JP2005048717A - Swirl chamber type combustion chamber of diesel engine - Google Patents

Swirl chamber type combustion chamber of diesel engine Download PDF

Info

Publication number
JP2005048717A
JP2005048717A JP2003283365A JP2003283365A JP2005048717A JP 2005048717 A JP2005048717 A JP 2005048717A JP 2003283365 A JP2003283365 A JP 2003283365A JP 2003283365 A JP2003283365 A JP 2003283365A JP 2005048717 A JP2005048717 A JP 2005048717A
Authority
JP
Japan
Prior art keywords
combustion chamber
diesel engine
vortex chamber
auxiliary communication
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003283365A
Other languages
Japanese (ja)
Other versions
JP4085035B2 (en
Inventor
Koichi Funaki
耕一 舩木
Seishiro Kubo
政士郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003283365A priority Critical patent/JP4085035B2/en
Priority to EP03019967A priority patent/EP1403482B1/en
Priority to DE60332203T priority patent/DE60332203D1/en
Priority to US10/663,186 priority patent/US6899076B2/en
Priority to KR1020030064645A priority patent/KR101034072B1/en
Priority to CNB031587046A priority patent/CN100356044C/en
Publication of JP2005048717A publication Critical patent/JP2005048717A/en
Priority to US11/601,616 priority patent/USRE41344E1/en
Application granted granted Critical
Publication of JP4085035B2 publication Critical patent/JP4085035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/08Engines characterised by precombustion chambers the chamber being of air-swirl type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a swirl chamber type combustion chamber of a diesel engine, heightening the utilization factor of air in the central part of a swirl chamber through an auxiliary communicating hole. <P>SOLUTION: In this swirl chamber type combustion chamber of a diesel engine, a lower wall 10 of a mouthpiece is provided with at least a pair of right and left auxiliary communicating holes 12, 12. Supposing that a spherical body 15 is formed around the central point 7c of an upper opening surface 7b of a recess 7a of the mouthpiece 7, and when the length of the radius of the upper opening surface 7b of the recess 7a of the mouthpiece 7 is taken as 100%, the length of the radius of the spherical body 15 is set to 70%, the respective auxiliary communicating holes 12 are directed so that the swirl chamber side extension line 12b of the central axis 12a of each auxiliary communicating hole passed through the inside of the spherical body 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ディーゼルエンジンのうず室式燃焼室に関するものである。     The present invention relates to a vortex chamber combustion chamber of a diesel engine.

従来のディーゼルエンジンのうず室式燃焼室として、図10に示すものがある(例えば、特許文献1参照)。
これは、次のようになっている。
図10(B)に示すように、シリンダ(101)内のピストン(102)の上死点方向を上、下死点方向を下、シリンダ中心軸線(103)寄りを後、シリンダ周壁(104)寄りを前とする。
シリンダ周壁(104)の上方で、シリンダヘッド(105)の下部に上向きの凹部(106)を設け、この凹部(106)の入口に口金(107)を嵌め、凹部(106)の奥の上向きの窪み(106a)と口金(107)内の下向きの窪み(107a)とでうず室(108)を形成し、シリンダ(101)内に主燃焼室(109)を形成し、口金下壁(110)の後寄りに噴口(111)を設け、この噴口(111)を主燃焼室(109)からうず室(108)に向けて前向きに上り傾斜させ、この噴口(111)で主燃焼室(109)とうず室(108)とを連通させている。
口金下壁(110)に左右一対の補助連通孔(112)(112)を設け、各補助連通孔(112)を、噴口(111)から分離させ、図10(A)に示すように、口金(107)を真上から見た場合に、各補助連通孔(112)を噴口中心軸線(113)のうず室側延長線(114)の両横にくるように分配している。
A conventional vortex chamber combustion chamber of a diesel engine is shown in FIG. 10 (see, for example, Patent Document 1).
This is as follows.
As shown in FIG. 10 (B), the top dead center direction of the piston (102) in the cylinder (101) is up, the bottom dead center direction is down, the cylinder center axis (103) is close, and the cylinder peripheral wall (104) The front is the front.
An upward concave portion (106) is provided in the lower portion of the cylinder head (105) above the cylinder peripheral wall (104), and a base (107) is fitted into the inlet of the concave portion (106) so that the upper portion of the concave portion (106) faces upward. The depression (106a) and the downward depression (107a) in the base (107) form a swirl chamber (108), the main combustion chamber (109) is formed in the cylinder (101), and the base lower wall (110) A nozzle hole (111) is provided on the rear side, and the nozzle hole (111) is inclined upward from the main combustion chamber (109) toward the vortex chamber (108), and the main combustion chamber (109) is inclined at the nozzle hole (111). The torsion chamber (108) is in communication.
A pair of left and right auxiliary communication holes (112) and (112) are provided in the lower wall (110) of the base, and each auxiliary communication hole (112) is separated from the injection hole (111), and as shown in FIG. When viewing (107) from directly above, each auxiliary communication hole (112) is distributed so as to be on both sides of the vortex chamber side extension line (114) of the nozzle center axis (113).

しかし、この従来技術は、次の点で本願発明と相違している。
口金(107)の窪み(107a)の上開口面(107b)の中心点(107c)を中心とする球体(115)を想定し、口金(107)の窪み(107a)の上開口面(107b)の半径の長さを100%として、球体(115)の半径を70%の長さとした場合、各補助連通孔中心軸線(112a)のうず室側延長線(112b)が、上記球体(115)外を通過するように、各補助連通孔(112)を方向付けている。半径が70%の球体(115)は、図10(A)(B)に示す二重の球体のうちの外側のものである。
However, this prior art is different from the present invention in the following points.
Assuming a sphere (115) centered on the center point (107c) of the upper opening surface (107b) of the recess (107a) of the base (107), the upper opening surface (107b) of the recess (107a) of the base (107). When the radius of each of the spheres (115) is 70% and the radius of each of the auxiliary communication hole central axes (112a) is extended to the vortex chamber side extension line (112b), the sphere (115) Each auxiliary communication hole (112) is oriented so as to pass outside. A sphere (115) having a radius of 70% is an outer one of the double spheres shown in FIGS. 10 (A) and 10 (B).

この従来技術では、圧縮行程で、各補助連通孔(112)からうず室(108)に押し込まれる補助空気が、うず室(108)の中心部には至らず、この部分の空気に影響を与えることができない。このため、この補助連通孔(112)でうず室(108)の中心部の空気の利用率を高めることができない。   In this prior art, the auxiliary air pushed into the vortex chamber (108) from each auxiliary communication hole (112) in the compression stroke does not reach the central portion of the vortex chamber (108) and affects the air in this portion. I can't. For this reason, the utilization rate of the air in the central portion of the vortex chamber (108) cannot be increased by the auxiliary communication hole (112).

また、この従来技術では、図10(A)に示すように、口金(107)を真上から見た場合に、各補助連通孔(112)の上開口の中心(112c)が、半径50%の球体(15)と重ならないように、各補助連通孔(112)を配置している。半径が50%の球体(115)は、図10(A)(B)に示す二重の球体のうちの内側のものである。   Further, in this prior art, as shown in FIG. 10A, when the base (107) is viewed from directly above, the center (112c) of the upper opening of each auxiliary communication hole (112) has a radius of 50%. Each auxiliary communication hole (112) is arranged so as not to overlap the spherical body (15). The sphere (115) having a radius of 50% is the inner one of the double spheres shown in FIGS.

この従来技術では、口金(107)を真上から見た場合に、各補助連通孔(112)の上開口の中心(112c)が、うず室(108)の中心から前方に大きく離れるため、各補助連通孔(112)を垂直方向に向けたとしても、各補助連通孔(112)のうず室側中心延長線(112b)を半径50%の球体(115)内に通過させることはできない。図10(B)に各補助連通孔(112)を垂直な方向に向けた場合の補助連通孔(112)のうず室側中心延長線(112b)を、本来のうず室側延長線(112b)の右側に示す。   In this prior art, when the base (107) is viewed from directly above, the center (112c) of the upper opening of each auxiliary communication hole (112) is far away from the center of the vortex chamber (108). Even if the auxiliary communication holes (112) are oriented in the vertical direction, the vortex chamber side center extension line (112b) of each auxiliary communication hole (112) cannot pass through the sphere (115) having a radius of 50%. In FIG. 10 (B), the vortex chamber side center extension line (112b) of the auxiliary communication hole (112) when the auxiliary communication holes (112) are oriented in the vertical direction is shown as the original vortex chamber side extension line (112b). It is shown on the right side.

特開平7−97924号公報(図7、図8参照)JP-A-7-97924 (see FIGS. 7 and 8)

本発明は、上記問題点を解決することができる、ディーゼルエンジンのうず室式燃焼室を提供することを課題とする。   This invention makes it a subject to provide the vortex chamber type combustion chamber of a diesel engine which can solve the said problem.

(請求項1〜6に係る発明)
請求項1〜6に係る発明は、補助連通孔の方向付けと配置の工夫に関する発明である(図1、図7〜図9参照)。
請求項1に係る発明では、口金(7)の窪み(7a)の上開口面(7b)の中心点(7c)を中心とする球体(15)を想定し、口金(7)の窪み(7a)の上開口面(7b)の半径の長さを100%として、球体(15)の半径を70%の長さとし、
図1、図7〜図9の各分図(B)(D)に示すように、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が球体(15)内を通過するように、各補助連通孔(12)を方向付けている。
(Invention according to claims 1 to 6)
The inventions according to claims 1 to 6 are inventions relating to the orientation and arrangement of the auxiliary communication holes (see FIGS. 1 and 7 to 9).
In the invention according to claim 1, assuming a sphere (15) centering on the center point (7c) of the upper opening surface (7b) of the recess (7a) of the base (7), the recess (7a) of the base (7) is assumed. ) Where the radius of the upper opening surface (7b) is 100%, the radius of the sphere (15) is 70%,
As shown in FIGS. 1 and 7 to 9 (B) and (D), the vortex chamber side extension line (12b) of each auxiliary communication hole central axis (12a) passes through the sphere (15). Thus, each auxiliary communication hole (12) is oriented.

請求項2と請求項3に係る発明では、球体(15)の半径を、それぞれ60%、50%の長さとしている。   In the inventions according to claim 2 and claim 3, the radius of the sphere (15) is 60% and 50% respectively.

請求項4に係る発明では、図1、図7〜図9の各分図(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)の上開口の中心(12c)が、半径50%の球体(15)と重なるように、各補助連通孔(12)を配置している。   In the invention according to claim 4, as shown in the respective partial views (A) of FIGS. 1 and 7 to 9, when the base (7) is viewed from directly above, the top of each auxiliary communication hole (12). Each auxiliary communication hole (12) is arranged so that the center (12c) of the opening overlaps the sphere (15) having a radius of 50%.

請求項5と請求項6に係る発明は、各補助連通孔(12)の垂直方向に対する傾斜角度の制限に関する発明で、請求項4に係る発明では、図1、図7〜図9の各分図(B)に示すように、口金(7)を真横から見た場合の傾斜角度が30°以下となり、請求項5に係る発明では、図1、図7〜図9の各分図(D)に示すように、口金(7)を真後ろから見た場合の傾斜角度が15°以下となるようにしている。   The inventions according to claims 5 and 6 are inventions related to limiting the inclination angle of each auxiliary communication hole (12) with respect to the vertical direction. In the invention according to claim 4, each of the components shown in FIGS. As shown in FIG. (B), the angle of inclination when the base (7) is viewed from the side is 30 ° or less. In the invention according to claim 5, each of the partial views (D of FIG. 1 and FIGS. ), The inclination angle when the base (7) is viewed from directly behind is set to be 15 ° or less.

