JP2005050871A - Optical printer head - Google Patents

Optical printer head Download PDF

Info

Publication number
JP2005050871A
JP2005050871A JP2003203396A JP2003203396A JP2005050871A JP 2005050871 A JP2005050871 A JP 2005050871A JP 2003203396 A JP2003203396 A JP 2003203396A JP 2003203396 A JP2003203396 A JP 2003203396A JP 2005050871 A JP2005050871 A JP 2005050871A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
element array
array chip
optical printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203396A
Other languages
Japanese (ja)
Inventor
Shinjiro Oka
真二郎 岡
Michimasa Kikuchi
通真 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003203396A priority Critical patent/JP2005050871A/en
Publication of JP2005050871A publication Critical patent/JP2005050871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical printer head which is capable of printing a prescribed picture corresponding to picture data, excellent in productivity and high in accuracy. <P>SOLUTION: An optical printer head has a structure wherein a large number of first circuit conductors 2 are provided on a board 1, an insulating layer 3 is formed over the first circuit conductors 2 for the formation of a circuit board, a light emitting element array chip 5 is mounted on the circuit board, the first circuit conductors 2 are electrically connected to connection pads 6, a recess 1a where the light emitting element array chip 5 is embedded is formed on the top surface of the board 1, a gap between the inner surface of the recess 1a and the side faces of the light emitting element array chip 5 is filled with an adhesive agent 8, and one-side ends of the first circuit conductors 2 are extended in parallel with each other in the same direction to be formed into second circuit conductors 9 which are connected to the connection pads 6. The forming condition of the second circuit conductors 9 can be narrowed down to the optimal one so that the second circuit conductors 9 can be set extremely high in uniformity, and the optical printer can be improved in productivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真プリンタ等の光書込み手段として用いられる光プリンタヘッドに関するものである。
【0002】
【従来の技術】
従来から電子写真プリンタ等の光書込み手段として、LEDアレイヘッドに代表される光プリンタヘッドが用いられている。
【0003】
かかる従来の光プリンタヘッドとしては、例えば図6に断面図で示す如く、多数の回路導体22が所定のパターンに被着されている回路基板21の上面に、多数の発光素子27および多数の接続パッド26を有する複数個の発光素子アレイチップ25を全ての発光素子27が直線状に配列されるようにして一列に並べて接着剤24で接着することにより搭載し、各発光素子アレイチップ25の接続パッド26とこの接続パッド26に対応する回路導体22とをボンディングワイヤ32等で電気的に接続した構造のものが知られている。これによれば、外部からの画像データに基づいて発光素子27を個々に選択的に発光させるとともに、この発光した光を図示しないロッドレンズアレイ等の光学系を介して外部の感光体に照射して結像させ、感光体に所定の潜像を形成することによって光プリンタヘッドとして機能する。
【0004】
そして、感光体に形成された潜像は、その後、現像のプロセスを経てトナー像となり、このトナー像を記録紙に転写し、定着させることによって記録紙に所定の印画が形成される。
【0005】
しかしながら、上述した従来の光プリンタヘッドを例えばA3サイズ,600dpi(dot per inch)の製品仕様にて構成した場合には、接続パッド36と回路導体22との接続個所は約15000箇所にも及び、両者は約15000本もの多数のボンディングワイヤ32で個々に接続されることになる。それゆえ、これらのボンディングワイヤ32を従来周知のワイヤボンディング法によってボンディングすると、その接続作業には極めて長時間を要するため、光プリンタヘッドの生産性の向上を図ることができないという問題点があった。また、光プリンタヘッドの使用時等にボンディングワイヤ32が外部からの振動や衝撃によって倒れてしまって、隣接するボンディングワイヤ32同士を短絡させることがあり、このことが光プリンタヘッドの信頼性を低下させていたという問題点もあった。
【0006】
また、上述した従来の光プリンタヘッドにおけるボンディングワイヤ32は、ワイヤボンディング法にて回路導体22や発光素子アレイチップ25の接続パッド26に対して接続されたものであり、通常、ファーストボンディングが発光素子アレイチップ25側で、セカンドボンディングが回路導体22側でなされている。この場合、接続パッド26に接合されるボンディングワイヤ32の端部には、ボール状のネイルヘッドが形成されることから、光プリンタヘッドを使用する際に、発光素子27の発した光の一部がボンディングワイヤ32のネイルヘッドで反射してしまい、このような反射光が外部の感光体に照射されると、感光体には反射光の照射に起因した不要な潜像が形成されることとなり、画像データに対応した正確な画像を得ることができなくなるという問題点も有していた。
【0007】
また、上述した従来の光プリンタヘッドによれば、ボンディングワイヤ32を発光素子アレイチップ25の接続パッド26に接続するためには、ボンディングワイヤ32のボール状のネイルヘッドを接続させるのに接続パッド26の大きさが80μm×80μm以上必要となるので、発光素子アレイチップ25の小型化が図れず、また製造に際して1枚のウエハ基板から多数個のチップを作製する際の取り数が少ないものとなってしまうため、多数の発光素子アレイチップ25を使用する光プリンタヘッドの低価格化が図れないという問題点もあった。
