、高温逆バイアス試験によるリーク電流増大や耐圧劣化、いわゆる寿命に対する高信頼性化に関する問題については考慮されていない。   Furthermore, in the prior art described in Patent Documents 1 to 3, no consideration is given to problems relating to increase in leakage current and breakdown voltage degradation due to a high temperature reverse bias test, so-called high reliability with respect to lifetime.

本発明は、高温での逆バイアス試験(以下、BT試験という)等の寿命試験によるリーク電流の増大や耐圧低下を防止し、高信頼性を実現できる溝構造の微細化による低価格化の実現が可能な半導体装置を提供することにある。   The present invention realizes a reduction in cost by miniaturizing a groove structure that can prevent an increase in leakage current and a decrease in breakdown voltage due to a life test such as a reverse bias test (hereinafter referred to as a BT test) at a high temperature and realize high reliability. It is an object of the present invention to provide a semiconductor device capable of performing the above.

上記課題を解決するため、本発明のメサ型半導体装置は、裏面に一導電型の高濃度不純物層を有した一導電型の半導体基板内に、前記基板の表面から前記基板と反対の導電型の不純物を拡散してpn接合を形成し、前記基板の所定の領域に前記pn接合が露出するように前記基板表面に開口部を有するメサ型ないしはトレンチ型の溝を設けており、前記溝部底面および側面が酸化膜で覆われており 前記酸化膜の一部と前記酸化膜に覆われていない前記基板表面の一部との上に導電性電極からなるフィールドプレートを形成したことを特徴とする。   In order to solve the above-described problem, a mesa semiconductor device of the present invention has a conductivity type opposite to the substrate from the surface of the substrate in a one conductivity type semiconductor substrate having a high-concentration impurity layer of one conductivity type on the back surface. A pn junction is formed by diffusing the impurities, and a mesa type or trench type groove having an opening is provided on the substrate surface so that the pn junction is exposed in a predetermined region of the substrate, And a field plate made of a conductive electrode is formed on a part of the oxide film and a part of the substrate surface not covered with the oxide film. .

前記一導電型の高濃度不純物層における不純物濃度が1.0×1017cm-3以上の領域まで前記溝の底面が達していることが好ましい。 It is preferable that the bottom surface of the groove reaches a region where the impurity concentration in the high conductivity impurity layer of one conductivity type is 1.0 × 10 17 cm −3 or more.

前記溝部がポリイミド系の膜あるいは樹脂で埋め込まれていることがさらに好ましい。   More preferably, the groove is filled with a polyimide film or resin.

本発明によれば、ガラス被膜を使用することなく メサ型半導体装置を作製でき、プロセスが簡素化されてより低価格、高信頼性の高耐圧のメサ型半導体装置を提供できる。   According to the present invention, a mesa semiconductor device can be manufactured without using a glass coating, and the process can be simplified, and a low-cost, high-reliability high-voltage mesa semiconductor device can be provided.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は本発明の第1の実施形態におけるメサ型半導体装置の断面図であり、本実施形態ではnpnバイポーラトランジスタについて示した。コレクタ領域となるn型半導体領域1、n+型半導体領域2、ベース領域となるp型半導体領域3、エミッタ領域となるn+型半導体領域4から構成され、ベース領域3、エミッタ領域4の周辺にpn接合が露出するようメサ溝6を設け、その表面が熱酸化膜7とアルミフィールドプレート8で覆われている。フィールドプレートは図2に示したようにポリシリコン等のその他の導電性の電極を用いてもよい。
(First embodiment)
FIG. 1 is a cross-sectional view of a mesa semiconductor device according to a first embodiment of the present invention. In this embodiment, an npn bipolar transistor is shown. An n-type semiconductor region 1 serving as a collector region, an n + -type semiconductor region 2, a p-type semiconductor region 3 serving as a base region, and an n + -type semiconductor region 4 serving as an emitter region, and the periphery of the base region 3 and the emitter region 4 A mesa groove 6 is provided so that the pn junction is exposed, and its surface is covered with a thermal oxide film 7 and an aluminum field plate 8. The field plate may use another conductive electrode such as polysilicon as shown in FIG.