請求項1〜6、及び他の請求項で用いる主要な用語の正確な定義は、次の通りである。
噴口中心軸線(13)とは、噴口(11)が脇噴口(18)を備えている場合には、主噴口中心軸線(17a)のことをいう。
真上とは、シリンダ中心軸線(3)と平行な方向であって、ピストン(2)の上死点の方向をいう。
真後ろとは、口金底面(7d)と平行な方向であって、口金(7)を真上から見て、噴口中心軸線(13)がうず室(8)から主燃焼室(9)に進む方向をいう。
真横とは、口金底面(7d)と平行な方向であって、真後ろと直交する方向をいう。
なお、上下、前後、左右の各方向は、シリンダ中心軸線(3)の方向や噴口中心軸線(13)の方向に基づいて規定されるものであり、上下方向が常に鉛直方向を意味するものではなく、前後方向が常に水平方向を意味するものでもない。このため、この発明は、シリンダが鉛直方向を向いた縦形エンジンに限らず、シリンダが水平方向を向いた横形エンジンや、シリンダが傾斜した傾斜形エンジンにも適用される。
The exact definitions of key terms used in claims 1-6 and other claims are as follows.
The nozzle center axis (13) refers to the main nozzle center axis (17a) when the nozzle (11) includes a side nozzle (18).
“Directly above” refers to the direction parallel to the cylinder center axis (3) and the top dead center of the piston (2).
Directly behind is the direction parallel to the bottom surface (7d) of the base, and the direction in which the nozzle center axis (13) advances from the vortex chamber (8) to the main combustion chamber (9) when the base (7) is viewed from directly above. Say.
The term “straight side” refers to a direction that is parallel to the bottom surface (7d) of the base and is orthogonal to the back side.
The up / down, front / rear and left / right directions are defined based on the direction of the cylinder center axis (3) and the direction of the nozzle center axis (13), and the up / down direction does not always mean the vertical direction. The front-rear direction does not always mean the horizontal direction. For this reason, the present invention is not limited to a vertical engine in which the cylinder is directed in the vertical direction, but is also applied to a horizontal engine in which the cylinder is directed in the horizontal direction and an inclined engine in which the cylinder is inclined.

(請求項7、8に係る発明)
請求項7、8に係る発明は、補助連通孔(12)の大きさの工夫に関する発明である。
請求項7に係る発明では、噴口(11)の最小通路断面積を100%として、一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定し、請求項8に係る発明では、これを4〜10%に設定している。
(Inventions according to claims 7 and 8)
The inventions according to claims 7 and 8 are inventions related to a device for the size of the auxiliary communication hole (12).
In the invention according to claim 7, the minimum passage cross-sectional area of the nozzle (11) is set to 100%, the total of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) (12) is set to 3 to 15%, In the invention according to claim 8, this is set to 4 to 10%.

(請求項9〜14に係る発明)
請求項9〜14に係る発明は、噴口(11)の構造の工夫に関する発明である。
請求項9〜14に係る発明では、図2(A)〜(D)に示すように、噴口(11)を主噴口(17)と左右一対の脇噴口(18)(18)とで構成し、各脇噴口(18)を主噴口(17)の周側で主噴口(17)と連通させている。
(Invention according to claims 9 to 14)
The invention which concerns on Claims 9-14 is an invention regarding the device of the structure of a nozzle (11).
In the inventions according to claims 9 to 14, as shown in FIGS. 2 (A) to (D), the injection hole (11) is composed of a main injection hole (17) and a pair of left and right side injection holes (18) and (18). The side nozzle holes (18) communicate with the main nozzle holes (17) on the peripheral side of the main nozzle holes (17).

(請求項15〜18に係る発明)
請求項15〜18に係る発明は、請求項1に係る発明に請求項5〜7、9、14に係る発明の発明特定事項を組み合わせたものである。
(Invention according to claims 15 to 18)
The invention according to claims 15 to 18 is a combination of the invention according to claim 1 with the invention specific matters of the inventions according to claims 5 to 7, 9, and 14.

(請求項19、20に係る発明)
請求項19、20に係る発明は、補助連通孔(12)の方向付けに関する発明で、図1、図7の各分図(B)(D)に示すように、口金(7)を真横または真後ろから見た場合に、各補助連通孔(12)が、口金下面(7d)から垂直に立ち上がるようにしたものである。
(Inventions according to claims 19 and 20)
The inventions according to claims 19 and 20 are inventions related to the orientation of the auxiliary communication hole (12). As shown in the respective partial views (B) and (D) of FIGS. When viewed from directly behind, each auxiliary communication hole (12) rises vertically from the base lower surface (7d).

(請求項21〜24)
請求項21〜24に係る発明は、図1、図7、図2に示すように、請求項1に係る発明に、請求項19、20、7、9、14に係る発明の発明特定事項を組み合わせた発明に関するものである。
(Claims 21-24)
As shown in FIGS. 1, 7, and 2, the inventions according to claims 21 to 24 include the invention specific matters of the inventions according to claims 19, 20, 7, 9, and 14 as shown in FIG. It relates to a combined invention.

(請求項25〜28)
請求項25〜28に係る発明は、請求項1〜18に係る発明において、一対の補助連通孔(12)(12)の方向付けに関する発明である。
請求項25または26に係る発明は、図8、図9の各分図(A)〜(C)に示すように、左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて前向き、または後向きに上り傾斜させたものである。
請求項27または28に係る発明は、図8、図9の各分図(D)に示すように、真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の離間距離が、上方に行くにつれて、次第に短く、または長くなるようにしたものである。
(Claims 25-28)
The inventions according to claims 25 to 28 are inventions related to the orientation of the pair of auxiliary communication holes (12) and (12) in the inventions according to claims 1 to 18.
The invention according to claim 25 or 26 comprises a pair of left and right auxiliary communication holes (12), (12) as shown in each of FIGS. 8 (A) to 9 (C), and the main combustion chamber (9). It is inclined upward or backward toward the vortex chamber (8).
The invention according to claim 27 or 28 is a pair of left and right auxiliary communication holes (12) when the base (7) is viewed from the rear side as shown in each of the partial views (D) of FIGS. The distance of (12) is such that it gradually becomes shorter or longer as it goes upward.

(請求項1に係る発明)
請求項1に係る発明は、次の効果1、2を奏する。
《効果1》 補助連通孔により、うず室の中心部の空気の利用率を高めることができる。
請求項1に係る発明では、球体(15)の半径を70%とし、図1、図7〜図9の各分図(B)(D)に示すように、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が球体(15)内を通過するように、各補助連通孔(12)を方向付けた。このため、圧縮行程で、主燃焼室(9)から各補助連通孔(12)を介してうず室(8)に押し込まれる補助空気が、噴口(11)からうず室(8)に押し込まれるうず流を貫通し、うず流に乱れを生じさせるとともに、うず室(8)の中心部に至り、この部分の空気を撹乱し、この空気と噴射燃料との混合を助けるとともに、噴射燃料の拡散を図る。このようにして、補助連通孔(12)により、うず室(8)の中心部の空気の利用率を高めることができる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects 1 and 2.
<< Effect 1 >> The utilization rate of the air at the center of the vortex chamber can be increased by the auxiliary communication hole.
In the invention according to claim 1, the radius of the sphere (15) is set to 70%, and each auxiliary communication hole center axis (12a) is formed as shown in the respective partial views (B) and (D) of FIGS. The auxiliary communication holes (12) are oriented so that the extension line (12b) of the vortex chamber passes through the sphere (15). For this reason, in the compression stroke, auxiliary air that is pushed from the main combustion chamber (9) into the vortex chamber (8) through the auxiliary communication holes (12) is pushed from the nozzle (11) into the vortex chamber (8). The vortex flow is disturbed and the vortex flow is disturbed, and reaches the center of the vortex chamber (8). The air in this portion is disturbed, and the mixing of the air and the injected fuel is facilitated. Plan. Thus, the utilization rate of the air at the center of the vortex chamber (8) can be increased by the auxiliary communication hole (12).

《効果2》 補助連通孔により、うず室の両横部の空気の利用率を高めることができる。
請求項1に係る発明では、図1、図7〜図9の各分図(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)を噴口中心軸線(12a)またはそのうず室側延長線(12b)の両横にくるように分配した。このため、圧縮行程で、主燃焼室(9)から各補助連通孔(12)を介してうず室(8)に押し込まれる補助空気が、噴口(11)からうず室(8)に押し込まれるうず流の両横部を貫通し、うず流の両横部分に乱れを生じさせ、うず室(8)の両側部の空気を撹乱し、この空気と噴射燃料との混合を助ける。このようにして、補助連通孔(12)により、うず室(8)の両横部の空気の利用率を高めることができる。
<< Effect 2 >> The utilization rate of the air at both sides of the vortex chamber can be increased by the auxiliary communication hole.
In the invention according to claim 1, as shown in the respective partial views (A) of FIGS. 1 and 7 to 9, when the base (7) is viewed from directly above, each auxiliary communication hole (12) is formed at the nozzle hole. It distributed so that it might come to both sides of the center axis line (12a) or its extension room side extension line (12b). For this reason, in the compression stroke, auxiliary air that is pushed from the main combustion chamber (9) into the vortex chamber (8) through the auxiliary communication holes (12) is pushed from the nozzle (11) into the vortex chamber (8). It penetrates both sides of the flow, causes turbulence in both sides of the vortex, disturbs the air on both sides of the vortex chamber (8), and helps to mix this air with the injected fuel. In this way, the utilization rate of the air at both sides of the vortex chamber (8) can be increased by the auxiliary communication hole (12).

(請求項2〜6に係る発明)
請求項2、3に係る発明では、球体の半径を、それぞれ60%、50%の長さとしたため、上記効果1は一層確実なものとなる。
(Invention according to claims 2 to 6)
In the inventions according to claims 2 and 3, the radius of the sphere is set to 60% and 50%, respectively, so that the effect 1 is further ensured.

請求項4に係る発明では、図1、図7〜図9の各分図(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)の上開口の中心(12c)が、半径50%の球体(15)と重なるように、各補助連通孔(12)を配置した。このため、各補助連通孔(12)を垂直方向に向けた場合はもとより、各補助連通孔(12)を垂直方向に対してある程度傾斜させた場合であっても、各補助連通孔中心軸線(12a)のうず室側延長線(12b)がうず室(8)の中心部を確実に通過し、上記効果1は一層確実なものとなる。   In the invention according to claim 4, as shown in the respective partial views (A) of FIGS. 1 and 7 to 9, when the base (7) is viewed from directly above, the top of each auxiliary communication hole (12). Each auxiliary communication hole (12) was arranged so that the center (12c) of the opening overlapped the sphere (15) having a radius of 50%. Therefore, not only when each auxiliary communication hole (12) is oriented in the vertical direction, but also when each auxiliary communication hole (12) is inclined to some extent with respect to the vertical direction, each auxiliary communication hole central axis ( The extension line (12b) of the vortex chamber 12a) surely passes through the central portion of the vortex chamber (8), and the effect 1 is further ensured.

請求項5、6に係る発明では、図1、図7〜図9の各分図(B)(D)に示すように、各補助連通孔(12)は垂直方向に対する傾斜角度が小さいため、この傾斜角度が大きい場合に比べ、補助連通孔(12)は短くて済み、補助空気の通過抵抗が小さくなり、上記効果1は一層確実なものとなる。   In the inventions according to claims 5 and 6, as shown in the respective partial views (B) and (D) of FIGS. 1 and 7 to 9, each auxiliary communication hole (12) has a small inclination angle with respect to the vertical direction. Compared to the case where the inclination angle is large, the auxiliary communication hole (12) can be shortened, the passage resistance of the auxiliary air is reduced, and the above effect 1 is further ensured.