【0008】
そこで、これらの問題点を解決するために、ワイヤボンディングを使わない、一括配線型の光プリンタヘッドが提案されている。
【0009】
このような一括配線型の光プリンタヘッドについて、本願出願人は、特願2002−167044号において新規な構成を提案している。その内容について、図1に示す断面図を流用して説明する。
【0010】
図1において、1は回路基板を構成する基板、2は第1の回路導体、3は絶縁層、4は固定用接着剤、5は発光素子アレイチップである。また、6は発光素子アレイチップ5の接続パッド、7は発光素子、8は基板1の凹部1aと発光素子アレイチップ5との間隙を充填する接着剤、9は第1の回路導体2と発光素子アレイチップ5の接続パッド6とを電気的に接続する回路導体である第2の回路導体、10は保護膜である。図1に示す光プリンタヘッドによれば、基板1の上面に発光素子アレイチップ5が埋設される凹部1aを形成し、この凹部1aの底部に発光素子アレイチップ5を固定用接着剤4により固定し、さらに凹部1aの内面と発光素子アレイチップ5の側面との間隙に接着剤8を充填し、基板1上の絶縁層3の上面および接着剤8の上面8aを介して、絶縁層3の開口部3aより露出した回路導体2上から発光素子アレイチップ5の接続パッド6上まで第2の回路導体9により電気的に接続し、第2の回路導体9の上面に保護膜10を形成している。これにより、第2の回路導体9をパターン形成する際に、これらを発光素子アレイチップ5の接続パッド6に対しても同時に、かつ一括的に接続することができ、これらをワイヤボンディング等で接続する場合に比べ、接続作業に要する時間を短縮することができるというものである。
【0011】
【特許文献1】
特開平1−34760号公報
【0012】
【特許文献2】
特開平1−208874号公報
【0013】
【特許文献3】
特開平4−87383号公報
【0014】
【発明が解決しようとする課題】
しかしながら、このような一括配線型の光プリンタヘッドにおいても、印刷法により第2の回路導体9を形成する場合に、その第2の回路導体9の形状によっては良好な印刷精度を確保することが困難となるため、光プリンタヘッドの小型化に限界がある、あるいは第2の回路導体9に電気的なノイズがのりやすい、などというような改善が望まれる問題点があった。
【0015】
本発明は上記のような問題点に鑑み案出されたものであり、その目的は、高解像度の画像データに対応した所定の画像が得られ、しかも、小型で、生産性に優れた光プリンタヘッドを提供することにある。
【0016】
【課題を解決するための手段】
本発明の光プリンタヘッドは、基板上に多数の第1の回路導体を設け、これら第1の回路導体の上に絶縁層を被覆してなる回路基板上に、上面に多数の発光素子および接続パッドを有する発光素子アレイチップを搭載し、前記第1の回路導体を前記接続パッドに電気的に接続してなる光プリンタヘッドであって、前記基板の上面に前記発光素子アレイチップが埋設される凹部を形成するとともにこの凹部の内面と前記発光素子アレイチップの側面との間隙に接着剤を充填し、前記第1の回路導体の一端を前記基板の上面より前記絶縁層上および前記接着剤上を介して前記発光素子アレイチップの前記接続パッド上まで延在させた、同じ方向に向かって互いに平行な第2の回路導体を形成して前記接続パッドに電気的に接続したことを特徴とするものである。
【0017】
また、本発明の光プリンタヘッドは、上記構成において、前記第2の回路導体は、前記発光素子の配列に対して直交する方向に向かって互いに平行に形成されていることを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の光プリンタヘッドを添付図面を参照しつつ詳細に説明する。
【0019】
図1は本発明の光プリンタヘッドの実施の形態の一例を示す断面図であり、図2はその要部拡大平面図である。また、図3は本発明の実施の形態の他の例を示す、図2と同様の要部拡大断面図である。また、図4は本発明の光プリンタヘッドの実施の形態のさらに他の例を示す断面図であり、図5はその要部拡大平面図である。これらの図において同様の箇所には同じ符号を付してあり、1は基板、2は第1の回路導体、3は絶縁層であり、基板1上に多数の第1の回路導体2を設け、これら第1の回路導体2の上に絶縁層3を被覆して回路基板が形成されている。4は固定用接着剤、5は発光素子アレイチップであり、発光素子アレイチップ5は、基板1の上面に形成された凹部1aの底部に固定用接着剤4により固定されている。6は発光素子アレイチップ5の接続パッド、7は発光素子である。8は凹部1aの内面と発光素子アレイチップ5の側面との間隙に充填された接着剤、9は第2の回路導体、10は保護膜である。
【0020】
回路基板を構成する基板1は、例えばガラス布基材エポキシ樹脂や、ガラス布基材BT(ビスマレイミド・トリアジン)レジンや、ガラス布基材ポリフェニレンエーテル等の樹脂から成る。この基板1の上面には、発光素子アレイチップ5上の発光素子7に電源電力を供給するための給電配線として機能する第1の回路導体2が多数形成される。これら第1の回路導体2は、例えば銅等の金属により形成される。
【0021】
次に、第1の回路導体2と後に形成される第2の回路導体9とを絶縁し、さらに第1の回路導体2の腐食を防止して保護するための絶縁層3が形成される。この絶縁層3は、例えばエポキシ樹脂,アクリル樹脂,フェノール樹脂等から成る。
【0022】
次に、絶縁層3の一部に第1の回路導体2上に位置するように形成された開口部3a内に露出している第1の回路導体2の表面に、ニッケルおよび金等の金属層2aが形成される。この金属層2aが形成されることにより、第1の回路導体2の腐食を防止することができるとともに、後に形成される第2の回路導体9との電気的な接続を良好なものとすることができる。ここで、例えば、耐腐食性がある高価な金から成る金属層2aは、第1の回路導体2の開口部3a内に露出した部分のみに選択的に被着させているため、金の消費量が多量となることはなく、光プリンタヘッドのコストを高めることはない。
【0023】
また、基板1の上面には、発光素子アレイチップ5とこの発光素子アレイチップ5を固定する固定用接着剤4との厚みと略等しい深さ(発光素子アレイチップ5と固定用接着剤4との合計厚みに対し±0.1mm以内の深さ)の凹部1aが設けられている。
【0024】
基板1は、その上面に多数の第1の回路導体2が配設され、また凹部1a内に多数個の発光素子アレイチップ5が固定用接着剤4により配設固定されており、これらを支持する支持部材として機能する。
【0025】
なお、基板1は、ガラス布基材エポキシ樹脂等から成る場合であれば、ガラス繊維を用いて形成したガラス布基材に液状のエポキシ樹脂を含浸させて硬化させ、これを所定形状に切断して外形加工することにより製作される。次いで、得られた基板1の上面に、ダイサー等を用いて所定の幅のブレードによりハーフダイシングすることによって凹部1aが形成される。
【0026】
また、凹部1aに埋設される発光素子アレイチップ5は、その上面に例えば300dpi以上の解像度となるように多数の発光素子7とこれら発光素子7と電気的に接続される接続パッド6とを有しており、凹部1aの底面と発光素子アレイチップ5の底面との間に配置される固定用接着剤4により凹部1a内の所定位置に固定される。
【0027】
そして、凹部1aの内面と、凹部1aに固定用接着剤4により固定された発光素子アレイチップ5の側面との間隙に、例えば熱硬化の温度が室温以上80℃以下である接着剤8を充填して熱硬化させることにより、基板1の上面と発光素子アレイチップ5の上面と接着剤8の上面8aとが±0.1mm以内で平坦化されている。
【0028】
発光素子アレイチップ5の上面に設けられている多数の発光素子7は、例えば600dpiの密度で主走査方向に直線状に配列されている。これら発光素子7は、例えばAlGaAsやGaAsP等から成るp型半導体とn型半導体とを積層して両者をpn接合させた構造を有しているため、接続パッド6に電気的に接続される第2の回路導体9等を介して外部からの電源電力が印加されると、発光素子7のp型半導体中に電子が、n型半導体中に正孔がそれぞれ注入され、これらをpn接合部付近で再結合させてこの再結合の際に生じたエネルギーを光に変換することによって、所定の波長および輝度で発光する。