図3は図1に示したメサ型半導体装置の製造工程説明図であり、以下、この図を用いて製造方法を説明する。   FIG. 3 is an explanatory diagram of the manufacturing process of the mesa semiconductor device shown in FIG. 1, and the manufacturing method will be described below with reference to FIG.

まず、比抵抗60Ωcm、厚さ305μmのn型シリコン基板の片側よりリンを拡散して拡散深さ180μm、表面濃度2.0×1020cm-3のn+型半導体領域2を形成する。その後、シリコン基板の表面にシリコン酸化膜5を形成した後、n+型半導体領域2と反対側よりボロン、アルミニウム等を拡散させて、表面濃度5.0×1017〜5.0×1018cm-3のp型半導体領域3を形成する(図3(a))。 First, phosphorus is diffused from one side of an n-type silicon substrate having a specific resistance of 60 Ωcm and a thickness of 305 μm to form an n + -type semiconductor region 2 having a diffusion depth of 180 μm and a surface concentration of 2.0 × 10 20 cm −3 . Thereafter, a silicon oxide film 5 is formed on the surface of the silicon substrate, and then boron, aluminum, etc. are diffused from the side opposite to the n + type semiconductor region 2 to obtain a surface concentration of 5.0 × 10 17 to 5.0 × 10 18. A p − type semiconductor region 3 of cm −3 is formed (FIG. 3A).

次いで、選択的にエミッタ領域となるべき箇所にリンをドープする(図3(b))。しかるのち、シリコン酸化膜5の一部を除去し、弗酸:硝酸:酢酸=3:6:2(容量比)の7℃±2℃に冷却された混合液中で、エッチング処理をして、深さ180μm、幅440μmのメサ溝6を形成する。このメサ溝6は、n+型半導体領域2における不純物濃度1.0×1017cm-3以上の深さまでウエットエッチングしており、メサ底部の不純物濃度を1.0×1018cm-3以下とした(図3(c))。その後、熱拡散を行い表面濃度4.0×1019cm-3以上のエミッタ領域4を形成する。そして上記ベース領域3とエミッタ領域4及びメサ部の上に新たにシリコン酸化膜5’を形成する(図3(d))。 Next, phosphorous is selectively doped into a portion to be an emitter region (FIG. 3B). After that, a part of the silicon oxide film 5 is removed, and an etching process is performed in a mixed solution of hydrofluoric acid: nitric acid: acetic acid = 3: 6: 2 (volume ratio) cooled to 7 ° C. ± 2 ° C. A mesa groove 6 having a depth of 180 μm and a width of 440 μm is formed. This mesa groove 6 is wet-etched to a depth of not less than 1.0 × 10 17 cm −3 in the n + -type semiconductor region 2, and the impurity concentration at the bottom of the mesa is not more than 1.0 × 10 18 cm −3. (FIG. 3C). Thereafter, thermal diffusion is performed to form an emitter region 4 having a surface concentration of 4.0 × 10 19 cm −3 or more. Then, a silicon oxide film 5 'is newly formed on the base region 3, the emitter region 4, and the mesa portion (FIG. 3D).

その後にベース及びエミッタアルミ電極とのコンタクト領域となるべき箇所のシリコン酸化膜5’を選択的に除去する(図3(e))。   After that, the silicon oxide film 5 'at a portion to be a contact region with the base and emitter aluminum electrodes is selectively removed (FIG. 3E).

最終的には、n型半導体基板にベース電極9、エミッタ電極10とコレクタ電極11を形成し、さらに溝部6の側面を覆ってアルミフィールドプレート8を形成する(図3(f))。その後、信頼性を高めるために溝部6にポリイミド系の膜12を選択的に形成する(図3(g))。これはポリイミド系の樹脂であってもよい。   Finally, a base electrode 9, an emitter electrode 10, and a collector electrode 11 are formed on an n-type semiconductor substrate, and an aluminum field plate 8 is formed to cover the side surface of the groove 6 (FIG. 3 (f)). Thereafter, a polyimide film 12 is selectively formed in the groove 6 in order to improve the reliability (FIG. 3G). This may be a polyimide resin.