(請求項7、8に係る発明)
請求項7、8に係る発明では、次の効果3を奏する。
《効果3》 補助連通孔により、排気ガスの総合性能を高めることができる。
請求項7に係る発明では、噴口(11)の最小通路断面積を100%として、一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定したため、補助連通孔(12)により、窒素酸化物とスモークの各発生量のうち、一方を大きく増加させることなく、他方を十分に低減させることができ、排気ガスの総合性能を高めることができる。
この理由としては、次のようなことが考えられる。
上記合計が3%未満では、補助連通孔(12)の通路抵抗が大きくなりすぎ、補助空気の押し込み量が不足し、うず室(8)での噴射燃料の拡散が不十分となり、うず室(8)内に局所的な高温部分が発生し、窒素酸化物の発生量が十分に低減しないものと考えられる。一方、上記合計が15%を越えると、補助空気の押し込み量が増加する分だけ、噴口(11)からのうず流の押し込み量が不足し、うず室(8)での空気と噴射燃料との混合が不良になり、燃焼が悪化し、スモークの発生量が十分に低下しないものと考えられる。これに対し、上記合計を3〜15%に設定すると、このような不備が起こらないため、排気ガスの総合性能を高めることができると考えられる。
請求項8に係る発明では、上記合計を4〜10%に設定したため、上記効果3は一層確実なものとなり、窒素酸化物とスモークの各発生量を共に低減させることも可能となる。
窒素酸化物とスモークの各発生量は、一般に相反する関係にあり、一方が減少すれば、他方が増加する傾向があり、両者が共に減少するのは画期的な現象である。このような現象が生じる理由としては、補助空気流により、うず室(8)の中心部の空気を撹乱することにより、噴射燃料がうず室(8)に広く拡散され、うず室(8)内での局所的な温度上昇が回避され、窒素酸化物の発生量が低減する一方、うず室(8)の空気と噴射燃料の混合も良好になり、燃焼が改善され、スモークの発生量も同時に低減するためと考えられる。
(Inventions according to claims 7 and 8)
The invention according to claims 7 and 8 has the following effect 3.
<< Effect 3 >> The overall performance of the exhaust gas can be enhanced by the auxiliary communication hole.
In the invention according to claim 7, since the minimum passage sectional area of the nozzle hole (11) is set to 100%, the total of the minimum passage sectional areas of the pair of auxiliary communication holes (12) and (12) is set to 3 to 15%. The auxiliary communication hole (12) can sufficiently reduce one of the generation amounts of nitrogen oxide and smoke without greatly increasing one, and can improve the overall performance of exhaust gas.
The reason can be considered as follows.
If the total is less than 3%, the passage resistance of the auxiliary communication hole (12) becomes too large, the amount of auxiliary air pushed in is insufficient, the diffusion of the injected fuel in the vortex chamber (8) becomes insufficient, and the vortex chamber ( 8) It is considered that a local high temperature portion is generated in 8), and the amount of nitrogen oxide generated is not sufficiently reduced. On the other hand, if the total exceeds 15%, the amount of vortex flow from the nozzle (11) is insufficient by the amount of increase in the amount of auxiliary air, and the amount of air and injected fuel in the vortex chamber (8) is reduced. It is considered that mixing becomes poor, combustion deteriorates, and the amount of smoke generated does not decrease sufficiently. On the other hand, if the total is set to 3 to 15%, such a defect does not occur, so that it is considered that the overall performance of the exhaust gas can be improved.
In the invention which concerns on Claim 8, since the said sum was set to 4 to 10%, the said effect 3 becomes more reliable, and it becomes also possible to reduce each generation amount of a nitrogen oxide and smoke.
The generation amounts of nitrogen oxides and smoke are generally in a contradictory relationship, and if one decreases, the other tends to increase, and both decrease is an epoch-making phenomenon. The reason why such a phenomenon occurs is that the air in the center of the vortex chamber (8) is disturbed by the auxiliary air flow, so that the injected fuel is diffused widely into the vortex chamber (8), and the vortex chamber (8) While the local temperature rise at the center is avoided and the generation amount of nitrogen oxides is reduced, the mixing of the air and the injected fuel in the vortex chamber (8) is also improved, the combustion is improved, and the generation amount of smoke is simultaneously increased. This is considered to be reduced.

(請求項9〜14に係る発明)
《効果4》 脇噴口により、うず室の空気の利用率をより高めることができる。
請求項9〜14に係る発明では、図2(A)〜(D)に示すように、噴口(11)を主噴口(17)と左右一対の脇噴口(18)(18)とで構成し、各脇噴口(18)を主噴口(17)の周側で主噴口(17)と連通させている。このため、圧縮行程で主噴口(17)からうず室(8)に押し込まれる主うず流の左右両横に沿って、脇噴口(18)からうず室(8)に押し込まれる脇うず流が通過し、うず室(8)の左右両横部の空気の利用率をより高めることができる。
その理由としては、主噴口(17)と脇噴口(18)の通路抵抗の差異により、主うず流と脇うず流の速度にずれが生じ、これらの間に微小うずが発生し、この微小うずがうず室(8)の左右両横部の空気を撹乱し、ここでの空気の利用率が高まるためと考えられる。
(Invention according to claims 9 to 14)
<< Effect 4 >> The side nozzle hole can further increase the utilization rate of air in the vortex chamber.
In the inventions according to claims 9 to 14, as shown in FIGS. 2 (A) to (D), the injection hole (11) is composed of a main injection hole (17) and a pair of left and right side injection holes (18) and (18). The side nozzle holes (18) communicate with the main nozzle holes (17) on the peripheral side of the main nozzle holes (17). For this reason, the side vortex flow pushed from the side nozzle (18) into the vortex chamber (8) passes along the left and right sides of the main vortex flow pushed from the main nozzle (17) into the vortex chamber (8) in the compression stroke. And the utilization factor of the air of the right and left both sides of a vortex chamber (8) can be raised more.
The reason for this is that due to the difference in passage resistance between the main nozzle hole (17) and the side nozzle hole (18), the main vortex flow and the side vortex flow are displaced from each other, and a micro vortex is generated between them. This is thought to be because the air in the left and right sides of the vortex chamber (8) is disturbed to increase the utilization rate of the air here.

請求項10に係る発明では、図2(A)に示すように、主噴口中心軸線(17a)と直交する方向に口金(7)を真横から見た場合に、各脇噴口中心軸線(18a)が主噴口中心軸線(17a)よりも後方になるように、各脇噴口(18)を配置したため、うず室(8)の中心部での空気の利用率が高まる。これは、うず室(8)の中心部寄りで微小うずが発生するためと考えられる。   In the invention according to claim 10, as shown in FIG. 2 (A), when the mouthpiece (7) is viewed from the side in a direction orthogonal to the main nozzle center axis (17a), each side nozzle center axis (18a) Since the side nozzle holes (18) are arranged so that is located behind the central axis of the main nozzle hole (17a), the utilization rate of air at the center of the vortex chamber (8) is increased. This is presumably because minute vortexes are generated near the center of the vortex chamber (8).

請求項11に係る発明では、図2(A)に示すように、各脇噴口中心軸線(18a)の仰角が、主噴口中心軸線(17a)の仰角よりも小さくなるため、脇うず流が主うず流に後ろから衝突し、うず室(8)での空気の利用率が高まる。これは、脇うず流の衝突でうず室に微小うずが発生するためと考えられる。   In the invention according to claim 11, as shown in FIG. 2 (A), the elevation angle of each side nozzle center axis (18a) is smaller than the elevation angle of the main nozzle center axis (17a). Colliding with the vortex from behind, the air utilization rate in the vortex chamber (8) increases. This is thought to be because micro vortices are generated in the vortex chamber due to the collision of the side vortex flow.

請求項12に係る発明では、図2(D)に示すように、左右一対の脇噴口中心軸線(18a)(18a)の相互の離間距離が、前方に行くにつれて、次第に狭くなるようにしたため、うず室(8)での空気の利用率が高まる。これは、脇うず流同士の衝突でうず室(8)に微小うずが発生するためと考えられる。   In the invention according to claim 12, as shown in FIG. 2 (D), the distance between the pair of left and right side nozzle center axes (18a) and (18a) is gradually narrowed toward the front. The utilization rate of air in the vortex chamber (8) is increased. This is presumably because micro vortices are generated in the vortex chamber (8) due to the collision between the side vortex flows.

請求項13に係る発明では、図2(B)〜(D)に示すように、各脇噴口(18)の通路断面積が、前方に行くにつれて、次第に小さくなるようにしたため、うず室(8)での空気の利用率が高まる。これは、脇うず流が主うず流に衝突する速度が高まり、うず室(8)での微小うずの発生が促進されるためと考えられる。   In the invention according to the thirteenth aspect, as shown in FIGS. 2B to 2D, the passage cross-sectional area of each side injection port (18) is gradually reduced toward the front. ) Will increase the air utilization rate. This is considered to be because the speed at which the side vortex flow collides with the main vortex flow increases, and the generation of micro vortex in the vortex chamber (8) is promoted.

請求項14に係る発明では、図1、図7〜図9の各分図(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)の上開口から主噴口中心軸線(13)と平行に真後ろに後退した個所に各脇噴口(18)が位置するように、各補助連通孔(12)を配置したため、うず室(8)での空気の利用率が高まる。これは、補助空気流が脇うず流に衝突し、脇うず流にも微小うずが発生するためと考えられる。   In the invention according to claim 14, as shown in each partial view (A) of FIG. 1 and FIGS. 7 to 9, when the base (7) is viewed from directly above, the top of each auxiliary communication hole (12). Since each auxiliary communication hole (12) is arranged so that each side injection hole (18) is positioned at a position that is retracted from the opening parallel to the central axis (13) of the main injection hole, the air in the vortex chamber (8) The utilization rate increases. This is presumably because the auxiliary air flow collides with the side vortex flow and micro vortex is generated in the side vortex flow.

(請求項15〜18に係る発明)
請求項15〜18に係る発明では、その発明特定事項に応じて、請求項4〜6、9、14に係る発明の効果を奏する。
(Invention according to claims 15 to 18)
The inventions according to claims 15 to 18 exhibit the effects of the inventions according to claims 4 to 6, 9, and 14 according to the invention-specific matters.

(請求項19、20に係る発明)
《効果》 補助連通孔により、うず室の中心部の空気の利用率をより高めることができる。
請求項19、20に係る発明では、図1、図7の各分図(B)(D)に示すように、口金(7)を真横または真後ろから見た場合に、各補助連通孔(12)が垂直方向に立ちあがっているため、傾斜している場合に比べ、補助連通孔(12)は短くて済み、補助空気の通過抵抗が小さくなり、補助連通孔(12)により、うず室(8)の中心部の空気の利用率をより高めることができる。
(Inventions according to claims 19 and 20)
<Effect> The utilization rate of air in the center of the vortex chamber can be further increased by the auxiliary communication hole.
In the inventions according to claims 19 and 20, as shown in the respective partial views (B) and (D) of FIGS. 1 and 7, each auxiliary communication hole (12 ) Stand up in the vertical direction, the auxiliary communication hole (12) can be shorter than in the case of being inclined, and the auxiliary air passage resistance is reduced. ) The air utilization rate in the central part can be further increased.

(請求項21〜24に係る発明)
請求項21〜24に係る発明では、その発明特定事項に応じて、請求項19、20、7、9、14で得られる効果を奏する。
(Inventions according to claims 21 to 24)
According to the inventions according to claims 21 to 24, the effects obtained in claims 19, 20, 7, 9, and 14 can be obtained according to the specific matters of the invention.