【0029】
なお、発光素子アレイチップ5は、半導体製造技術、具体的にはMOCVD(Metal Organic Chemical Vapor Deposition)法等を採用し、上述の化合物半導体を単結晶のGaAsやSi等から成る基板の上面にエピタキシャル成長させて発光素子7を形成した後、薄膜形成技術により接続パッド6を所定パターンに被着させることにより製作される。
【0030】
また、得られた発光素子アレイチップ5を基板1の凹部1a内に固定するには、まず発光素子アレイチップ5を凹部1aの底部に固定用接着剤4を用いて固定した後、凹部1aの内壁面と発光素子アレイチップ5の側面との間隙にディスペンサや印刷機等を用いて、エポキシ樹脂,アクリル樹脂,フェノール樹脂,シリコーン樹脂等を主成分とする接着剤8を充填する。その後、これを所定の温度で熱硬化させることによって、発光素子アレイチップ5が凹部1a内に埋設される。
【0031】
このときディスペンサにより接着剤8を充填する場合であれば、凹部1aの内壁面と発光素子アレイチップ5の側面との間隙の形状および接着剤8の硬化収縮量や発光素子アレイチップ5の底部からチップ間への回り込み量等を考慮して、ディスペンサからの接着剤8の吐出量を制御し、接着剤8の硬化後に基板1の上面と発光素子アレイチップ5の上面と接着剤8の上面8aとが同一平面になるようにその間隙に接着剤8を充填する。
【0032】
この際、接着剤8の吐出量は、ディスペンサの吐出圧力あるいはディスペンサの凹部1aに対する相対走査速度を変化させることにより調整すればよい。また、印刷機により接着剤8を充填する場合であれば、穴埋め印刷法や真空印刷法等の印刷技術により、凹部1aの内壁面と発光素子アレイチップ5の側面との間隙に接着剤8を埋め込み、充填すればよい。
【0033】
これによって、発光素子アレイチップ5の上面,基板1の上面および接着剤8の上面8aは、略同一平面内に配置されることとなる。ここで、接着剤8中には、その熱膨張係数を発光素子アレイチップ5や樹脂製の基板1に近づけるために、シリカやアルミナ等の高熱伝導性の無機質フィラーが所定量(例えば40質量%〜90質量%)添加されていることが好ましい。また、かかる接着剤8の粘度は、上記間隙の奥深くまで良好に浸透し、かつ良好に表面レベリングするように、例えば1Pas〜200Pasに調整されていることが好ましい。
【0034】
そして、基板1上の第1の回路導体2から絶縁層3上および接着剤8上を介して発光素子アレイチップ5の接続パッド6に至るように形成した第2の回路導体9は、発光素子アレイチップ5の発光素子7に電源電力を供給するための給電配線として機能するものであり、例えばアルミニウム,銅,金,ニッケル等の金属あるいは銀,銅等のフィラーが含まれた導電性樹脂により形成されている。この第2の回路導体9の一端側は基板1上の第1の回路導体2に電気的に接続されており、他端側は基板1上より絶縁層3上および接着剤8上を経て発光素子アレイチップ5上の対応する接続パッド6まで延在され、その接続パッド6と電気的に接続されている。
【0035】
本発明の光プリンタヘッドにおいては、第2の回路導体9は、図2に示すように、同じ方向に向かって互いに平行に形成されて、それぞれ対応する接続パッド6に電気的に接続されている。このように、第1の回路導体2の一端とそれに対応する接続パッド6とを電気的に接続する多数の第2の回路導体9が、同じ方向に向かって互いに平行に形成されていることから、例えば、印刷法で形成する場合、種々の方向が混在すると方向によって印刷の最適な条件が異なるため第2の回路導体9の形成幅のバラツキが大きくなるが、同じ方向に向かって互いに平行に形成されている場合には、形成条件を最適な条件に絞ることができるので、第2の回路導体9の形成幅のバラツキを小さくすることができ、生産性を上げることができる。
【0036】
さらに、これら第2の回路導体9は、図3および図5に示すように、発光素子7の配列(通常は接続パッド6の配列と同じ方向となる。)に対して直交する方向に向かって互いに平行に形成されていることが望ましい。第2の回路導体9が発光素子7の配列(あるいは接続パッド6の配列)の方向に対して直交する方向に向かって互いに平行に形成されているときには、印刷によって第2の回路導体9を形成する場合にその印刷方向を発光素子7の配列(接続パッド6の配列)と同じ方向にすることにより、発光素子7の配列(接続パッド6の配列)の方向に対して直交する方向への第2の回路導体9の形成の位置精度が向上するので、第2の回路導体9をそれぞれ対応する接続パッド6に高精度で接続することができ、生産性をさらに上げることができる。
【0037】
これらの場合、多数の第2の回路導体9は絶縁層3,接着剤8および発光素子アレイチップ5の上面に直接被着させてあるため、光プリンタヘッドの使用時等に外部からの振動や衝撃が印加されても、隣り合う第2の回路導体9同士が短絡するといった不具合を発生することがなく、光プリンタヘッドの信頼性向上にも寄与することができる。またその上に、接続パッド6上まで延在させた第2の回路導体9は、その全体が膜状に形成されていることから、発光素子アレイチップ5上にはボンディングワイヤのネイルヘッドの如き光を反射する大きな物体は何ら存在せず、従って、この本発明の光プリンタヘッドを使用する際には、反射光等の不要な光が外部の感光体に照射されて不要な潜像が形成されるのを有効に防止して、画像データに対応した高解像度の画像を得ることが可能である。
【0038】
なお、これら第2の回路導体9は、例えばスクリーン印刷法等の印刷法を採用して、前述の金属フィラーを樹脂と混練した導体ペーストを、絶縁層3の開口部3a内に露出した第1の回路導体2,絶縁層3,接着剤8および接続パッド6の上面に例えば10μm〜20μmの厚みに所定のパターンで被着させた後、所定の温度、好ましくは80℃以上の温度で、また接着剤8のガラス転移点以下の温度で熱硬化させることにより形成される。このとき、絶縁層3の開口部3aの底部と上面との段差が大きい場合には、絶縁層3の開口部3aのみ選択的に第2の回路導体9を埋め込むようにして形成してもよい。また、第2の回路導体9は、メッキ法およびフォトプロセス等を採用して形成してもよい。
【0039】
このような第2の回路導体9は、それ自体をパターン形成する際に、発光素子アレイチップ5の上面に設けた多数の接続パッド6に対しても同時に、かつ一括的に接続されるように形成されるため、従来のようにワイヤボンディング等で接続する場合に比べて接続作業に要する時間を大幅に短縮することができ、光プリンタヘッドの生産性を向上させることができる。
【0040】
また、第2の回路導体9と発光素子アレイチップ5の上面の接続パッド6との接続のためには、接続パッド6の大きさは数十μm角程度で十分であるので、発光素子アレイチップ5を小型にすることができ、多数の発光素子アレイチップ5を使用した光プリンタヘッドを小型化し低コスト化することができる。
【0041】
そして、第2の回路導体9を腐食から保護するために、第2の回路導体9を覆うように樹脂から成る保護膜10を形成する。このような保護膜10は、図1,図2および図3に示す例のように、第2の回路導体9を被覆し、かつ開口部10aを設けて発光素子7を被覆しないようにすることにより、例えばスクリーン印刷によって保護膜の厚み,色,フィラーの有無に関わらず容易に形成することができる。
【0042】
また、この保護膜10は、図4および図5に示す例のように、第2の回路導体9とともに発光素子アレイチップ5の発光素子7の表面を覆うように発光素子7から発する光に透明な保護膜10で被覆することにより、例えばスクリーン印刷の位置合わせ精度を低いものとすることができ、生産性を高くすることができる。またこの場合には、ディスペンサやスプレーによる保護膜10の塗布形成も可能となる。
【0043】