しかるのち、メサ溝6の中央をダイシングして素子分離し、高耐圧、高信頼性のメサ型半導体装置を得る(図3(h))。   Thereafter, the center of the mesa groove 6 is diced to separate the elements, and a high-voltage, high-reliability mesa semiconductor device is obtained (FIG. 3 (h)).

本実施形態によれば、メサ溝部にフィールドプレートを形成することで ガラスを使用せずに、半導体基板の抵抗からより効率よく高耐圧及び高信頼性を実現できる。また、この作用にて、半導体装置の特性をより改善でき、同等の特性を出すのに半導体装置の面積をより小さくできる。また、不純物濃度が比較的低いメサ部底面の抵抗を利用できるため、効率よく高耐圧が実現でき、半導体装置のサイズをより小さくできる。特に600V以上の半導体装置の小型化には特に有効である。   According to the present embodiment, by forming the field plate in the mesa groove, high breakdown voltage and high reliability can be realized more efficiently from the resistance of the semiconductor substrate without using glass. In addition, with this action, the characteristics of the semiconductor device can be further improved, and the area of the semiconductor device can be further reduced in order to obtain equivalent characteristics. In addition, since the resistance at the bottom of the mesa portion having a relatively low impurity concentration can be used, high breakdown voltage can be realized efficiently, and the size of the semiconductor device can be further reduced. This is particularly effective for downsizing a semiconductor device of 600V or higher.

図4は、本発明のメサ型半導体装置と従来のメサ型半導体装置との信頼性試験結果を比較した図である。信頼性試験としてBT試験を行った。   FIG. 4 is a diagram comparing reliability test results between the mesa semiconductor device of the present invention and a conventional mesa semiconductor device. A BT test was conducted as a reliability test.

これからわかるように、100時間の試験後に、従来の装置では、コレクタ−エミッタ間のリーク電流が約1桁増加しているのに対し、本発明の装置ではほとんど増大せず高い信頼性を有することがわかる。   As can be seen, after 100 hours of testing, the leakage current between the collector and the emitter has increased by about an order of magnitude in the conventional device, whereas the device of the present invention hardly increases and has high reliability. I understand.

なお、本実施形態ではメサ溝を形成したが、図5に示すようにトレンチ溝を形成し、その中にフィールドプレートとしてポリシリコン13のような導電膜を埋め込む構造であっても構わない。   In this embodiment, the mesa groove is formed. However, as shown in FIG. 5, a trench groove may be formed and a conductive film such as polysilicon 13 may be embedded in the trench groove.

なお、本発明の実施形態については高耐圧のメサ型npnバイポーラトランジスタについて説明したが、MOSFET、IGBT、サイリスタおよびダイオード等についても、メサ型でガラス被膜を有するものについては同様の効果が得られる。   Although the embodiment of the present invention has been described with respect to a high-breakdown-voltage mesa npn bipolar transistor, the same effect can be obtained for a MOSFET, IGBT, thyristor, diode, and the like that are mesa-type and have a glass film.

本発明によれば、ガラス被膜を使用することなく メサ型半導体装置を作製でき、プロセスが簡素化されてより低価格、高信頼性の高耐圧のメサ型半導体装置を提供できる。   According to the present invention, a mesa semiconductor device can be manufactured without using a glass coating, and the process can be simplified, and a low-cost, high-reliability high-voltage mesa semiconductor device can be provided.

本発明の第1の実施形態におけるメサ型半導体装置の断面図Sectional drawing of the mesa type semiconductor device in the 1st Embodiment of this invention 本発明の第1の実施形態におけるメサ型半導体装置の変形例の断面図Sectional drawing of the modification of the mesa type semiconductor device in the 1st Embodiment of this invention 本発明の第1の実施形態におけるメサ型半導体装置の製造工程説明図Manufacturing process explanatory drawing of the mesa type semiconductor device in the first embodiment of the present invention 本発明と従来の技術におけるメサ型半導体装置の信頼性試験結果の比較を示す図The figure which shows the comparison of the reliability test result of the mesa type semiconductor device in this invention and the prior art 本発明の第1の実施形態におけるメサ型半導体装置の別の変形例の断面図Sectional drawing of another modification of the mesa type semiconductor device in the 1st Embodiment of this invention