(請求項25〜28に係る発明)
請求項25に係る発明では、図8(A)〜(C)に示すように、左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて前向きに上り傾斜させたため、うず流に対する補助空気の衝突角度が小さく、うず流の流速が低下しにくい。
(Invention according to claims 25 to 28)
In the invention according to claim 25, as shown in FIGS. 8A to 8C, the pair of left and right auxiliary communication holes (12), (12) are directed from the main combustion chamber (9) to the vortex chamber (8). Since it is inclined upward, the collision angle of the auxiliary air against the vortex flow is small, and the flow velocity of the vortex flow is difficult to decrease.

請求項26に係る発明では、図9(A)〜(C)に示すように、左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて後向きに上り傾斜させたため、うず流に対する補助空気流の衝突が正面衝突に近くなり、うず流に微小うずが発生しやすい。   In the invention according to claim 26, as shown in FIGS. 9A to 9C, the pair of left and right auxiliary communication holes (12) and (12) are directed from the main combustion chamber (9) to the vortex chamber (8). Since it is tilted upward and inclined, the collision of the auxiliary air flow against the vortex flow becomes close to a frontal collision, and micro vortex tends to occur in the vortex flow.

請求項27に係る発明では、図8(D)に示すように、噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の離間距離が、上方に行くにつれて、次第に短くなるように、各補助連通孔(12)を方向付けたため、補助空気がうず室(8)の中心部に向かい、うず室(8)の中心部の空気の利用率が高まる。   In the invention according to claim 27, as shown in FIG. 8 (D), when the base (7) is viewed from the back side with the nozzle hole (11) facing forward, a pair of left and right auxiliary communication holes (12) ( Since the auxiliary communication holes (12) are oriented so that the separation distance of 12) gradually decreases as it goes upward, the auxiliary air moves toward the center of the vortex chamber (8), and the vortex chamber (8) The utilization rate of air in the center increases.

請求項28に係る発明では、図9(D)に示すように、噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の相互の離間距離が、上方に行くにつれて、次第に長くなるように、各補助連通孔(12)を方向付けたため、補助空気がうず室(8)の両横部に向かい、うず室(8)の両横部の空気の利用率が高まる。   In the invention according to claim 28, as shown in FIG. 9 (D), when the base (7) is viewed from the back side with the nozzle hole (11) in front, the pair of left and right auxiliary communication holes (12) ( 12) Since each auxiliary communication hole (12) is oriented so that the distance between them increases gradually as it goes upward, the auxiliary air faces both sides of the vortex chamber (8), and the vortex chamber ( The utilization factor of air on both sides of 8) is increased.

本発明の実施形態を図面に基づいて説明する。
図1〜図6は第1実施形態に係る縦形ディーゼルエンジンのうず室式燃焼室を説明する図である。図7は第2実施形態、図8は第3実施形態、図9は第4実施形態をそれぞれ説明する図である。
Embodiments of the present invention will be described with reference to the drawings.
1-6 is a figure explaining the vortex chamber type combustion chamber of the vertical diesel engine which concerns on 1st Embodiment. FIG. 7 illustrates the second embodiment, FIG. 8 illustrates the third embodiment, and FIG. 9 illustrates the fourth embodiment.

本発明は、噴口(11)を設けた口金(7)に補助連通孔(12)を設け、この補助連通孔(12)により、うず室(8)の中心部や左右両横部の空気の利用率を高めるためのものであり、補助連通孔(12)の配置と方向付け、補助連通孔(12)の大きさ、噴口(11)の構造を工夫している。
図1に示す第1実施形態は、垂直な向きの一対の補助連通孔(12)(12)を備えたものに関し、図7に示す第2実施形態は、垂直な向きのニ対の補助連通孔(12)(12)を備えたものに関し、図8に示す第3実施形態と、図9に示す第3実施形態は、斜め向きの一対の補助連通孔(12)(12)を備えたものに関する。
According to the present invention, an auxiliary communication hole (12) is provided in a base (7) provided with an injection hole (11), and the auxiliary communication hole (12) allows air in the central part of the vortex chamber (8) and both the left and right lateral parts to be supplied. In order to increase the utilization rate, the arrangement and orientation of the auxiliary communication holes (12), the size of the auxiliary communication holes (12), and the structure of the nozzle holes (11) are devised.
The first embodiment shown in FIG. 1 relates to a device having a pair of auxiliary communication holes (12) and (12) in a vertical direction, and the second embodiment shown in FIG. 7 is a pair of auxiliary communication holes in a vertical direction. Regarding the one provided with the holes (12) and (12), the third embodiment shown in FIG. 8 and the third embodiment shown in FIG. 9 are provided with a pair of auxiliary communication holes (12) and (12) in an oblique direction. About things.

図1〜図6に示す第1実施形態について説明する。
図3(B)に示すように、シリンダ(1)内のピストン(2)の上死点方向を上、下死点方向を下、シリンダ中心軸線(3)寄りを後、シリンダ周壁(4)寄りを前として、シリンダ周壁(4)の上方で、シリンダヘッド(5)の下部に上向きの凹部(6)を設け、この凹部(6)の入口に口金(7)を嵌め、凹部(6)の奥の上向きの窪み(6a)と口金(7)内の下向きの窪み(7a)とでうず室(8)を形成し、シリンダ(1)内に主燃焼室(9)を形成し、口金下壁(10)の後寄りに噴口(11)を設け、この噴口(11)を主燃焼室(9)からうず室(8)に向けて前向きに上り傾斜させ、この噴口(11)で主燃焼室(9)とうず室(8)とを連通させている。口金下面(7d)はシリンダ中心軸線(3)と直交する平面上にある。
A first embodiment shown in FIGS. 1 to 6 will be described.
As shown in FIG. 3 (B), the top dead center direction of the piston (2) in the cylinder (1) is up, the bottom dead center direction is down, the cylinder center axis (3) is rearward, and the cylinder peripheral wall (4) An upward concave portion (6) is provided in the lower part of the cylinder head (5) above the cylinder peripheral wall (4), and a base (7) is fitted into the inlet of the concave portion (6). The dent chamber (8) is formed by the upward recess (6a) and the downward recess (7a) in the base (7), and the main combustion chamber (9) is formed in the cylinder (1). A nozzle hole (11) is provided on the rear side of the lower wall (10). The nozzle hole (11) is inclined upward from the main combustion chamber (9) toward the vortex chamber (8). The combustion chamber (9) communicates with the vortex chamber (8). The base lower surface (7d) is on a plane orthogonal to the cylinder center axis (3).

図3(A)に示すように、うず室(8)に燃料噴射ノズル(19)とヒートプラグ(20)とを臨ませている。ピストン(2)の頂面に、真上から見て扇形のガス案内溝(21)を設けている。このガス案内溝(21)は、扇の要の部分が噴口(11)の下方に位置し、噴口(11)から遠ざかるにつれて、次第に幅広となり、また、次第に浅くなる。   As shown in FIG. 3 (A), the fuel injection nozzle (19) and the heat plug (20) face the vortex chamber (8). A fan-shaped gas guide groove (21) is provided on the top surface of the piston (2) as viewed from directly above. The gas guide groove (21) is located at a lower portion of the fan (11), and the gas guide groove (21) becomes wider and gradually shallower as the distance from the nozzle (11) increases.

このうず室式燃焼室による燃焼の原理は、次の通りである。
圧縮行程では、ピストン(2)の上昇により、主燃焼室(9)から噴口(11)を介して圧縮空気がうず室(8)に押し込まれ、これがうず室(8)でうず流となる。ピストン(2)の上死点付近で燃料噴射ノズル(19)から燃料を噴射させると、この燃料は、うず流に巻き込まれ、うず室(8)の空気と混合しながら着火し、その一部はうず室(8)で燃焼する。この燃焼によってうず室(8)に発生した燃焼膨張ガスが、未燃焼の燃料を伴い、うず室(8)から噴口(11)を介して主燃焼室(9)に噴出する。主燃焼室(9)に噴出したガス噴流は、ガス案内溝(21)の案内で、次第に幅を広げ、次第に上昇する。ガス噴流に含まれる燃料は、主燃焼室(9)の空気と混合しながら着火し、燃焼する。
The principle of combustion in this vortex chamber combustion chamber is as follows.
In the compression stroke, as the piston (2) rises, compressed air is pushed into the vortex chamber (8) from the main combustion chamber (9) through the nozzle hole (11), and this vortexes in the vortex chamber (8). When fuel is injected from the fuel injection nozzle (19) in the vicinity of the top dead center of the piston (2), this fuel is caught in the vortex flow and ignited while mixing with the air in the vortex chamber (8). It burns in the spiral chamber (8). The combustion expansion gas generated in the vortex chamber (8) by this combustion is ejected from the vortex chamber (8) to the main combustion chamber (9) through the injection port (11) together with unburned fuel. The gas jet spouted into the main combustion chamber (9) gradually increases in width and gradually rises by the guidance of the gas guide groove (21). The fuel contained in the gas jet ignites and burns while mixing with the air in the main combustion chamber (9).

補助連通孔(12)の配置と方向付けは、次の通りである。
図1(A)〜(D)に示すように、口金下壁(10)に左右一対の補助連通孔(12)(12)を設け、各補助連通孔(12)を、噴口(11)から分離させ、図1(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)を噴口中心軸線(13)のうず室側延長線(14)の両横にくるように分配している。噴口(11)の形状によっては、各補助連通孔(12)を噴口中心軸線(13)の両横にくるように分配することも可能である。
The arrangement and orientation of the auxiliary communication holes (12) are as follows.
As shown in FIGS. 1 (A) to (D), a pair of left and right auxiliary communication holes (12) and (12) are provided in the lower base wall (10), and each auxiliary communication hole (12) is connected to the nozzle hole (11). As shown in FIG. 1 (A), when the base (7) is viewed from directly above, each auxiliary communication hole (12) is connected to the vortex chamber side extension line (14) of the nozzle center axis (13). Distributing to be on both sides. Depending on the shape of the nozzle hole (11), each auxiliary communication hole (12) can be distributed so as to be on both sides of the nozzle hole central axis (13).

図1(A)(B)(D)に示すように、口金(7)の窪み(7a)の上開口面(7b)の中心点(7c)を中心とする球体(15)を想定し、口金(7)の窪み(7a)の上開口面(7b)の半径の長さを100%として、球体(15)の半径を50%の長さとし、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が上記球体(15)内を通過するように、各補助連通孔(12)を方向付けている。   As shown in FIGS. 1 (A), (B), and (D), assuming a sphere (15) centered at the center point (7c) of the upper opening surface (7b) of the recess (7a) of the base (7), The radius of the upper opening surface (7b) of the recess (7a) of the base (7) is 100%, the radius of the sphere (15) is 50%, and the vortex of each auxiliary communication hole center axis (12a) Each auxiliary communication hole (12) is oriented so that the room-side extension line (12b) passes through the sphere (15).

このような補助連通孔(12)の方向付けにより、圧縮行程で主燃焼室(9)から補助連通孔(12)を介してうず室(8)に押し込まれる補助空気が、うず室(8)の中心部に至り、うず室(8)の中心部の空気の利用率を高める。かかる観点からは、想定する球体(15)の半径は70%とするのが望ましく、60%とするのがより望ましく、50%とするのが最も望ましい。図1(A)(B)(D)に3重の球体(15)を示しており、その半径は、外側のものから順に70%、60%、50%である。   By such orientation of the auxiliary communication hole (12), the auxiliary air pushed into the vortex chamber (8) from the main combustion chamber (9) through the auxiliary communication hole (12) in the compression stroke is admitted into the vortex chamber (8). The center of the vortex chamber (8) is used to increase the utilization rate of air. From this point of view, the assumed radius of the sphere (15) is desirably 70%, more desirably 60%, and most desirably 50%. FIGS. 1A, 1B, and 1D show a triple sphere 15 whose radii are 70%, 60%, and 50% in order from the outside.