かくしてこのような本発明の光プリンタヘッドは、発光素子アレイチップ5の発光素子7を外部からの画像データに基づいて個々に選択的に発光させるとともに、これら発光した光を図示しないロッドレンズ等の光学系を介して外部の感光体に照射して結像させ、感光体に所望の高解像度の潜像を形成することができる光プリンタヘッドとして機能する。
【0044】
そして、感光体に形成された潜像は、その後、現像のプロセスを経てトナー像となり、このトナー像を記録紙に転写し、定着させることによって記録紙に所定の画像が記録されることとなる。
【0045】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更・改良等が可能である。
【0046】
例えば、上述の実施の形態の例において、基板1の上面あるいは下面に、発光素子7の発光を制御するための駆動用ICを搭載してもよい。
【0047】
さらに、上述の実施の形態の例において、発光素子アレイチップ5の列の両側にダミーチップを配設することによって、発光素子アレイチップ5の配列領域内で接着剤8の形状を安定させることができ、第2の回路導体9を所定のパターンを安定して形成することができる。
【0048】
さらにまた、上述の実施の形態の例において、発光ダイオードを発光素子7として用いたLEDアレイヘッドを例に説明したが、それ以外の光プリンタヘッド、例えば、ELヘッド,プラズマドットヘッド,液晶シャッタヘッド,蛍光ヘッド,PLZTヘッド等にも本発明は適用可能である。
【0049】
【発明の効果】
以上のように、本発明の光プリンタヘッドによれば、基板上に多数の第1の回路導体を設け、これら第1の回路導体の上に絶縁層を被覆してなる回路基板上に、上面に多数の発光素子および接続パッドを有する発光素子アレイチップを搭載し、前記第1の回路導体を前記接続パッドに電気的に接続してなる光プリンタヘッドであって、前記基板の上面に前記発光素子アレイチップが埋設される凹部を形成するとともに該凹部の内面と前記発光素子アレイチップの側面との間隙に接着剤を充填し、前記第1の回路導体の一端を前記基板の上面より前記絶縁層上および前記接着剤上を介して前記発光素子アレイチップの前記接続パッド上まで延在させた、同じ方向に向かって互いに平行な第2の回路導体を形成して前記接続パッドに電気的に接続したことから、例えば、印刷法で形成する場合、種々の方向が混在すると方向によって印刷の最適な条件が異なるため第2の回路導体の形成幅のバラツキが大きくなるが、同じ方向に向かって互いに平行に形成されている場合には、形成条件を最適な条件に絞ることができるので、第2の回路導体の形成幅のバラツキを小さくすることができ、生産性を上げることができる。
【0050】
また、本発明の光プリンタヘッドによれば、上記構成において、第2の回路導体は、発光素子の配列に対して直交する方向に向かって互いに平行に形成されているときには、印刷によって第2の回路導体を形成する場合にその印刷方向を発光素子の配列(接続パッドの配列)と同じ方向にすることにより、発光素子の配列(接続パッドの配列)の方向に対して直交する方向への第2の回路導体の形成の位置精度が向上し、第2の回路導体をそれぞれ対応する接続パッドに高精度で接続することができるので、印刷法で形成する第2の回路導体の印刷精度を向上させることができることから、より小型で電気的ノイズの少ない光プリンタヘッドを製造することが可能となる。
【0051】
以上により、本発明によれば、高解像度の画像データに対応した所定の画像が得られる良好な印画品質を有し、しかも小型で、かつ大量生産が可能で生産性に優れた信頼性の高い光プリンタヘッドを提供することができた。
【図面の簡単な説明】
【図1】本発明の光プリンタヘッドの実施の形態の一例を示す断面図である。
【図2】本発明の光プリンタヘッドの実施の形態の一例を示す要部拡大平面図である。
【図3】本発明の光プリンタヘッドの実施の形態の他の例を示す要部拡大平面図である。
【図4】本発明の光プリンタヘッドの実施の形態のさらに他の例を示す断面図である。
【図5】本発明の光プリンタヘッドの実施の形態のさらに他の例を示す要部拡大平面図である。
【図6】従来の光プリンタヘッドの例を示す断面図である。
【符号の説明】
1・・・基板
1a・・・凹部
2・・・第1の回路導体
3・・・絶縁層
4・・・固定用接着剤
5・・・発光素子アレイチップ
6・・・接続パッド
7・・・発光素子
8・・・接着剤
9・・・第2の回路導体
10・・・保護膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical printer head used as optical writing means for an electrophotographic printer or the like.
[0002]
[Prior art]
Conventionally, an optical printer head typified by an LED array head has been used as an optical writing means for an electrophotographic printer or the like.
[0003]
As such a conventional optical printer head, for example, as shown in a sectional view in FIG. 6, a large number of light emitting elements 27 and a large number of connections are formed on the upper surface of a circuit board 21 on which a large number of circuit conductors 22 are adhered in a predetermined pattern. A plurality of light emitting element array chips 25 having pads 26 are mounted by arranging them in a line so that all the light emitting elements 27 are arranged in a straight line and bonding them with an adhesive 24, and connecting each light emitting element array chip 25. A structure in which the pad 26 and the circuit conductor 22 corresponding to the connection pad 26 are electrically connected by a bonding wire 32 or the like is known. According to this, the light emitting elements 27 are selectively made to emit light individually based on the image data from the outside, and the emitted light is irradiated to an external photoreceptor via an optical system such as a rod lens array (not shown). By forming an image and forming a predetermined latent image on the photoreceptor, it functions as an optical printer head.
[0004]
Then, the latent image formed on the photoconductor becomes a toner image through a development process, and the toner image is transferred to a recording paper and fixed to form a predetermined print on the recording paper.