符号の説明Explanation of symbols

1 n型半導体領域(コレクタ領域)
2 n+型半導体領域(コレクタ領域)
3 p型半導体領域(ベース領域)
4 n+型半導体領域(エミッタ領域)
5、5’ シリコン酸化膜
6 メサ溝
7 メサ溝側面のシリコン酸化膜
8 アルミフィールドプレート
9 ベース電極
10 エミッタ電極
11 コレクタ電極
12 ポリイミド樹脂
13 ポリシリコンフィールドプレート
1 n-type semiconductor region (collector region)
2 n + type semiconductor region (collector region)
3 p-type semiconductor region (base region)
4 n + type semiconductor region (emitter region)
5, 5 'silicon oxide film 6 mesa groove 7 silicon oxide film on side of mesa groove 8 aluminum field plate 9 base electrode 10 emitter electrode 11 collector electrode 12 polyimide resin 13 polysilicon field plate

Claims (3)

裏面に一導電型の高濃度不純物層を有した一導電型の半導体基板内に、前記基板の表面から前記基板と反対の導電型の不純物を拡散してpn接合を形成し、前記基板の所定の領域に前記pn接合が露出するように前記基板表面に開口部を有するメサ型ないしはトレンチ型の溝を設けており、前記溝部底面および側面が酸化膜で覆われており、前記酸化膜の一部と前記酸化膜に覆われていない前記基板表面の一部との上に導電性電極からなるフィールドプレートを形成したことを特徴とするメサ型半導体装置。 A pn junction is formed by diffusing impurities of a conductivity type opposite to the substrate from the surface of the substrate in a semiconductor substrate of one conductivity type having a high-concentration impurity layer of one conductivity type on the back surface. A mesa-type or trench-type groove having an opening is provided on the surface of the substrate so that the pn junction is exposed in the region, and the bottom and side surfaces of the groove are covered with an oxide film. A mesa-type semiconductor device, wherein a field plate made of a conductive electrode is formed on a portion and a part of the substrate surface not covered with the oxide film. 前記一導電型の高濃度不純物層における不純物濃度が1.0×1017cm-3以上の領域まで前記溝の底面が達していることを特徴とする請求項1記載のメサ型半導体装置。 2. The mesa semiconductor device according to claim 1, wherein the bottom surface of the groove reaches a region where an impurity concentration in the high-concentration impurity layer of one conductivity type is 1.0 × 10 17 cm −3 or more. 前記溝部がポリイミド系の膜あるいは樹脂で埋め込まれていることを特徴とする請求項1または2記載のメサ型半導体装置。 3. The mesa semiconductor device according to claim 1, wherein the groove is filled with a polyimide film or resin.
JP2003282640A 2003-07-30 2003-07-30 Mesa type semiconductor device Pending JP2005051111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282640A JP2005051111A (en) 2003-07-30 2003-07-30 Mesa type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282640A JP2005051111A (en) 2003-07-30 2003-07-30 Mesa type semiconductor device

Publications (1)

Publication Number Publication Date
JP2005051111A true JP2005051111A (en) 2005-02-24

Family

ID=34267799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282640A Pending JP2005051111A (en) 2003-07-30 2003-07-30 Mesa type semiconductor device

Country Status (1)

Country Link
JP (1) JP2005051111A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075784B1 (en) * 2008-06-12 2011-10-24 산요덴키가부시키가이샤 Mesa type semiconductor device and method of manufacturing the same
US8227901B2 (en) 2008-06-12 2012-07-24 Sanyo Semiconductor Co., Ltd. Mesa type semiconductor device and manufacturing method thereof
CN101471258B (en) * 2007-12-25 2012-11-07 三洋电机株式会社 Mesa semiconductor device and method of manufacturing the same
US8362595B2 (en) 2007-12-21 2013-01-29 Sanyo Semiconductor Co., Ltd. Mesa semiconductor device and method of manufacturing the same
US8426949B2 (en) 2008-01-29 2013-04-23 Sanyo Semiconductor Manufacturing Co., Ltd. Mesa type semiconductor device
CN103066116A (en) * 2011-10-24 2013-04-24 上海华虹Nec电子有限公司 Bipolar transistor device and manufacturing method thereof
CN104681633A (en) * 2015-01-08 2015-06-03 北京时代民芯科技有限公司 Mesa diode with low-creepage and high-voltage resistant terminal structure and preparation method of mesa diode
US10749017B1 (en) 2019-02-12 2020-08-18 Qualcomm Incorporated Heterojunction bipolar transistors with field plates
FR3131658A1 (en) * 2022-01-06 2023-07-07 Stmicroelectronics (Tours) Sas Method of forming a cavity