図1(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)の上開口の中心(12c)が、半径50%の球体(15)と重なるように、各補助連通孔(12)を配置している。このような各補助連通孔(12)の配置により、各補助連通孔中心軸線(12a)のうず室側延長線(12b)がうず室(8)の中心部を確実に通過する。かかる観点からは、各補助連通孔(12)の上開口の中心(12c)が重なる球体(15)の半径は、70%が望ましく、60%がより望ましく、50%が最も望ましい。口金(7)の真上から見た場合に、各補助連通孔(12)の上開口は、主噴口(17)の上開口の左右真横に位置する。   As shown in FIG. 1A, when the base (7) is viewed from directly above, the center (12c) of the upper opening of each auxiliary communication hole (12) overlaps the sphere (15) having a radius of 50%. Thus, each auxiliary communication hole (12) is arranged. Such an arrangement of the auxiliary communication holes (12) ensures that the vortex chamber side extension line (12b) of each auxiliary communication hole central axis (12a) passes through the central portion of the vortex chamber (8). From this viewpoint, the radius of the sphere (15) where the center (12c) of the upper opening of each auxiliary communication hole (12) overlaps is desirably 70%, more desirably 60%, and most desirably 50%. When viewed from directly above the mouthpiece (7), the upper opening of each auxiliary communication hole (12) is located directly to the left and right of the upper opening of the main nozzle (17).

図1(A)(D)に示すように、左右一対の補助連通孔(12)(12)の上開口の中心(12c)からそれぞれ真上にのびる左右一対の上下方向基準線(16)(16)を想定し、図1(B)に示すように、噴口中心軸線(13)と直交する方向に口金(7)を真横から見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)と重なるように、各補助連通孔(12)を方向付けている。また、図1(D)に示すように、噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)と重なるように、各補助連通孔(12)を方向付けている。   As shown in FIGS. 1 (A) and 1 (D), a pair of left and right vertical reference lines (16) extending directly above the center (12c) of the upper opening of the pair of left and right auxiliary communication holes (12) and (12). 16), as shown in FIG. 1 (B), when the nozzle (7) is viewed from the side in a direction orthogonal to the nozzle center axis (13), the vortex of each auxiliary communication hole center axis (12a) Each auxiliary communication hole (12) is oriented so that the room-side extension line (12b) overlaps with each vertical reference line (16). Further, as shown in FIG. 1D, when the base (7) is viewed from directly behind the nozzle hole (11), the extension line on the vortex chamber side of each auxiliary communication hole central axis (12a) ( Each auxiliary communication hole (12) is oriented so that 12b) overlaps each vertical reference line (16).

このような各補助連通孔(12)の方向付けにより、垂直方向に対する傾斜角度が大きい場合に比べ、各補助連通孔(1)は短くで済み、補助空気の通過抵抗が小さくなる。かかる観点からは、図1(B)に示すように、噴口中心軸線(13)と直交する方向に口金(7)を真横から見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)とそれぞれ30°以下の角度をなすように、各補助連通孔(12)を方向付け、図1(D)に示すように、噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)とそれぞれ15°以下の角度をなすように、各補助連通孔(12)を方向付けるのが望ましい。また、前者の角度が15°以下、後者の角度が8°以下とするのがより望ましく、前者の角度が8°以下、後者の角度が4°以下とするのが更に望ましく、前者の角度が4°以下、後者の角度が2°以下とする最も望ましい。   By such orientation of each auxiliary communication hole (12), each auxiliary communication hole (1) can be shorter and the passage resistance of the auxiliary air is smaller than when the inclination angle with respect to the vertical direction is large. From this point of view, as shown in FIG. 1 (B), when the base (7) is viewed from the side in a direction orthogonal to the nozzle center axis (13), the vortex chamber of each auxiliary communication hole center axis (12a). Each auxiliary communication hole (12) is oriented so that the side extension line (12b) forms an angle of 30 ° or less with each vertical reference line (16), and as shown in FIG. When the base (7) is viewed from directly behind (11), the vortex chamber side extension line (12b) of each auxiliary communication hole central axis (12a) is connected to each vertical reference line (16). It is desirable to orient each auxiliary communication hole (12) so as to form an angle of 15 ° or less. The former angle is more preferably 15 ° or less and the latter angle is more preferably 8 ° or less. The former angle is more preferably 8 ° or less, and the latter angle is more preferably 4 ° or less. Most preferably, the angle is 4 ° or less and the latter angle is 2 ° or less.

図1(B)中の上下方向基準線(16)の前後に示されている鎖線は、上下方向基準線(16)とそれぞれ30°の角度をなす線である。また、図1(D)中の上下方向基準線(16)の左右に示されている鎖線は、各上下方向基準線(16)とそれぞれ15°の角度をなす線である。   The chain lines shown before and after the vertical reference line (16) in FIG. 1 (B) are lines that form an angle of 30 ° with the vertical reference line (16). In addition, the chain lines shown on the left and right of the vertical reference line (16) in FIG. 1D are lines that form an angle of 15 ° with each vertical reference line (16).

補助連通孔(12)の大きさの設定は、次の通りである。
噴口(11)の最小通路断面積を100%として、一対の補助連通孔(12)(12)の各最小通路断面積の合計を6.0%としている。一対の補助連通孔(12)(12)の各最小通路断面積は等しい。
このような補助連通孔(12)の大きさの設定により、補助空気とうず流の押し込み量が過不足なく得られ、窒素酸化物とスモークの各発生量のうち、一方を大きく増加させることなく、他方を十分に低減させることができ、排気ガスの総合性能を高めることができる。かかる観点からは、上記合計を3〜15%に設定するのが望ましく、4〜10%に設定するのがより望ましく、6〜10%にするのが更に望ましく、7〜9%に設定するのが最も望ましい。
The setting of the size of the auxiliary communication hole (12) is as follows.
The minimum passage cross-sectional area of the nozzle hole (11) is 100%, and the total of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) and (12) is 6.0%. The minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) and (12) are equal.
By setting the size of the auxiliary communication hole (12), the pushing amount of the auxiliary air and the vortex flow can be obtained without excess or deficiency, and one of the generation amounts of nitrogen oxides and smoke is not greatly increased. The other can be sufficiently reduced, and the overall performance of the exhaust gas can be enhanced. From this point of view, the total is preferably set to 3-15%, more preferably 4-10%, even more preferably 6-10%, and 7-9%. Is most desirable.

噴口(11)の構造は、次の通りである。
図2(A)〜(D)に示すように、噴口(11)を主噴口(17)と左右一対の脇噴口(18)(18)とで構成し、各脇噴口(18)を主噴口(17)の周側で主噴口(17)と連通させている。図2(A)に示すように、主噴口中心軸線(17a)と直交する方向に口金(7)を真横から見た場合に、各脇噴口中心軸線(18a)が主噴口中心軸線(17a)よりも後方になるように、各脇噴口(18)を配置し、口金下面(7d)に対する各脇噴口中心軸線(18a)の仰角が、主噴口中心軸線(17a)の仰角よりも小さくなるように、各脇噴口(18)を方向付けている。主噴口中心軸線(17a)の仰角は、45°である。
The structure of the nozzle hole (11) is as follows.
As shown in FIGS. 2A to 2D, the nozzle hole (11) is composed of a main nozzle hole (17) and a pair of left and right side nozzle holes (18) (18), and each side nozzle hole (18) is a main nozzle hole. It communicates with the main nozzle hole (17) on the peripheral side of (17). As shown in FIG. 2A, when the mouthpiece (7) is viewed from the side in a direction orthogonal to the main nozzle center axis (17a), each side nozzle center axis (18a) is the main nozzle center axis (17a). The side nozzle holes (18) are arranged so as to be further rearward, and the elevation angle of each side nozzle center axis (18a) with respect to the base lower surface (7d) is smaller than the elevation angle of the main nozzle center axis (17a). In addition, each side nozzle hole (18) is oriented. The elevation angle of the main nozzle center axis (17a) is 45 °.

図2(B)〜(D)に示すように、左右一対の脇噴口中心軸線(18a)(18a)の相互の離間距離が、前方に行くにつれて、次第に狭くなるように、各脇噴口(18)を方向付けている。図2(B)〜(D)に示すように、各脇噴口(18)の通路断面積が、前方に行くにつれて、次第に小さくなるようにしている。図1(A)に示すように、口金(7)を真上から見た場合に、各補助連通孔(12)の上開口から主噴口中心軸線(13)と平行に真後ろに後退した個所に各脇噴口(18)が位置するように、各脇噴口(18)を配置している。   As shown in FIGS. 2 (B) to (D), the side nozzle holes (18) are arranged such that the distance between the pair of left and right side nozzle center axes (18a) (18a) gradually decreases toward the front. ). As shown in FIGS. 2 (B) to 2 (D), the passage cross-sectional area of each side nozzle hole (18) is gradually reduced toward the front. As shown in FIG. 1 (A), when the base (7) is viewed from directly above, the upper opening of each auxiliary communication hole (12) retreats directly behind in parallel with the main nozzle center axis (13). Each side nozzle hole (18) is arranged so that each side nozzle hole (18) is located.

この第1実施形態に係る燃焼室の排気ガス特性は、次の通りである。
図4に示すように、第1実施形態に係る燃焼室では、比較例1の燃焼室に比べ、窒素酸化物の発生量が少ない。比較例1は、第1実施形態の燃焼室から補助連通孔(12)と脇噴口(18)とを除去したものである。この比較例1との対比から、補助連通孔(12)と脇噴口(18)とを設けることにより、窒素酸化物の発生量が低減することが分かる。
The exhaust gas characteristics of the combustion chamber according to the first embodiment are as follows.
As shown in FIG. 4, the combustion chamber according to the first embodiment generates less nitrogen oxide than the combustion chamber of Comparative Example 1. In Comparative Example 1, the auxiliary communication hole (12) and the side injection hole (18) are removed from the combustion chamber of the first embodiment. From comparison with Comparative Example 1, it can be seen that the generation amount of nitrogen oxides is reduced by providing the auxiliary communication hole (12) and the side injection port (18).

図5に示すように、第1実施形態に係る燃焼室では、比較例1や比較例2の燃焼室に比べ、所定負荷での窒素酸化物とスモークの各発生量が共に低減する。比較例2は、比較例1に補助連通孔(12)を追加したものである。第1実施形態は、比較例2に脇噴口(18)を追加したものに相当する。比較例1と比較例2の対比から、補助連通孔(12)の追加により上記低減機能が得られることが分かる。また、比較例2と第1実施形態との対比から、脇噴口(18)の追加により上記低減機能が高まることが分かる。   As shown in FIG. 5, in the combustion chamber according to the first embodiment, both the amounts of nitrogen oxide and smoke generated at a predetermined load are reduced compared to the combustion chambers of Comparative Example 1 and Comparative Example 2. In Comparative Example 2, an auxiliary communication hole (12) is added to Comparative Example 1. 1st Embodiment is corresponded to what added the side nozzle (18) to the comparative example 2. FIG. From the comparison between Comparative Example 1 and Comparative Example 2, it can be seen that the above-described reduction function can be obtained by adding the auxiliary communication hole (12). Moreover, it turns out from the comparison with the comparative example 2 and 1st Embodiment that the said reduction function increases by addition of a side nozzle hole (18).