[0005]
However, when the above-described conventional optical printer head is configured with, for example, a product specification of A3 size and 600 dpi (dot per inch), the number of connection points between the connection pad 36 and the circuit conductor 22 is approximately 15,000. Both are individually connected by as many as about 15,000 bonding wires 32. Therefore, when these bonding wires 32 are bonded by a conventionally well-known wire bonding method, it takes a very long time to connect them, and thus there is a problem that the productivity of the optical printer head cannot be improved. . In addition, when the optical printer head is used, the bonding wire 32 may fall down due to external vibration or impact, and the adjacent bonding wires 32 may be short-circuited, which reduces the reliability of the optical printer head. There was also a problem that I was allowed to.
[0006]
The bonding wire 32 in the above-described conventional optical printer head is connected to the circuit conductor 22 or the connection pad 26 of the light emitting element array chip 25 by the wire bonding method. Second bonding is performed on the circuit conductor 22 side on the array chip 25 side. In this case, since a ball-shaped nail head is formed at the end of the bonding wire 32 bonded to the connection pad 26, a part of the light emitted from the light emitting element 27 is used when the optical printer head is used. Is reflected by the nail head of the bonding wire 32, and when such reflected light is applied to an external photoconductor, an unnecessary latent image resulting from irradiation of the reflected light is formed on the photoconductor. Also, there is a problem that an accurate image corresponding to the image data cannot be obtained.
[0007]
Further, according to the conventional optical printer head described above, in order to connect the bonding wire 32 to the connection pad 26 of the light emitting element array chip 25, the connection pad 26 is used to connect the ball-shaped nail head of the bonding wire 32. Therefore, the size of the light emitting element array chip 25 cannot be reduced, and the number of chips to be manufactured when manufacturing a large number of chips from a single wafer substrate is reduced. Therefore, there is a problem that the price of an optical printer head using a large number of light emitting element array chips 25 cannot be reduced.
[0008]
In order to solve these problems, a collective wiring type optical printer head that does not use wire bonding has been proposed.
[0009]
Regarding such a collective wiring type optical printer head, the present applicant has proposed a new configuration in Japanese Patent Application No. 2002-167044. The contents will be described with reference to the cross-sectional view shown in FIG.
[0010]
In FIG. 1, 1 is a substrate constituting a circuit board, 2 is a first circuit conductor, 3 is an insulating layer, 4 is a fixing adhesive, and 5 is a light emitting element array chip. Reference numeral 6 denotes a connection pad of the light emitting element array chip 5, 7 denotes a light emitting element, 8 denotes an adhesive filling the gap between the concave portion 1 a of the substrate 1 and the light emitting element array chip 5, and 9 denotes light emission from the first circuit conductor 2. Second circuit conductors 10 which are circuit conductors electrically connecting the connection pads 6 of the element array chip 5 are protective films. According to the optical printer head shown in FIG. 1, the concave portion 1a in which the light emitting element array chip 5 is embedded is formed on the upper surface of the substrate 1, and the light emitting element array chip 5 is fixed to the bottom of the concave portion 1a by the fixing adhesive 4. Further, the adhesive 8 is filled in the gap between the inner surface of the recess 1 a and the side surface of the light emitting element array chip 5, and the insulating layer 3 is formed via the upper surface of the insulating layer 3 on the substrate 1 and the upper surface 8 a of the adhesive 8. The second circuit conductor 9 is electrically connected from the circuit conductor 2 exposed from the opening 3 a to the connection pad 6 of the light emitting element array chip 5, and a protective film 10 is formed on the upper surface of the second circuit conductor 9. ing. Thus, when the second circuit conductor 9 is formed in a pattern, these can be simultaneously and collectively connected to the connection pads 6 of the light emitting element array chip 5, and these are connected by wire bonding or the like. Compared to the case, the time required for the connection work can be shortened.
[0011]
[Patent Document 1]
JP-A-1-34760
[Patent Document 2]
JP-A-1-208874
[Patent Document 3]
JP-A-4-87383 [0014]
[Problems to be solved by the invention]
However, even in such a batch wiring type optical printer head, when the second circuit conductor 9 is formed by a printing method, good printing accuracy can be ensured depending on the shape of the second circuit conductor 9. This makes it difficult to reduce the size of the optical printer head, or there is a problem that improvement is desired such that the second circuit conductor 9 is likely to receive electrical noise.
[0015]
The present invention has been devised in view of the above-described problems, and an object of the present invention is to obtain a predetermined image corresponding to high-resolution image data, and to have a small size and excellent productivity. To provide a head.
[0016]
[Means for Solving the Problems]
The optical printer head of the present invention is provided with a number of first circuit conductors on a substrate, and a plurality of light emitting elements and connections on the upper surface of the circuit substrate formed by coating an insulating layer on the first circuit conductors. An optical printer head having a light emitting element array chip having a pad and electrically connecting the first circuit conductor to the connection pad, wherein the light emitting element array chip is embedded in an upper surface of the substrate. A recess is formed and an adhesive is filled in a gap between the inner surface of the recess and the side surface of the light emitting element array chip, and one end of the first circuit conductor is placed on the insulating layer and the adhesive from the upper surface of the substrate. A second circuit conductor extending in parallel to each other in the same direction and extending to the connection pad of the light emitting element array chip is formed and electrically connected to the connection pad. It is intended.
[0017]
The optical printer head of the present invention is characterized in that, in the above configuration, the second circuit conductors are formed in parallel to each other in a direction orthogonal to the arrangement of the light emitting elements. is there.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an optical printer head of the present invention will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical printer head of the present invention, and FIG. 2 is an enlarged plan view of a main part thereof. FIG. 3 is an enlarged cross-sectional view of the main part similar to FIG. 2, showing another example of the embodiment of the present invention. FIG. 4 is a sectional view showing still another example of the embodiment of the optical printer head of the present invention, and FIG. 5 is an enlarged plan view of a main part thereof. In these drawings, the same parts are denoted by the same reference numerals, 1 is a substrate, 2 is a first circuit conductor, 3 is an insulating layer, and a number of first circuit conductors 2 are provided on the substrate 1. The circuit board is formed by covering the first circuit conductor 2 with the insulating layer 3. Reference numeral 4 denotes a fixing adhesive, and 5 denotes a light emitting element array chip. The light emitting element array chip 5 is fixed to the bottom of a recess 1 a formed on the upper surface of the substrate 1 by a fixing adhesive 4. 6 is a connection pad of the light emitting element array chip 5, and 7 is a light emitting element. Reference numeral 8 denotes an adhesive filled in the gap between the inner surface of the recess 1a and the side surface of the light emitting element array chip 5, 9 denotes a second circuit conductor, and 10 denotes a protective film.
[0020]
The substrate 1 constituting the circuit board is made of, for example, a resin such as a glass cloth base epoxy resin, a glass cloth base BT (bismaleimide / triazine) resin, or a glass cloth base polyphenylene ether. A large number of first circuit conductors 2 functioning as power supply wirings for supplying power to the light emitting elements 7 on the light emitting element array chip 5 are formed on the upper surface of the substrate 1. These first circuit conductors 2 are made of a metal such as copper, for example.