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362595B2 (en) 2007-12-21 2013-01-29 Sanyo Semiconductor Co., Ltd. Mesa semiconductor device and method of manufacturing the same
CN101471258B (en) * 2007-12-25 2012-11-07 三洋电机株式会社 Mesa semiconductor device and method of manufacturing the same
US8368181B2 (en) 2007-12-25 2013-02-05 Sanyo Semiconductor Co., Ltd. Mesa semiconductor device and method of manufacturing the same
US8426949B2 (en) 2008-01-29 2013-04-23 Sanyo Semiconductor Manufacturing Co., Ltd. Mesa type semiconductor device
KR101075784B1 (en) * 2008-06-12 2011-10-24 산요덴키가부시키가이샤 Mesa type semiconductor device and method of manufacturing the same
US8227901B2 (en) 2008-06-12 2012-07-24 Sanyo Semiconductor Co., Ltd. Mesa type semiconductor device and manufacturing method thereof
US8319317B2 (en) 2008-06-12 2012-11-27 Sanyo Semiconductor Co., Ltd. Mesa type semiconductor device and manufacturing method thereof
CN103066116A (en) * 2011-10-24 2013-04-24 上海华虹Nec电子有限公司 Bipolar transistor device and manufacturing method thereof
CN104681633A (en) * 2015-01-08 2015-06-03 北京时代民芯科技有限公司 Mesa diode with low-creepage and high-voltage resistant terminal structure and preparation method of mesa diode
US10749017B1 (en) 2019-02-12 2020-08-18 Qualcomm Incorporated Heterojunction bipolar transistors with field plates
WO2020167363A1 (en) * 2019-02-12 2020-08-20 Qualcomm Incorporated Heterojunction bipolar transistor with field plates
FR3131658A1 (en) * 2022-01-06 2023-07-07 Stmicroelectronics (Tours) Sas Method of forming a cavity

Similar Documents

Publication Publication Date Title
US7572683B2 (en) Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
US9184268B2 (en) Semiconductor device
US6683343B2 (en) High voltage semiconductor device having two buffer layer
US10109725B2 (en) Reverse-conducting semiconductor device
US9941395B2 (en) Insulated gate semiconductor device and method for manufacturing the same
CN109585529B (en) Semiconductor device and method for manufacturing the same
JP2002305304A (en) Power semiconductor device
US20170069733A1 (en) High-voltage vertical power component
JPH08306937A (en) High-breakdown strength semiconductor device
JP7404702B2 (en) semiconductor equipment
JP5002974B2 (en) Semiconductor device
WO2021075330A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2020025050A (en) Semiconductor device
JP2022123036A (en) Semiconductor device
JP2020177973A (en) Semiconductor device
JP2022177293A (en) Semiconductor device
JP7127389B2 (en) Silicon carbide semiconductor device
JP2005051111A (en) Mesa type semiconductor device
JP4857590B2 (en) Semiconductor element
JPWO2020217683A1 (en) Semiconductor devices and manufacturing methods
US20170077221A1 (en) Lateral power mosfet with non-horizontal resurf structure
JP2021136241A (en) Semiconductor device and manufacturing method for semiconductor device
JP2020188133A (en) Semiconductor device and method of manufacturing semiconductor device
WO2024057654A1 (en) Semiconductor device and method for manufacturing semiconductor device
KR100401278B1 (en) Mos field effect transistor with an auxiliary electrode

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Effective date: 20050822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070911

Free format text: JAPANESE INTERMEDIATE CODE: A02