このような排気ガス特性は、補助連通孔(12)の通路断面積も大きく関与している。
図6(A)〜(C)の各横軸は噴口の最小通路断面積を100%とした場合の一対の補助連通孔(12)(12)の各最小通路断面積の合計の比率を示し、図6(A)の縦軸は窒素酸化物の発生量の変動率を示し、図6(B)の縦軸はスモークの発生量の変動率を示し、図6(C)の縦軸は両変動率の和を示している。各変動率は、補助連通孔(12)がない燃焼室での窒素酸化物またはスモークの発生量を基準値として計算したものである。基準値をα、変動値をβとすると、変動率は(β−α)/αで示される。
Such exhaust gas characteristics are greatly related to the passage cross-sectional area of the auxiliary communication hole (12).
Each horizontal axis in FIGS. 6A to 6C shows the total ratio of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) and (12) when the minimum cross-sectional area of the nozzle is defined as 100%. The vertical axis of FIG. 6 (A) shows the variation rate of the generation amount of nitrogen oxides, the vertical axis of FIG. 6 (B) shows the variation rate of the generation amount of smoke, and the vertical axis of FIG. The sum of both rates of change is shown. Each variation rate is calculated based on the amount of nitrogen oxide or smoke generated in the combustion chamber having no auxiliary communication hole (12) as a reference value. If the reference value is α and the variation value is β, the variation rate is represented by (β−α) / α.

図6(C)に示すように、減少率の和の絶対値が最も大きくなるのは、通路断面積が7.7%の場合であり、ここでの減少率の絶対値を100%とすると、減少率の和の絶対値が98%を越えるのは、通路断面積が7〜9%の場合であり、減少率の和の絶対値が95%を越えるのは、通路断面積が6〜10%の場合であり、減少率の和の絶対値が60%を越えるのは、通路断面積が3〜15%の場合である。また、減少率の和の絶対値が70%を越えるとともに、窒素酸化物とスモークの両方が有効に減少するのは、通路断面積が4〜10%の場合である。この対比により、一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定するのが望ましく、4〜10%に設定するのがより望ましく、6〜10%に設定するのが更に望ましく、7〜9%に設定するのが最も望ましいことが分かる。   As shown in FIG. 6C, the absolute value of the sum of the reduction rates is the largest when the passage cross-sectional area is 7.7%. If the absolute value of the reduction rate here is 100%, The absolute value of the sum of the reduction rates exceeds 98% when the passage cross-sectional area is 7 to 9%, and the absolute value of the sum of the reduction rates exceeds 95% is the passage cross-sectional area of 6 to 6%. The absolute value of the sum of the reduction ratios exceeds 60% when the passage cross-sectional area is 3 to 15%. The absolute value of the sum of the reduction rates exceeds 70%, and both nitrogen oxide and smoke are effectively reduced when the passage cross-sectional area is 4 to 10%. Based on this comparison, the total of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) (12) is preferably set to 3 to 15%, more preferably 4 to 10%, and more preferably 6 to 10%. It can be seen that it is more desirable to set to%, and it is most desirable to set to 7-9%.

図7に示す第2実施形態、図8に示す第3実施形態、図9に示す第4実施形態に係る各燃焼室は、次の点で第1実施形態に係る燃焼室と相違する。
図7に示す第2実施形態に係る燃焼室では、左右二対の補助連通孔(12)(12)を設けている。噴口(11)の最小通路断面積を100%として、ニ対の補助連通孔(12)(12)の各最小通路断面積の合計を8%に設定した、各補助連通孔(12)の各最小通路断面積は等しい。この第2実施形態のものでも、図4に示すように、窒素酸化物の発生量が低減する。また、この第2実施形態のものでも、比較例1や比較例2に比べ、所定負荷での窒素酸化物とスモークの各発生量が共に低減する。
Each combustion chamber according to the second embodiment shown in FIG. 7, the third embodiment shown in FIG. 8, and the fourth embodiment shown in FIG. 9 is different from the combustion chamber according to the first embodiment in the following points.
In the combustion chamber according to the second embodiment shown in FIG. 7, two pairs of left and right auxiliary communication holes (12) (12) are provided. Each of the auxiliary communication holes (12) has a minimum cross-sectional area of the nozzle (11) of 100% and the total of the minimum passage cross-sectional areas of the two pairs of auxiliary communication holes (12) and (12) is set to 8%. The minimum passage cross-sectional area is equal. Even in the second embodiment, the amount of nitrogen oxides generated is reduced as shown in FIG. Further, even in the second embodiment, both the generation amounts of nitrogen oxide and smoke at a predetermined load are reduced as compared with Comparative Example 1 and Comparative Example 2.

図8に示す第3実施形態に係る燃焼室では、図8(B)に示すように、左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて前向きに上り傾斜させ、図8(D)に示すように、噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の相互の離間距離が、上方に行くにつれて、次第に短くなるように、各補助連通孔(12)を方向付けている。前方向への傾斜角度は、30°、左右方向への傾斜角度は15°である。   In the combustion chamber according to the third embodiment shown in FIG. 8, as shown in FIG. 8B, the pair of left and right auxiliary communication holes (12) and (12) are changed from the main combustion chamber (9) to the vortex chamber (8). As shown in FIG. 8 (D), when the base (7) is viewed from directly behind the nozzle hole (11), the pair of left and right auxiliary communication holes (12) ( Each auxiliary communication hole (12) is oriented so that the mutual separation distance of 12) gradually decreases as it goes upward. The tilt angle in the forward direction is 30 °, and the tilt angle in the left-right direction is 15 °.

図9に示す第4実施形態に係る燃焼室では、図9(B)に示すように、左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて後向きに上り傾斜させ、図9(D)に示すように、噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の相互の離間距離が、上方に行くにつれて、次第に長くなるように、各補助連通孔(12)を方向付けている。後方向への傾斜角度は、30°、左右方向への傾斜角度は15°である。   In the combustion chamber according to the fourth embodiment shown in FIG. 9, as shown in FIG. 9B, the pair of left and right auxiliary communication holes (12) and (12) are changed from the main combustion chamber (9) to the vortex chamber (8). As shown in FIG. 9 (D), when the base (7) is viewed from directly behind the nozzle hole (11), the pair of left and right auxiliary communication holes (12) ( Each auxiliary communication hole (12) is oriented so that the mutual separation distance of 12) gradually increases as it goes upward. The inclination angle in the backward direction is 30 °, and the inclination angle in the left-right direction is 15 °.

第2〜4実施形態の他の構成は、第1実施形態と同一にしている。
第2〜4実施形態を示す図7〜図9中、第1実施形態と同一の要素には、第1実施形態と同一の符号を付しておく。
Other configurations of the second to fourth embodiments are the same as those of the first embodiment.
7-9 which show 2nd-4th embodiment, the same code | symbol as 1st Embodiment is attached | subjected to the element same as 1st Embodiment.

本発明の第1実施形態で用いる口金を説明する図で、図1(A)は平面図、図1(B)は図1(A)のB−B線断面図、図1(C)は底面図、図1(D)は図1(B)のD−D線断面図である。FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A, and FIG. 1C is a diagram illustrating a base used in the first embodiment of the present invention. FIG. 1D is a bottom view, and is a cross-sectional view taken along line DD of FIG. 図1の口金の噴口を説明する図で、図2(A)は口金の縦断側面図、図2(B)は噴口の模式斜視図、図2(C)は図2(A)のC方向に見た噴口の模式図、図2(D)は真下から見た噴口の模式図である。FIG. 2A is a vertical side view of the base, FIG. 2B is a schematic perspective view of the nozzle, and FIG. 2C is a direction C of FIG. 2A. FIG. 2D is a schematic diagram of the nozzle hole viewed from directly below. 本発明の第1実施形態に係るディーゼルエンジンのうず室式燃焼室を説明する図で、図3(A)はピストンを内嵌したシリンダの横断平面図、図3(B)はうず室式燃焼室とその周辺部分の縦断側面図である。FIGS. 3A and 3B are diagrams for explaining a swirl chamber combustion chamber of the diesel engine according to the first embodiment of the present invention, FIG. 3A is a cross-sectional plan view of a cylinder in which a piston is fitted, and FIG. 3B is a swirl chamber combustion. It is a vertical side view of a chamber and its peripheral part. 図3のうず室式燃焼室の排気ガス特性を、補助連通孔のない比較例と対比させたグラフで、負荷に対する窒素酸化物の発生量をプロットしたものである。FIG. 4 is a graph in which the exhaust gas characteristics of the vortex chamber type combustion chamber of FIG. 3 are compared with a comparative example having no auxiliary communication hole, in which the amount of nitrogen oxide generated against the load is plotted. 図3のうず室式燃焼室の排気ガス特性を、比較例と対比させたグラフで、所定負荷における窒素酸化物の発生量とスモークの発生量とをプロットしたものである。FIG. 4 is a graph comparing the exhaust gas characteristics of the vortex chamber type combustion chamber of FIG. 3 with a comparative example, in which the generation amount of nitrogen oxide and the generation amount of smoke at a predetermined load are plotted. 図3のうず室式燃焼室の排気ガス特性と、補助連通孔の通路断面積との関係を説明するグラフで、図6(A)は通路断面積に対して窒素酸化物の発生量の変動率をプロットしたもの、図6(B)は通路断面積に対してスモークの発生量の変動率をプロットしたもの、図6(C)は通路断面積に対して図6(A)と図6(B)の変動率の合計をプロットしたものである。FIG. 6A is a graph for explaining the relationship between the exhaust gas characteristics of the vortex chamber type combustion chamber of FIG. 3 and the passage cross-sectional area of the auxiliary communication hole, and FIG. FIG. 6B is a plot of the variation rate of the amount of smoke generated with respect to the passage cross-sectional area, and FIG. 6C is a plot of FIG. 6A and FIG. (B) is a plot of the total variation rate. 本発明の第2実施形態で用いる口金を説明する図で、図7(A)は平面図、図7(B)は図7(A)のB−B線断面図、図7(C)は底面図、図7(D)は図7(B)のD−D線断面図である。FIG. 7A is a plan view, FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A, and FIG. 7C is a diagram illustrating a base used in the second embodiment of the present invention. FIG. 7D is a bottom view, and is a cross-sectional view taken along the line DD of FIG. 本発明の第3実施形態で用いる口金を説明する図で、図8(A)は平面図、図8(B)は図8(A)のB−B線断面図、図8(C)は底面図、図8(D)は図8(B)のD−D線断面図である。FIG. 8A is a plan view, FIG. 8B is a cross-sectional view taken along line BB in FIG. 8A, and FIG. 8C is a diagram illustrating a base used in the third embodiment of the present invention. A bottom view, FIG. 8 (D), is a cross-sectional view taken along the line DD of FIG. 8 (B). 本発明の第4実施形態で用いる口金を説明する図で、図9(A)は平面図、図9(B)は図9(A)のB−B線断面図、図9(C)は底面図、図9(D)は図9(B)のD−D線断面図である。FIG. 9A is a plan view, FIG. 9B is a cross-sectional view taken along line BB in FIG. 9A, and FIG. 9C is a diagram illustrating a base used in the fourth embodiment of the present invention. A bottom view, FIG. 9D, is a cross-sectional view taken along the line DD of FIG. 9B. 従来技術に係るディーゼルエンジンのうず室式燃焼室を説明する図で、図10(A)は口金とピストンの平面図、図10(B)はうず室式燃焼室とその周辺部分の縦断側面図である。FIG. 10A is a plan view of a nozzle and a piston, and FIG. 10B is a longitudinal side view of a vortex chamber combustion chamber and its peripheral part, illustrating a vortex chamber combustion chamber of a diesel engine according to the prior art. It is.