[0021]
Next, an insulating layer 3 is formed to insulate the first circuit conductor 2 from the second circuit conductor 9 to be formed later, and to prevent and protect the first circuit conductor 2 from corrosion. The insulating layer 3 is made of, for example, an epoxy resin, an acrylic resin, a phenol resin, or the like.
[0022]
Next, a metal such as nickel and gold is formed on the surface of the first circuit conductor 2 exposed in the opening 3a formed in a part of the insulating layer 3 so as to be positioned on the first circuit conductor 2. Layer 2a is formed. By forming this metal layer 2a, corrosion of the first circuit conductor 2 can be prevented, and electrical connection with the second circuit conductor 9 to be formed later is made favorable. Can do. Here, for example, the metal layer 2a made of expensive gold having corrosion resistance is selectively deposited only on a portion exposed in the opening 3a of the first circuit conductor 2, so that the consumption of gold is reduced. The amount does not increase and does not increase the cost of the optical printer head.
[0023]
In addition, on the upper surface of the substrate 1, the depth (the light emitting element array chip 5 and the fixing adhesive 4 and the thickness of the light emitting element array chip 5 and the fixing adhesive 4 for fixing the light emitting element array chip 5 is substantially equal to the thickness). (A depth within ± 0.1 mm with respect to the total thickness) is provided.
[0024]
The substrate 1 has a large number of first circuit conductors 2 disposed on the upper surface thereof, and a large number of light emitting element array chips 5 disposed and fixed in a recess 1a by a fixing adhesive 4, and supports these. It functions as a supporting member.
[0025]
If the substrate 1 is made of a glass cloth base epoxy resin or the like, the glass cloth base formed using glass fibers is impregnated with a liquid epoxy resin and cured, and then cut into a predetermined shape. It is manufactured by processing the outer shape. Next, the concave portion 1a is formed on the upper surface of the obtained substrate 1 by half dicing with a blade having a predetermined width using a dicer or the like.
[0026]
Further, the light emitting element array chip 5 embedded in the recess 1a has a large number of light emitting elements 7 and connection pads 6 electrically connected to the light emitting elements 7 on the upper surface thereof so as to have a resolution of, for example, 300 dpi or more. The fixing adhesive 4 disposed between the bottom surface of the recess 1a and the bottom surface of the light emitting element array chip 5 is fixed at a predetermined position in the recess 1a.
[0027]
The gap between the inner surface of the recess 1a and the side surface of the light emitting element array chip 5 fixed to the recess 1a with the fixing adhesive 4 is filled with, for example, an adhesive 8 having a thermosetting temperature of room temperature to 80 ° C. Then, by thermosetting, the upper surface of the substrate 1, the upper surface of the light emitting element array chip 5, and the upper surface 8a of the adhesive 8 are flattened within ± 0.1 mm.
[0028]
A number of light emitting elements 7 provided on the upper surface of the light emitting element array chip 5 are linearly arranged in the main scanning direction at a density of 600 dpi, for example. These light-emitting elements 7 have a structure in which a p-type semiconductor and an n-type semiconductor made of, for example, AlGaAs or GaAsP are stacked and pn-bonded to each other. When external power supply power is applied via the circuit conductor 9 of 2 and the like, electrons are injected into the p-type semiconductor of the light-emitting element 7 and holes are injected into the n-type semiconductor, and these are injected in the vicinity of the pn junction. By recombining and converting the energy generated during the recombination into light, light is emitted at a predetermined wavelength and brightness.
[0029]
The light emitting element array chip 5 employs semiconductor manufacturing technology, specifically, MOCVD (Metal Organic Chemical Deposition) method, etc., and epitaxially grows the above compound semiconductor on the upper surface of a substrate made of single crystal GaAs or Si. After the light emitting element 7 is formed, the connection pads 6 are deposited in a predetermined pattern by a thin film forming technique.
[0030]
Further, in order to fix the obtained light emitting element array chip 5 in the recess 1a of the substrate 1, first, the light emitting element array chip 5 is fixed to the bottom of the recess 1a using the fixing adhesive 4, and then the recess 1a. A gap between the inner wall surface and the side surface of the light emitting element array chip 5 is filled with an adhesive 8 mainly composed of an epoxy resin, an acrylic resin, a phenol resin, a silicone resin, or the like using a dispenser or a printing machine. Thereafter, the light emitting element array chip 5 is embedded in the recess 1a by thermosetting it at a predetermined temperature.
[0031]
At this time, if the adhesive 8 is filled with the dispenser, the shape of the gap between the inner wall surface of the recess 1 a and the side surface of the light emitting element array chip 5, the amount of cure shrinkage of the adhesive 8, and the bottom of the light emitting element array chip 5 are used. The discharge amount of the adhesive 8 from the dispenser is controlled in consideration of the amount of wraparound between the chips, and after the adhesive 8 is cured, the upper surface of the substrate 1, the upper surface of the light emitting element array chip 5, and the upper surface 8 a of the adhesive 8. The gap 8 is filled with the adhesive 8 so that they are in the same plane.
[0032]
At this time, the discharge amount of the adhesive 8 may be adjusted by changing the discharge pressure of the dispenser or the relative scanning speed with respect to the concave portion 1a of the dispenser. If the adhesive 8 is filled by a printing machine, the adhesive 8 is applied to the gap between the inner wall surface of the recess 1a and the side surface of the light emitting element array chip 5 by a printing technique such as hole filling printing or vacuum printing. What is necessary is just to embed and fill.
[0033]
Thereby, the upper surface of the light emitting element array chip 5, the upper surface of the substrate 1, and the upper surface 8a of the adhesive 8 are arranged in substantially the same plane. Here, in the adhesive 8, a predetermined amount (for example, 40% by mass) of a highly thermally conductive inorganic filler such as silica or alumina is used in order to make the thermal expansion coefficient close to that of the light emitting element array chip 5 or the resin substrate 1. ~ 90 mass%) is preferably added. Further, the viscosity of the adhesive 8 is preferably adjusted to, for example, 1 Pas to 200 Pas so that the adhesive 8 can penetrate well deeply into the gap and can be satisfactorily surface leveled.
[0034]
The second circuit conductor 9 formed so as to reach from the first circuit conductor 2 on the substrate 1 to the connection pad 6 of the light emitting element array chip 5 via the insulating layer 3 and the adhesive 8 is a light emitting element. It functions as a power supply wiring for supplying power to the light emitting elements 7 of the array chip 5 and is made of, for example, a conductive resin containing a metal such as aluminum, copper, gold, nickel, or a filler such as silver, copper. Is formed. One end side of the second circuit conductor 9 is electrically connected to the first circuit conductor 2 on the substrate 1, and the other end side emits light from the substrate 1 through the insulating layer 3 and the adhesive 8. It extends to the corresponding connection pad 6 on the element array chip 5 and is electrically connected to the connection pad 6.
[0035]
In the optical printer head of the present invention, as shown in FIG. 2, the second circuit conductors 9 are formed in parallel to each other in the same direction and are electrically connected to the corresponding connection pads 6 respectively. . In this way, a large number of second circuit conductors 9 that electrically connect one end of the first circuit conductor 2 and the corresponding connection pad 6 are formed in parallel to each other in the same direction. For example, in the case of forming by the printing method, when various directions are mixed, the optimum conditions for printing differ depending on the directions, so the variation in the formation width of the second circuit conductor 9 increases, but they are parallel to each other in the same direction. In the case of being formed, since the formation conditions can be narrowed down to the optimum conditions, the variation in the formation width of the second circuit conductor 9 can be reduced, and the productivity can be increased.
[0036]
Further, as shown in FIGS. 3 and 5, the second circuit conductors 9 are directed in a direction orthogonal to the arrangement of the light emitting elements 7 (usually in the same direction as the arrangement of the connection pads 6). It is desirable that they are formed parallel to each other. When the second circuit conductors 9 are formed parallel to each other in a direction orthogonal to the direction of the arrangement of the light emitting elements 7 (or the arrangement of the connection pads 6), the second circuit conductor 9 is formed by printing. In this case, the printing direction is set to the same direction as the arrangement of the light emitting elements 7 (the arrangement of the connection pads 6). Since the positional accuracy of the formation of the second circuit conductor 9 is improved, the second circuit conductor 9 can be connected to the corresponding connection pads 6 with high accuracy, and the productivity can be further increased.
[0037]
In these cases, a large number of second circuit conductors 9 are directly attached to the upper surface of the insulating layer 3, the adhesive 8 and the light emitting element array chip 5, so that vibrations from the outside are not generated when the optical printer head is used. Even if an impact is applied, the second circuit conductors 9 adjacent to each other are not short-circuited, and this can contribute to an improvement in the reliability of the optical printer head. Further, since the second circuit conductor 9 extending over the connection pad 6 is entirely formed in a film shape, the light emitting element array chip 5 has a nail head such as a bonding wire. There is no large object that reflects light, so when using the optical printer head of the present invention, unnecessary light such as reflected light is irradiated to an external photoconductor to form an unnecessary latent image. Thus, it is possible to effectively prevent the image from being generated and to obtain a high-resolution image corresponding to the image data.
[0038]
Note that the second circuit conductor 9 is a first method in which a conductive paste obtained by kneading the above-described metal filler with a resin is exposed in the opening 3 a of the insulating layer 3 by using a printing method such as a screen printing method. After the circuit conductor 2, the insulating layer 3, the adhesive 8 and the connection pad 6 are deposited in a predetermined pattern with a thickness of 10 μm to 20 μm, for example, at a predetermined temperature, preferably 80 ° C. or higher, It is formed by thermosetting at a temperature below the glass transition point of the adhesive 8. At this time, when the level difference between the bottom and top surface of the opening 3a of the insulating layer 3 is large, only the opening 3a of the insulating layer 3 may be selectively embedded in the second circuit conductor 9. . Further, the second circuit conductor 9 may be formed by employing a plating method, a photo process, or the like.
[0039]
Such a second circuit conductor 9 is connected to a large number of connection pads 6 provided on the upper surface of the light emitting element array chip 5 simultaneously and collectively when forming the pattern itself. Therefore, the time required for the connection work can be greatly reduced as compared with the conventional case of connecting by wire bonding or the like, and the productivity of the optical printer head can be improved.
[0040]
Further, for the connection between the second circuit conductor 9 and the connection pad 6 on the upper surface of the light emitting element array chip 5, the size of the connection pad 6 is sufficient to be about several tens of μm square. 5 can be reduced in size, and an optical printer head using a large number of light emitting element array chips 5 can be reduced in size and cost.
[0041]
And in order to protect the 2nd circuit conductor 9 from corrosion, the protective film 10 which consists of resin is formed so that the 2nd circuit conductor 9 may be covered. Such a protective film 10 covers the second circuit conductor 9 and does not cover the light emitting element 7 by providing the opening 10a as in the example shown in FIGS. Thus, for example, it can be easily formed by screen printing regardless of the thickness, color, and presence of filler.
[0042]
The protective film 10 is transparent to light emitted from the light emitting element 7 so as to cover the surface of the light emitting element 7 of the light emitting element array chip 5 together with the second circuit conductor 9 as in the example shown in FIGS. 4 and 5. By covering with the protective film 10, for example, the alignment accuracy of screen printing can be lowered, and the productivity can be increased. In this case, the protective film 10 can be applied and formed by a dispenser or spray.
[0043]
Thus, such an optical printer head of the present invention selectively causes the light emitting elements 7 of the light emitting element array chip 5 to emit light individually based on image data from the outside, and emits the emitted light such as a rod lens (not shown). It functions as an optical printer head that can form an image by irradiating an external photoreceptor via an optical system to form a desired high-resolution latent image on the photoreceptor.
[0044]
Then, the latent image formed on the photoconductor becomes a toner image through a development process, and the toner image is transferred to a recording sheet and fixed, whereby a predetermined image is recorded on the recording sheet. .
[0045]
The present invention is not limited to the embodiments described above, and various changes and improvements can be made without departing from the scope of the present invention.
[0046]
For example, in the example of the above-described embodiment, a driving IC for controlling light emission of the light emitting element 7 may be mounted on the upper surface or the lower surface of the substrate 1.
[0047]
Furthermore, in the example of the above-described embodiment, the shape of the adhesive 8 can be stabilized in the arrangement region of the light emitting element array chips 5 by disposing dummy chips on both sides of the row of the light emitting element array chips 5. In addition, the second circuit conductor 9 can be stably formed in a predetermined pattern.
[0048]
Furthermore, in the example of the above embodiment, the LED array head using the light emitting diode as the light emitting element 7 has been described as an example. However, other optical printer heads such as an EL head, a plasma dot head, and a liquid crystal shutter head are used. The present invention can also be applied to fluorescent heads, PLZT heads, and the like.
[0049]
【The invention's effect】
As described above, according to the optical printer head of the present invention, a large number of first circuit conductors are provided on a substrate, and an upper surface is formed on the circuit substrate formed by coating an insulating layer on these first circuit conductors. An optical printer head having a light emitting element array chip having a plurality of light emitting elements and connection pads mounted thereon, and electrically connecting the first circuit conductor to the connection pads. A recess is formed in which the element array chip is embedded, an adhesive is filled in a gap between the inner surface of the recess and the side surface of the light emitting element array chip, and one end of the first circuit conductor is insulated from the upper surface of the substrate. Second circuit conductors extending in parallel to each other in the same direction and extending to the connection pads of the light emitting element array chip through the layers and the adhesive are electrically connected to the connection pads. Connection Therefore, for example, when forming by the printing method, when the various directions coexist, the optimum conditions for printing differ depending on the directions, so the variation in the formation width of the second circuit conductor becomes large. In the case where they are formed in parallel, the formation conditions can be narrowed down to the optimum conditions, so that the variation in the formation width of the second circuit conductor can be reduced and the productivity can be increased.
[0050]
According to the optical printer head of the present invention, in the above configuration, when the second circuit conductors are formed in parallel to each other in the direction orthogonal to the arrangement of the light emitting elements, the second circuit conductor is printed by the second printer. When the circuit conductor is formed, the printing direction is set to the same direction as the light emitting element array (connection pad array), so that the second direction in the direction orthogonal to the direction of the light emitting element array (connection pad array) is obtained. The position accuracy of forming the second circuit conductor is improved, and the second circuit conductor can be connected to the corresponding connection pad with high accuracy, so the printing accuracy of the second circuit conductor formed by the printing method is improved. Therefore, an optical printer head that is smaller and has less electrical noise can be manufactured.
[0051]
As described above, according to the present invention, the image has a good print quality capable of obtaining a predetermined image corresponding to high-resolution image data, is small in size, can be mass-produced, and has high productivity and high reliability. An optical printer head could be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical printer head of the present invention.
FIG. 2 is a main part enlarged plan view showing an example of an embodiment of an optical printer head of the present invention.
FIG. 3 is a main part enlarged plan view showing another example of the embodiment of the optical printer head of the present invention.
FIG. 4 is a cross-sectional view showing still another example of the embodiment of the optical printer head of the present invention.
FIG. 5 is a main part enlarged plan view showing still another example of the embodiment of the optical printer head of the present invention.
FIG. 6 is a cross-sectional view showing an example of a conventional optical printer head.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate 1a ... Recess 2 ... 1st circuit conductor 3 ... Insulating layer 4 ... Fixing adhesive 5 ... Light emitting element array chip 6 ... Connection pad 7 ... -Light emitting element 8 ... Adhesive 9 ... Second circuit conductor 10 ... Protective film

Claims (2)

基板上に多数の第1の回路導体を設け、これら第1の回路導体の上に絶縁層を被覆してなる回路基板上に、上面に多数の発光素子および接続パッドを有する発光素子アレイチップを搭載し、前記第1の回路導体を前記接続パッドに電気的に接続してなる光プリンタヘッドであって、前記基板の上面に前記発光素子アレイチップが埋設される凹部を形成するとともに該凹部の内面と前記発光素子アレイチップの側面との間隙に接着剤を充填し、前記第1の回路導体の一端を前記基板の上面より前記絶縁層上および前記接着剤上を介して前記発光素子アレイチップの前記接続パッド上まで延在させた、同じ方向に向かって互いに平行な第2の回路導体を形成して前記接続パッドに電気的に接続したことを特徴とする光プリンタヘッド。A light emitting element array chip having a number of light emitting elements and connection pads on an upper surface is provided on a circuit board in which a large number of first circuit conductors are provided on a substrate and an insulating layer is coated on the first circuit conductors. An optical printer head mounted and electrically connected with the first circuit conductor to the connection pad, wherein a concave portion in which the light emitting element array chip is embedded is formed on an upper surface of the substrate, and the concave portion An adhesive is filled in a gap between the inner surface and the side surface of the light emitting element array chip, and one end of the first circuit conductor is disposed on the insulating layer and the adhesive from the upper surface of the substrate through the light emitting element array chip. An optical printer head characterized in that second circuit conductors extending in the same direction and extending to above the connection pads are formed and electrically connected to the connection pads. 前記第2の回路導体は、前記発光素子の配列に対して直交する方向に向かって互いに平行に形成されていることを特徴とする請求項1記載の光プリンタヘッド。2. The optical printer head according to claim 1, wherein the second circuit conductors are formed in parallel to each other in a direction orthogonal to the arrangement of the light emitting elements.
JP2003203396A 2003-07-29 2003-07-29 Optical printer head Pending JP2005050871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203396A JP2005050871A (en) 2003-07-29 2003-07-29 Optical printer head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203396A JP2005050871A (en) 2003-07-29 2003-07-29 Optical printer head

Publications (1)

Publication Number Publication Date
JP2005050871A true JP2005050871A (en) 2005-02-24

Family

ID=34262749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203396A Pending JP2005050871A (en) 2003-07-29 2003-07-29 Optical printer head

Country Status (1)

Country Link
JP (1) JP2005050871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118127A (en) * 2006-11-07 2008-05-22 Korai Kagi Kofun Yugenkoshi Light-emitting diode and its manufacturing method
US8283683B2 (en) 2006-11-07 2012-10-09 Opto Tech Corporation Chip-bonding light emitting diode chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118127A (en) * 2006-11-07 2008-05-22 Korai Kagi Kofun Yugenkoshi Light-emitting diode and its manufacturing method
US8283683B2 (en) 2006-11-07 2012-10-09 Opto Tech Corporation Chip-bonding light emitting diode chip
US8592234B2 (en) 2006-11-07 2013-11-26 Opto Tech Corporation Method for manufacturing a LED

Similar Documents

Publication Publication Date Title
EP1730792B1 (en) Manufacturing method of led mounting module, and manufacturing method of led module
CN105826448B (en) For manufacturing the method for opto-electronic semiconductor module and opto-electronic semiconductor module
US8073028B2 (en) Light emitting apparatus, optical scanning apparatus, and image forming apparatus
CN110299442B (en) LED display module and manufacturing method thereof
KR100976607B1 (en) LED packagee of COM type, LED module using the same and method of manufacturing thereof
JP2004079750A (en) Light emitting device
JP6110310B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP2003011417A (en) Optical print head
JP2005050871A (en) Optical printer head
JP2005050873A (en) Optical printer head
JP2005153335A (en) Optical printer head
JP2005050874A (en) Optical printer head
JP2003011416A (en) Optical print head
JP2005050870A (en) Optical printer head
JP2005047035A (en) Process for manufacturing optical printer head
JP2004216649A (en) Optical printer head
JP2005014321A (en) Optical printer head
JP2005047032A (en) Optical printer head
JP2005050869A (en) Optical printer head
JP2005047036A (en) Optical printer head
JP2005050872A (en) Optical printer head
JP2005047033A (en) Optical printer head
JP4511273B2 (en) Optical printer head, manufacturing method thereof, and optical printer
JP2002326384A (en) Optical printer head
JP2003103826A (en) Optical printer head