符号の説明Explanation of symbols

(1)…シリンダ、(2)…ピストン、(3)…シリンダ中心軸線、(4)…シリンダ周壁、(5)…シリンダヘッド、(6)…凹部、(6a)…窪み、(7)…口金、(7a)…窪み、(7b)…上開口面、(7c)…中心点、(7d)…口金下面、(8)…うず室、(9)…主燃焼室、(10)…口金下壁、(11)…噴口、(12)…補助連通孔、(12a)…補助連通孔中心軸線、(12b)…うず室側延長線、(12c)…上開口の中心、(13)…噴口中心軸線、(14)…うず室側延長線、(15)…球体、(16)…上下方向基準線、(17)…主噴口、(17a)…主噴口中心軸線、(18)…脇噴口、(18a)…脇噴口中心軸線。

(1) ... Cylinder, (2) ... Piston, (3) ... Cylinder center axis, (4) ... Cylinder peripheral wall, (5) ... Cylinder head, (6) ... Recess, (6a) ... Recess, (7) ... (7a) ... depression, (7b) ... upper opening surface, (7c) ... center point, (7d) ... bottom of the die, (8) ... vortex chamber, (9) ... main combustion chamber, (10) ... mouthpiece Lower wall, (11) ... nozzle, (12) ... auxiliary communication hole, (12a) ... auxiliary communication hole central axis, (12b) ... extension chamber side extension line, (12c) ... center of upper opening, (13) ... (14) ... Spherical extension line, (15) ... Sphere, (16) ... Vertical reference line, (17) ... Main nozzle, (17a) ... Main nozzle center axis, (18) ... Aside Jet port, (18a) ... Axis center axis.

Claims (28)

シリンダ(1)内のピストン(2)の上死点方向を上、下死点方向を下、シリンダ中心軸線(3)寄りを後、シリンダ周壁(4)寄りを前として、
シリンダ周壁(4)の上方で、シリンダヘッド(5)の下部に上向きの凹部(6)を設け、この凹部(6)の入口に口金(7)を嵌め、凹部(6)の奥の上向きの窪み(6a)と口金(7)内の下向きの窪み(7a)とでうず室(8)を形成し、シリンダ(1)内に主燃焼室(9)を形成し、口金下壁(10)の後寄りに噴口(11)を設け、この噴口(11)を主燃焼室(9)からうず室(8)に向けて前向きに上り傾斜させ、この噴口(11)で主燃焼室(9)とうず室(8)とを連通させ、
口金下壁(10)に少なくとも左右一対の補助連通孔(12)(12)を設け、各補助連通孔(12)を、噴口(11)から分離させ、口金(7)を真上から見た場合に、各補助連通孔(12)を噴口中心軸線(13)またはそのうず室側延長線(14)の両横にくるように分配した、ディーゼルエンジンのうず室式燃焼室において、
口金(7)の窪み(7a)の上開口面(7b)の中心点(7c)を中心とする球体(15)を想定し、口金(7)の窪み(7a)の上開口面(7b)の半径の長さを100%として、球体(15)の半径を70%の長さとし、
各補助連通孔中心軸線(12a)のうず室側延長線(12b)が球体(15)内を通過するように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
With the top dead center direction of the piston (2) in the cylinder (1) up, the bottom dead center direction down, the cylinder center axis (3) side rear, the cylinder peripheral wall (4) side front,
Above the cylinder peripheral wall (4), an upward concave portion (6) is provided in the lower portion of the cylinder head (5), and a base (7) is fitted to the inlet of the concave portion (6) so The depression (6a) and the downward depression (7a) in the base (7) form a vortex chamber (8), the main combustion chamber (9) is formed in the cylinder (1), and the base lower wall (10) A nozzle hole (11) is provided on the rear side, and the nozzle hole (11) is inclined upwardly from the main combustion chamber (9) toward the vortex chamber (8), and the main combustion chamber (9) is inclined at the nozzle hole (11). Communicating with the vortex chamber (8)
The base lower wall (10) is provided with at least a pair of left and right auxiliary communication holes (12), (12), each auxiliary communication hole (12) is separated from the nozzle (11), and the base (7) is viewed from directly above. In this case, in the vortex chamber combustion chamber of the diesel engine, the auxiliary communication holes (12) are distributed so as to be on both sides of the nozzle center axis (13) or the vortex chamber extension line (14).
Assuming a sphere (15) centered on the center point (7c) of the upper opening surface (7b) of the recess (7a) of the base (7), the upper opening surface (7b) of the recess (7a) of the base (7) And the radius of the sphere (15) is 70%,
A diesel engine characterized in that each auxiliary communication hole (12) is oriented so that a vortex chamber side extension line (12b) of each auxiliary communication hole central axis (12a) passes through the sphere (15). A vortex chamber combustion chamber.
請求項1に記載したディーゼルエンジンのうず室式燃焼室において、
前記球体(15)の半径を70%の長さとしたことに代えて、60%の長さとした、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 1,
A vortex chamber combustion chamber for a diesel engine, wherein the radius of the sphere (15) is 60% instead of 70%.
請求項1に記載したディーゼルエンジンのうず室式燃焼室において、
前記球体(15)の半径を70%の長さとしたことに代えて、50%の長さとした、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 1,
A vortex chamber combustion chamber of a diesel engine, wherein the radius of the sphere (15) is 50% instead of 70%.
請求項1〜3のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
口金(7)を真上から見た場合に、各補助連通孔(12)の上開口の中心(12c)が、半径50%の球体(15)と重なるように、各補助連通孔(12)を配置した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 3,
When the base (7) is viewed from directly above, each auxiliary communication hole (12) is arranged such that the center (12c) of the upper opening of each auxiliary communication hole (12) overlaps the sphere (15) having a radius of 50%. A vortex chamber combustion chamber of a diesel engine, characterized by being arranged.
請求項1〜4のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
左右一対の補助連通孔(12)(12)の上開口の中心(12c)からそれぞれ真上にのびる左右一対の上下方向基準線(16)(16)を想定し、
噴口中心軸線(13)と直交する方向に口金(7)を真横から見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)とそれぞれ重なるように、または各上下方向基準線(16)とそれぞれ30°以下の角度をなすように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 4,
Assuming a pair of left and right vertical reference lines (16) and (16) extending directly above the center (12c) of the upper opening of the pair of left and right auxiliary communication holes (12) and (12),
When the mouthpiece (7) is viewed from the side in a direction perpendicular to the nozzle center axis (13), the vortex chamber side extension line (12b) of each auxiliary communication hole center axis (12a) is connected to each vertical reference line (16 ), Each auxiliary communication hole (12) is oriented so as to overlap each other or to form an angle of 30 ° or less with each vertical reference line (16). Combustion chamber.
請求項1〜5のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
左右一対の補助連通孔(12)(12)の上開口の中心(12c)からそれぞれ真上にのびる左右一対の上下方向基準線(16)(16)を想定し、
噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)とそれぞれ重なるように、または各上下方向基準線(16)とそれぞれ15°以下の角度をなすように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 5,
Assuming a pair of left and right vertical reference lines (16) and (16) extending directly above the center (12c) of the upper opening of the pair of left and right auxiliary communication holes (12) and (12),
When the base (7) is viewed from directly behind the nozzle hole (11), the vortex chamber side extension line (12b) of each auxiliary communication hole central axis (12a) is connected to each vertical reference line (16). Each of the auxiliary communication holes (12) is oriented so as to overlap each other or to form an angle of 15 ° or less with each vertical reference line (16). Combustion chamber.
請求項1〜6のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)の最小通路断面積を100%として、前記一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber type combustion chamber of the diesel engine according to any one of claims 1 to 6,
A diesel engine characterized in that the minimum passage cross-sectional area of the nozzle hole (11) is 100%, and the total of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) and (12) is set to 3 to 15%. Nozzle chamber combustion chamber.
請求項7に記載したディーゼルエンジンのうず室式燃焼室において、
前記一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定したことに代えて、これを4〜10%に設定した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 7,
A diesel engine characterized in that, instead of setting the total of the minimum passage sectional areas of the pair of auxiliary communication holes (12) and (12) to 3 to 15%, this is set to 4 to 10%. Nozzle chamber combustion chamber.
請求項1〜8のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)を主噴口(17)と左右一対の脇噴口(18)(18)とで構成し、各脇噴口(18)を主噴口(17)の周側で主噴口(17)と連通させた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 8,
The nozzle hole (11) is composed of a main nozzle hole (17) and a pair of left and right side nozzle holes (18), (18), and each side nozzle hole (18) communicates with the main nozzle hole (17) on the peripheral side of the main nozzle hole (17). A vortex chamber combustion chamber of a diesel engine characterized by
請求項9に記載したディーゼルエンジンのうず室式燃焼室において、
主噴口中心軸線(17a)と直交する方向に口金(7)を真横から見た場合に、各脇噴口中心軸線(18a)が主噴口中心軸線(17a)よりも後方になるように、各脇噴口(18)を配置した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 9,
When the mouthpiece (7) is viewed from the side in a direction perpendicular to the main nozzle center axis (17a), each side nozzle center axis (18a) is located behind the main nozzle center axis (17a). A vortex chamber combustion chamber of a diesel engine, characterized in that a nozzle (18) is arranged.
請求項10に記載したディーゼルエンジンのうず室式燃焼室において、
主噴口中心軸線(17a)と直交する方向に口金(7)を真横から見た場合に、口金下面(7d)に対する各脇噴口中心軸線(18a)の仰角が、主噴口中心軸線(17a)の仰角よりも小さくなるように、各脇噴口(18)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 10,
When the base (7) is viewed from the side in a direction orthogonal to the main nozzle center axis (17a), the elevation angle of each side nozzle center axis (18a) with respect to the base lower surface (7d) is the angle of the main nozzle center axis (17a). A vortex chamber type combustion chamber of a diesel engine, characterized in that each side nozzle hole (18) is oriented so as to be smaller than an elevation angle.
請求項11に記載したディーゼルエンジンのうず室式燃焼室において、
左右一対の脇噴口中心軸線(18a)(18a)の相互の離間距離が、前方に行くにつれて、次第に狭くなるように、各脇噴口(18)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 11,
A diesel engine characterized in that each side nozzle hole (18) is oriented so that the distance between the pair of left and right side nozzle center axes (18a) and (18a) gradually decreases toward the front. A vortex chamber combustion chamber.
請求項9〜12のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
各脇噴口(18)の通路断面積が、前方に行くにつれて、次第に小さくなるようにした、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 9 to 12,
A vortex chamber type combustion chamber of a diesel engine, characterized in that the passage cross-sectional area of each side nozzle (18) gradually decreases as it goes forward.
請求項9〜13のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
口金(7)を真上から見た場合に、各補助連通孔(12)の上開口から主噴口中心軸線(13)と平行に真後ろに後退した個所に各脇噴口(18)が位置するように、各脇噴口(18)を配置した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 9 to 13,
When the base (7) is viewed from directly above, the side nozzles (18) are positioned at positions where the auxiliary nozzles (12) are retracted from the upper openings of the auxiliary communication holes (12) directly behind the central axis of the main nozzle (13). A vortex chamber type combustion chamber of a diesel engine, characterized in that each side nozzle hole (18) is disposed in the vortex chamber.
請求項1に記載したディーゼルエンジンのうず室式燃焼室において、
左右一対の補助連通孔(12)(12)の上開口の中心(12c)からそれぞれ真上にのびる左右一対の上下方向基準線(16)(16)を想定し、
噴口中心軸線(13)と直交する方向に口金(7)を真横から見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)とそれぞれ重なるように、または各上下方向基準線(16)とそれぞれ30°以下の角度をなすように、各補助連通孔(12)を方向付けるとともに、
噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、各補助連通孔中心軸線(12a)のうず室側延長線(12b)が、各上下方向基準線(16)とそれぞれ重なるように、または各上下方向基準線(16)とそれぞれ15°以下の角度をなすように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 1,
Assuming a pair of left and right vertical reference lines (16) and (16) extending directly above the center (12c) of the upper opening of the pair of left and right auxiliary communication holes (12) and (12),
When the mouthpiece (7) is viewed from the side in a direction perpendicular to the nozzle center axis (13), the vortex chamber side extension line (12b) of each auxiliary communication hole center axis (12a) is connected to each vertical reference line (16 Each auxiliary communication hole (12) so as to overlap each other or to form an angle of 30 ° or less with each vertical reference line (16),
When the base (7) is viewed from directly behind the nozzle hole (11), the vortex chamber side extension line (12b) of each auxiliary communication hole central axis (12a) is connected to each vertical reference line (16). Each of the auxiliary communication holes (12) is oriented so as to overlap each other or to form an angle of 15 ° or less with each vertical reference line (16). Combustion chamber.
請求項15に記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)の最小通路断面積を100%として、前記一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 15,
A diesel engine characterized in that the minimum passage cross-sectional area of the nozzle hole (11) is 100%, and the total of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) and (12) is set to 3 to 15%. Nozzle chamber combustion chamber.
請求項15または16に記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)を主噴口(17)と左右一対の脇噴口(18)(18)とで構成し、各脇噴口(18)を主噴口(17)の周側で主噴口(17)と連通させた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 15 or 16,
The nozzle hole (11) is composed of a main nozzle hole (17) and a pair of left and right side nozzle holes (18), (18), and each side nozzle hole (18) communicates with the main nozzle hole (17) on the peripheral side of the main nozzle hole (17). A vortex chamber combustion chamber of a diesel engine characterized by
請求項17に記載したディーゼルエンジンのうず室式燃焼室において、
口金(7)を真上から見た場合に、各補助連通孔(12)の上開口から主噴口中心軸線(13)と平行に真後ろに後退した個所に各脇噴口(18)が位置するように、各脇噴口(18)を配置した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 17,
When the base (7) is viewed from directly above, the side nozzles (18) are positioned at positions where the auxiliary nozzles (12) are retracted from the upper openings of the auxiliary communication holes (12) directly behind the central axis of the main nozzle (13). A vortex chamber type combustion chamber of a diesel engine, characterized in that each side nozzle hole (18) is disposed in the vortex chamber.
請求項1に記載したディーゼルエンジンのうず室式燃焼室において、
噴口中心軸線(13)と直交する方向に口金(7)を真横から見た場合に、各補助連通孔中心軸線(12a)が、口金下面(7d)から垂直に立ち上がるように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 1,
Each auxiliary communication hole so that each auxiliary communication hole central axis (12a) rises vertically from the lower surface (7d) of the base when the base (7) is viewed from the side in a direction orthogonal to the nozzle center axis (13). A vortex chamber combustion chamber of a diesel engine, characterized by directing (12).
請求項1に記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、各補助連通孔中心軸線(12a)が、口金下面(7d)から垂直に立ち上がるように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 1,
When the base (7) is viewed from directly behind the nozzle hole (11), the auxiliary communication holes (so that each auxiliary communication hole central axis (12a) rises vertically from the base lower surface (7d). 12) A vortex chamber combustion chamber of a diesel engine characterized by being directed.
請求項1に記載したディーゼルエンジンのうず室式燃焼室において、
噴口中心軸線(13)と直交する方向に口金(7)を真横から見た場合に、各補助連通孔中心軸線(12a)が、口金下面(7d)から垂直に立ち上がるように、各補助連通孔(12)を方向付けるとともに、
噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、各補助連通孔中心軸線(12a)が、口金下面(7d)から垂直に立ち上がるように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 1,
Each auxiliary communication hole so that each auxiliary communication hole central axis (12a) rises vertically from the lower surface (7d) of the base when the base (7) is viewed from the side in a direction orthogonal to the nozzle center axis (13). Orient (12) and
When the base (7) is viewed from directly behind the nozzle hole (11), the auxiliary communication holes (so that each auxiliary communication hole central axis (12a) rises vertically from the base lower surface (7d). 12) A vortex chamber combustion chamber of a diesel engine characterized by being directed.
請求項21に記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)の最小通路断面積を100%として、前記一対の補助連通孔(12)(12)の各最小通路断面積の合計を3〜15%に設定した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 21,
A diesel engine characterized in that the minimum passage cross-sectional area of the nozzle hole (11) is 100%, and the total of the minimum passage cross-sectional areas of the pair of auxiliary communication holes (12) and (12) is set to 3 to 15%. Nozzle chamber combustion chamber.
請求項21または請求項22に記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)を主噴口(17)と左右一対の脇噴口(18)(18)とで構成し、各脇噴口(18)を主噴口(17)の周側で主噴口(17)と連通させた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 21 or claim 22,
The nozzle hole (11) is composed of a main nozzle hole (17) and a pair of left and right side nozzle holes (18), (18), and each side nozzle hole (18) communicates with the main nozzle hole (17) on the peripheral side of the main nozzle hole (17). A vortex chamber combustion chamber of a diesel engine characterized by
請求項23に記載したディーゼルエンジンのうず室式燃焼室において、
口金(7)を真上から見た場合に、各補助連通孔(12)の上開口から主噴口中心軸線(13)と平行に真後ろに後退した個所に各脇噴口(18)が位置するように、各脇噴口(18)を配置した、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to claim 23,
When the base (7) is viewed from directly above, the side nozzles (18) are positioned at positions where the auxiliary nozzles (12) are retracted from the upper openings of the auxiliary communication holes (12) directly behind the central axis of the main nozzle (13). A vortex chamber type combustion chamber of a diesel engine, characterized in that each side nozzle hole (18) is disposed in the vortex chamber.
請求項1〜18のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて前向きに上り傾斜させた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 18,
A vortex chamber combustion chamber for a diesel engine, wherein a pair of left and right auxiliary communication holes (12), (12) are inclined upwardly from the main combustion chamber (9) toward the vortex chamber (8).
請求項1〜18のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
左右一対の補助連通孔(12)(12)を主燃焼室(9)からうず室(8)に向けて後向きに上り傾斜させた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 18,
A vortex chamber combustion chamber of a diesel engine, wherein a pair of left and right auxiliary communication holes (12), (12) are inclined upward and backward from the main combustion chamber (9) toward the vortex chamber (8).
請求項1〜18のいずれかに記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の相互の離間距離が、上方に行くにつれて、次第に短くなるように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。
In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 18,
When the base (7) is viewed from directly behind the nozzle hole (11), the distance between the pair of left and right auxiliary communication holes (12) and (12) gradually decreases as it goes upward. A vortex chamber type combustion chamber of a diesel engine, characterized in that each auxiliary communication hole (12) is oriented in the direction.
請求項1〜18のいずれか記載したディーゼルエンジンのうず室式燃焼室において、
噴口(11)を手前にした真後ろの方向から口金(7)を見た場合に、左右一対の補助連通孔(12)(12)の相互の離間距離が、上方に行くにつれて、次第に長くなるように、各補助連通孔(12)を方向付けた、ことを特徴とするディーゼルエンジンのうず室式燃焼室。

In the vortex chamber combustion chamber of the diesel engine according to any one of claims 1 to 18,
When the base (7) is viewed from directly behind the nozzle hole (11), the distance between the pair of left and right auxiliary communication holes (12) and (12) gradually increases as it goes upward. A vortex chamber type combustion chamber of a diesel engine, characterized in that each auxiliary communication hole (12) is oriented in the direction.

JP2003283365A 2002-09-27 2003-07-31 Diesel engine vortex chamber combustion chamber Expired - Fee Related JP4085035B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003283365A JP4085035B2 (en) 2003-07-31 2003-07-31 Diesel engine vortex chamber combustion chamber
EP03019967A EP1403482B1 (en) 2002-09-27 2003-09-03 Swirl chamber used in association with a combustion chamber for diesel engines
DE60332203T DE60332203D1 (en) 2002-09-27 2003-09-03 Combustion chamber with swirl chamber for a diesel engine
US10/663,186 US6899076B2 (en) 2002-09-27 2003-09-16 Swirl chamber used in association with a combustion chamber for diesel engines
KR1020030064645A KR101034072B1 (en) 2003-07-31 2003-09-18 Swirl chamber used in association with a combustion chamber for diesel engines
CNB031587046A CN100356044C (en) 2002-09-27 2003-09-19 Vortex chamber incorporated with combustion chamber of diesel engine
US11/601,616 USRE41344E1 (en) 2002-09-27 2006-11-17 Swirl chamber used in association with a combustion chamber for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283365A JP4085035B2 (en) 2003-07-31 2003-07-31 Diesel engine vortex chamber combustion chamber

Publications (2)

Publication Number Publication Date
JP2005048717A true JP2005048717A (en) 2005-02-24
JP4085035B2 JP4085035B2 (en) 2008-04-30

Family

ID=34268269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283365A Expired - Fee Related JP4085035B2 (en) 2002-09-27 2003-07-31 Diesel engine vortex chamber combustion chamber

Country Status (2)

Country Link
JP (1) JP4085035B2 (en)
KR (1) KR101034072B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102412A (en) * 2020-12-25 2022-07-07 株式会社クボタ diesel engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349609A (en) * 1976-10-19 1978-05-06 Nissan Diesel Motor Co Ltd Turbulent type combustion chamber
JPS5756618A (en) * 1980-09-17 1982-04-05 Daihatsu Motor Co Ltd Swirl-chamber diesel engine
JP3047057B2 (en) * 1992-05-15 2000-05-29 株式会社クボタ Diesel engine swirl chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102412A (en) * 2020-12-25 2022-07-07 株式会社クボタ diesel engine
JP7470036B2 (en) 2020-12-25 2024-04-17 株式会社クボタ diesel engine

Also Published As

Publication number Publication date
KR101034072B1 (en) 2011-05-12
KR20050014616A (en) 2005-02-07
JP4085035B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
USRE41344E1 (en) Swirl chamber used in association with a combustion chamber for diesel engines
CN109983208A (en) Diesel engine
JP4085035B2 (en) Diesel engine vortex chamber combustion chamber
JP3191003B2 (en) Diesel engine subchamber combustion chamber
JP6898179B2 (en) Internal combustion engine
JP4231855B2 (en) Diesel engine vortex chamber combustion chamber
JP3047057B2 (en) Diesel engine swirl chamber
JPH0849542A (en) Combustion chamber for swirl chamber diesel engine
JP2853421B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2603563B2 (en) Diesel engine swirl chamber
JP3295260B2 (en) Vortex chamber combustion chamber for diesel engine
JP2658407B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2007239720A (en) Direct injection type diesel engine
JP3243546B2 (en) Combustion chamber of a swirl chamber diesel engine
JP2826796B2 (en) Secondary combustion chamber diesel engine
JP3277067B2 (en) Whirlpool engine
JP2001152858A (en) Swirl chamber type combustion chamber for diesel engine
JP3013567B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3013572B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH05156943A (en) Combustion chamber of swirl chamber type diesel engine
JPH08200072A (en) Combustion chamber structure of indirect injection internal combustion engine
JPH06108849A (en) Combustion chamber of diesel engine with auxiliary chamber
JPH0776530B2 (en) Whirlpool combustion chamber of diesel engine
JP3013571B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2639857B2 (en) Diesel engine swirl chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Ref document number: 4085035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees