JP2005048276A - Method of producing cutter stock, and cutter stock thereby - Google Patents
Method of producing cutter stock, and cutter stock thereby Download PDFInfo
- Publication number
- JP2005048276A JP2005048276A JP2003393424A JP2003393424A JP2005048276A JP 2005048276 A JP2005048276 A JP 2005048276A JP 2003393424 A JP2003393424 A JP 2003393424A JP 2003393424 A JP2003393424 A JP 2003393424A JP 2005048276 A JP2005048276 A JP 2005048276A
- Authority
- JP
- Japan
- Prior art keywords
- specific gravity
- powder
- blade
- titanium
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26B—HAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
- B26B25/00—Hand cutting tools involving disc blades, e.g. motor-driven
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Knives (AREA)
- Nonmetal Cutting Devices (AREA)
Abstract
Description
本発明は、調理用包丁や丸型、角型を含む刃物類に関し、特に、軽量ながらも超硬合金からなる刃物素材及びその製造方法に関する。 The present invention relates to a knife including a cooking knife, a round shape, and a square shape, and more particularly to a cutlery material made of a cemented carbide although being lightweight and a manufacturing method thereof.
包丁やナイフ、丸型回転刀、角型のカミソリなどにおいて、従来は圧延鋼板などを打抜きプレス加工した後、熱処理硬化して製造された素材に刃付加工をして刃(カッター)としたものが大部分であった。 For knives, knives, round rotary swords, square razors, etc., conventionally punched and rolled steel sheets and then heat treated and hardened to produce a blade (cutter). Was the majority.
上記した従来の刃物類において、第1の性能として永切れ性が要望されている。そのために刃物用の鋼の硬度を向上させる方案が試みられているが、従来炭素鋼では焼入時の硬度向上と共に脆性が増加する問題があった。 In the above-described conventional blades, long-lasting properties are desired as the first performance. For this reason, attempts have been made to improve the hardness of steel for cutting tools, but conventional carbon steel has a problem that brittleness increases as the hardness increases during quenching.
さらに、炭化タングステン(WC)粉末とコバルト(CO)粉末を主な構成要素とした粉末焼結刃物素材も存在するが、このような刃物素材の欠点は比重がその組成によって10〜16と重く使用及び用途に制限があるということであった。 Furthermore, there are powder sintered blade materials mainly composed of tungsten carbide (WC) powder and cobalt (CO) powder, but the disadvantage of such blade materials is that their specific gravity is heavy, 10-16 depending on their composition. And there was a limitation in use.
本発明は上記した問題点を解決するために提案されたものであり、本発明の目的は、軽量超硬合金からなり、高い耐磨耗性及び硬度を維持しながらも比重が小さな刃物素材の製造方法及びこれによる刃物素材を提供することにある。 The present invention has been proposed in order to solve the above-mentioned problems, and an object of the present invention is a lightweight cutter material having a small specific gravity while maintaining high wear resistance and hardness. It is in providing a manufacturing method and the blade material by this.
上記のような目的を達成するための本発明は、7以下の比重を有する炭化バナジウム(VC)粉末(第1素材)10〜90重量%、7以下の比重を有するチタン(Ti)またはチタン(Ti)合金粉末(第2素材)を10〜90重量%混合して前記第1、第2素材の混合粉末を準備する段階と、前記混合粉末を成形金型に充填した後プレス加圧して成形品を得る段階と、前記成形品を1500℃以下の温度で焼結する段階とを含み、前記焼結成形品はHRA60以上の硬度及び7以下比重を有することを特徴とする。 In order to achieve the above object, the present invention provides a vanadium carbide (VC) powder (first material) having a specific gravity of 7 or less, 10 to 90% by weight, titanium (Ti) having a specific gravity of 7 or less, or titanium ( (Ti) Alloy powder (second material) is mixed by 10 to 90% by weight to prepare a mixed powder of the first and second materials, and the mixed powder is filled in a molding die and then pressed and molded. And a step of sintering the molded article at a temperature of 1500 ° C. or less, wherein the sintered molded article has a hardness of HRA 60 or more and a specific gravity of 7 or less.
上記のように、本発明によれば、高硬度でありながらも低比重を維持する軽量超硬合金刃物素材を得ることが可能になる。なおかつ同一の重量でより少ない容積の刃物素材を、または同一の容積でより少ない重量の刃物素材を製造することが可能になるため、原材料及び費用節減、製品の小型化による製造の容易、製品軽量化による機械装置での刃運転動力の運転動力の軽減の効果を併せて有することができるようになる。 As described above, according to the present invention, it is possible to obtain a lightweight cemented carbide blade material that maintains a low specific gravity while having a high hardness. In addition, it is possible to manufacture a cutter material of a smaller volume with the same weight, or a cutter material of a smaller weight with the same volume, thus reducing raw materials and costs, easy manufacturing due to product miniaturization, and lightweight product It is possible to have the effect of reducing the driving power of the blade driving power in the mechanical device by the conversion.
以下、本発明の一実施形態について添付図1ないし図2を参照して説明する。
図1は本発明による刃物素材の製造方法によって製造された一実施形態である丸刃カッターの斜視図で、図2は図1に示された丸刃カッターの断面図である。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view of a round blade cutter which is an embodiment manufactured by the method for manufacturing a blade material according to the present invention, and FIG. 2 is a cross-sectional view of the round blade cutter shown in FIG.
前記実施例においては刃物素材の主材料として炭化バナジウム(VC)を使用する。従来粉末焼結刃物素材としての炭化バナジウム(WC)の硬度はマイクロビッカースHV=約1780であるのに比べて、本発明において主材料である炭化バナジウム(VC)の硬度はマイクロビッカースHV=2600であり、より高硬度で、さらに、炭化バナジウムとチタン(Ti)またはチタン(Ti)合金との結合焼結体比重はその組成によって比重が5〜7であって、WC・CO超硬合金の比重である10〜16に比べて約1/2〜1/3と大きく軽量化させることができるため、主材料として特に好ましい。 In the above embodiment, vanadium carbide (VC) is used as the main material of the blade material. The hardness of vanadium carbide (WC) as a conventional powder sintered blade material is Micro Vickers HV = 1780, whereas the hardness of vanadium carbide (VC), which is the main material in the present invention, is Micro Vickers HV = 2600. There is a higher hardness, and the specific gravity of the bonded sintered body of vanadium carbide and titanium (Ti) or titanium (Ti) alloy is 5-7 depending on the composition, and the specific gravity of WC / CO cemented carbide It is particularly preferable as the main material because it can be reduced in weight by about 1/2 to 1/3 as compared with 10-16.
一方、従来炭素鋼刃物素材の焼入時の硬度は、通常HV−820・HRA84がほぼ上限値であってその硬度に制限が従い、この時の比重は約8.5である。一方、WC−CO係超硬合金はHV1800(HRA92)がほぼ上限値である反面、比重は約15程度となる。これに対して本発明の主材料である炭化バナジウム(VC)の硬度はHV2600で非常に高硬度ながらもその比重は7程度と軽く、刃物素材の軽量化及び高硬度化を実現するのに好ましい。 On the other hand, the hardness at the time of quenching of the conventional carbon steel blade material is usually about HV-820 / HRA84, and the hardness is limited, and the specific gravity at this time is about 8.5. On the other hand, in the WC-CO cemented carbide, HV1800 (HRA92) is almost the upper limit, but the specific gravity is about 15. On the other hand, the hardness of vanadium carbide (VC), which is the main material of the present invention, is HV2600, which is very high, but its specific gravity is as light as about 7, which is preferable for realizing weight reduction and high hardness of the blade material. .
本発明の一実施形態である図1及び図2の丸刃カッター素材の製造方法に対して説明する。 The manufacturing method of the round blade cutter raw material of FIG.1 and FIG.2 which is one Embodiment of this invention is demonstrated.
まず、7以下の比重を有する炭化バナジウム(VC)粉末を第1素材として10〜90重量%を準備し、7以下の比重を有するチタン(Ti)またはチタン(Ti)合金粉末を第2素材として10〜90重量%準備した後、第1、第2素材を混合して混合粉末を準備する。 First, vanadium carbide (VC) powder having a specific gravity of 7 or less is used as a first material, and 10 to 90% by weight is prepared, and titanium (Ti) or titanium (Ti) alloy powder having a specific gravity of 7 or less is used as a second material. After preparing 10 to 90% by weight, the first and second materials are mixed to prepare a mixed powder.
ここで、炭化バナジウムの重量%を10〜90重量%に設定したのは、混合粉末の総重量に対して炭化バナジウムの含量が10重量%以下ならば摩耗性が低くなるか、あるいは硬度が低くなる問題点があり、90重量%以上ならば硬度があまりにも高くなって脆性が増加する問題が起きるためである。 Here, the vanadium carbide weight percentage was set to 10 to 90 wt% because the vanadium carbide content is 10 wt% or less with respect to the total weight of the mixed powder, or the wear resistance is low or the hardness is low. This is because if the amount is 90% by weight or more, the hardness becomes too high and the brittleness increases.
次に、上記した配合組成を有する炭化バナジウム(第1素材)粉末とチタンまたはチタン合金粉末(第2素材)の混合粉末を所望形状の成形金型に充填した後、スケアセンチ(cm)当り10tの加圧力でプレス成形し成形品を得る。 Next, a mixed powder of vanadium carbide (first material) powder and titanium or titanium alloy powder (second material) having the above-described composition is filled in a molding die having a desired shape, and then 10 t per square centimeter (cm). Press-molding with the applied pressure to obtain a molded product.
成形品は金型から取り出して真空炉で1500℃以下の温度、望ましくは1300℃程度で焼結して図1に示されたような丸刃カッター素材を得る。 The molded product is taken out from the mold and sintered in a vacuum furnace at a temperature of 1500 ° C. or lower, preferably about 1300 ° C. to obtain a round blade cutter material as shown in FIG.
図1及び図2に示された刃物素材は機械の回転軸に装着されて回転するようになる回転刃物素材であって回転軸挿入孔1を具備し、平面研削によって所望厚さを持った平面研削部3を形成した後、その外周縁の周面に刃付け研削を実施することにより外周刃研削部2を形成して完成される。 The blade material shown in FIGS. 1 and 2 is a rotary blade material that is mounted on a rotating shaft of a machine and rotates, and is provided with a rotating shaft insertion hole 1 and a plane having a desired thickness by surface grinding. After the grinding part 3 is formed, the outer peripheral edge grinding part 2 is formed and completed by performing edge grinding on the peripheral surface of the outer periphery.
焼結成形品は混合粉末の総重量に対して炭化バナジウムが10重量%である時、約HRA60の硬度を有するようになる。 The sintered molded article has a hardness of about HRA 60 when vanadium carbide is 10% by weight with respect to the total weight of the mixed powder.
本発明の第2実施例としては、刃物素材の抗菌性及び衛生性を向上させるために第3素材として銀粉末を上記した第1素材、第2素材の混合粉末に添加することを要旨とする。 The second embodiment of the present invention is to add silver powder as the third material to the mixed powder of the first material and the second material in order to improve the antibacterial and hygienic properties of the blade material. .
軽量超硬合金刃物素材として例えれば、丸刃カッター素材を製造し、これを持って動・植物などの食品類切断用刃物として使用する際に、作業道具の永切れ性能の外にも衛生性の維持が要望される。このために食品切断用として使用される場合においては本発明の刃材料の軽量超硬合金刃物素材に銀を添加する。 For example, when manufacturing a round blade cutter material and using it as a blade for cutting foods such as animals and plants, it is hygienic in addition to the long-lasting performance of the work tool. Maintenance is required. For this reason, when used for cutting food, silver is added to the lightweight cemented carbide blade material of the blade material of the present invention.
軽量超硬合金刃物素材に銀を添加すれば、銀イオンによる抗菌性能は刃物素材に付与できるようになるため、切断した肉類の血液や肉片によって刃が汚染した場合においても、銀イオンによる抗菌性及び自己浄化機能によって、刃物素材の衛生性を維持するのに望ましい。 If silver is added to the lightweight cemented carbide blade material, antibacterial performance due to silver ions can be imparted to the blade material, so even if the blade is contaminated by blood or meat pieces of cut meat, the antibacterial property due to silver ions And the self-cleaning function is desirable to maintain the hygiene of the blade material.
銀粉末を炭化バナジウム粉末、チタンまたはチタン合金粉末に混合するにおいて、炭化バナジウム、チタンまたはチタン合金粉末及び銀粉末の混合粉末総重量に対して銀粉末が0.3重量%以下である場合には銀イオンによる抗菌性能を期待するのは困難で、3重量%程度までは良好な抗菌性能を得ることができるが、3重量%以上の場合には抗菌性能のそれ以上の増加を期待しにくいため、コスト面でも不利益である。 When silver powder is mixed with vanadium carbide powder, titanium or titanium alloy powder, when silver powder is 0.3 wt% or less with respect to the total powder weight of vanadium carbide, titanium or titanium alloy powder and silver powder Antibacterial performance due to silver ions is difficult to expect, and good antibacterial performance can be obtained up to about 3% by weight, but if it is 3% by weight or more, it is difficult to expect further increase in antibacterial performance. It is also disadvantageous in terms of cost.
一方、本発明で第1素材である炭化バナジウム(VC)は高硬度と軽量性によって軽量超硬合金素材の主材料をなすが、第2の素材であるチタンは第1の素材粒子を全体的結合体として焼結させるための結合材として作用する。 On the other hand, vanadium carbide (VC), which is the first material in the present invention, is the main material of a lightweight cemented carbide material due to its high hardness and lightness, but titanium, which is the second material, has the first material particles as a whole. It acts as a bonding material for sintering as a bonded body.
一方、成形品を加圧、焼結すれば焼結体の組職内部に気孔(air hole)が発生しやすく、この気孔の発生程度は一般に成形時に加えられる加圧力によって変わる。さらに、焼結体内に存在する気孔は焼結体の実際密度を低下させ、なおかつ気孔が工具部品の縁に存在する場合には切削力を低下させるなどの問題を引き起こす。 On the other hand, if the molded product is pressurized and sintered, pores are easily generated in the structure of the sintered body, and the degree of the generation of pores generally varies depending on the pressure applied during molding. Furthermore, the pores existing in the sintered body lower the actual density of the sintered body, and if the pores are present at the edge of the tool part, the cutting force is reduced.
したがってこのような問題を解決するために第1素材、第2素材の混合粉末にコバルト粉末を2重量%ないし25重量%添加する。 Therefore, in order to solve such a problem, 2 wt% to 25 wt% of cobalt powder is added to the mixed powder of the first material and the second material.
上記のように、コバルト粉末を混合粉末に添加して加圧及び焼結すれば、焼結時の高温下でコバルト粉末は簡単に液状化して高流動性を有するようになるため、焼結組織体内に発生した気孔部に流れ込んで気孔を塞ぐ。このように気孔を充填するようになれば気孔を無くすと同時に焼結組織体の密度強度を高める役割をするようになる。 As described above, if the cobalt powder is added to the mixed powder and pressed and sintered, the cobalt powder easily liquefies and has high fluidity at a high temperature during sintering. It flows into the pores generated in the body and closes the pores. If the pores are filled in this way, the pores are eliminated and at the same time the density strength of the sintered structure is increased.
この時、コバルトの量が2重量%以下ならば焼結組織体内に発生した気孔を充填するのに不足し、25重量%以上になれば焼結体内に発生する気孔を充填して残ったコバルドが焼結体内部に不均一に分布して偏析を引き起こすようになる問題がある。 At this time, if the amount of cobalt is 2% by weight or less, it is insufficient to fill the pores generated in the sintered structure, and if it is 25% by weight or more, the remaining cobalt remains after filling the pores generated in the sintered body. However, there is a problem that segregation occurs due to uneven distribution in the sintered body.
コバルドの比重は約8.9として比較的重いが、炭化バナジウムとの配合量調節によって最終的に製品比重を約7以下程度にすることが可能であるため、第1実施例と同じくVC・CO超硬合金の比重を大幅に低下させる結果を得ることができるようになる。 Although the specific gravity of Kovardo is relatively heavy at about 8.9, the product specific gravity can be finally reduced to about 7 or less by adjusting the blending amount with vanadium carbide. As a result, the specific gravity of the cemented carbide can be greatly reduced.
1 回転軸挿入孔
2 外周刃研削部
3 平面研削部
1 Rotating shaft insertion hole 2 Peripheral blade grinding part 3 Surface grinding part
Claims (4)
前記混合粉末を成形金型に充填した後プレス加圧して成形品を得る段階と、
前記成形品を1500℃以下の温度で焼結する段階とを含み、
前記焼結成形品はHRA60以上の硬度及び7以下の比重を有することを特徴とする刃物素材の製造方法。 10 to 90% by weight of vanadium carbide (VC) powder (first material) having a specific gravity of 7 or less, 10 to 90% by weight of titanium (Ti) or titanium (Ti) alloy powder (second material) having a specific gravity of 7 or less. % To prepare a mixed powder of the first and second materials,
A step of filling the mixed powder into a molding die and then press-pressing to obtain a molded product;
Sintering the molded article at a temperature of 1500 ° C. or less,
The sintered molded article has a hardness of HRA 60 or more and a specific gravity of 7 or less.
A blade material manufactured by the method for manufacturing a blade material according to claim 1.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030051950A KR100550235B1 (en) | 2003-07-28 | 2003-07-28 | Method for making a blade and Blade manufactured thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005048276A true JP2005048276A (en) | 2005-02-24 |
Family
ID=33536451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003393424A Pending JP2005048276A (en) | 2003-07-28 | 2003-11-25 | Method of producing cutter stock, and cutter stock thereby |
Country Status (5)
Country | Link |
---|---|
US (1) | US20050025655A1 (en) |
EP (1) | EP1502967A1 (en) |
JP (1) | JP2005048276A (en) |
KR (1) | KR100550235B1 (en) |
CN (1) | CN1575891A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013163233A (en) * | 2012-02-09 | 2013-08-22 | Seiko Epson Corp | Cutter, cutting device, recording device, and method of manufacturing the cutter |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100545749B1 (en) * | 2003-10-27 | 2006-01-24 | 아키라 히라이 | Multi-Layer Powder Sintering Tool Parts and Manufacturing Method Thereof |
KR20050068506A (en) * | 2003-12-30 | 2005-07-05 | 아키라 히라이 | Method for making a blade and blade manufactured thereby |
US20060185254A1 (en) * | 2005-02-18 | 2006-08-24 | Akira Hirai | Titanium coated diamond containing edge material and method for manufacturing the same |
KR20090102080A (en) * | 2008-03-25 | 2009-09-30 | 가부시키가이샤 포에버 | Blade using ultra-hard microscopic particles |
JP3174409U (en) * | 2011-11-29 | 2012-03-22 | 株式会社フォーエバー | Blade with diamond particles |
US10555863B2 (en) * | 2013-03-15 | 2020-02-11 | Jacob Randy Hall | Cryotherapy compression system |
CN103334042A (en) * | 2013-06-20 | 2013-10-02 | 成都工业学院 | Vanadium carbide based hard alloy |
CN105128040B (en) * | 2015-09-29 | 2017-11-28 | 山西玉华再制造科技有限公司 | Titanium alloy laser melting coating high speed food cutter head and manufacture method |
KR20210042770A (en) * | 2019-10-10 | 2021-04-20 | 긴미라이 가부시키가이샤 | Making method for silver sterilizing edged tool |
CN112658248A (en) * | 2020-12-07 | 2021-04-16 | 技锋精密刀具(马鞍山)有限公司 | Mold for preparing circular blade and using method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1301629A (en) * | 1970-09-22 | 1973-01-04 | ||
US3802877A (en) * | 1972-04-18 | 1974-04-09 | Titanium Metals Corp | High strength titanium alloys |
US3945863A (en) * | 1973-09-20 | 1976-03-23 | Martin Marietta Corporation | Process for treating metal powders |
US4299626A (en) * | 1980-09-08 | 1981-11-10 | Rockwell International Corporation | Titanium base alloy for superplastic forming |
GB8408975D0 (en) * | 1984-04-06 | 1984-05-16 | Wood J V | Titanium alloys |
US4731115A (en) * | 1985-02-22 | 1988-03-15 | Dynamet Technology Inc. | Titanium carbide/titanium alloy composite and process for powder metal cladding |
CA2015213C (en) * | 1990-04-23 | 1998-04-14 | Gilles Cliche | Tic based materials and process for producing same |
US5545248A (en) * | 1992-06-08 | 1996-08-13 | Nippon Tungsten Co., Ltd. | Titanium-base hard sintered alloy |
JP2796917B2 (en) * | 1993-02-02 | 1998-09-10 | 株式会社クボタ | Composite sintered alloy for non-ferrous metal melts with excellent corrosion resistance and wear resistance |
US5744254A (en) * | 1995-05-24 | 1998-04-28 | Virginia Tech Intellectual Properties, Inc. | Composite materials including metallic matrix composite reinforcements |
JPH09310133A (en) * | 1996-05-17 | 1997-12-02 | Ebara Corp | Wear resistant titanium base alloy and sliding material |
JPH10298611A (en) * | 1997-04-25 | 1998-11-10 | Akira Hirai | Antibacterial sintered cutting tool |
JP2001515147A (en) * | 1997-08-19 | 2001-09-18 | タイタノックス・ディベロップメンツ・リミテッド | Dispersion reinforced composite material based on titanium alloy |
JP2000127047A (en) * | 1998-10-22 | 2000-05-09 | Chukyo Kenma Kk | Antibacterial transition coating treatment method of metal coating treatment grinding wheel by manufacture of antibacterial metal sol and in pressurizing type heating method |
US6668460B2 (en) * | 2002-01-17 | 2003-12-30 | Jonathan Feng | Corrosion resistant lock blade knife |
-
2003
- 2003-07-28 KR KR1020030051950A patent/KR100550235B1/en not_active IP Right Cessation
- 2003-10-09 US US10/683,249 patent/US20050025655A1/en not_active Abandoned
- 2003-11-25 JP JP2003393424A patent/JP2005048276A/en active Pending
-
2004
- 2004-02-26 EP EP04290527A patent/EP1502967A1/en not_active Withdrawn
- 2004-02-26 CN CNA2004100069056A patent/CN1575891A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013163233A (en) * | 2012-02-09 | 2013-08-22 | Seiko Epson Corp | Cutter, cutting device, recording device, and method of manufacturing the cutter |
Also Published As
Publication number | Publication date |
---|---|
KR100550235B1 (en) | 2006-02-08 |
EP1502967A1 (en) | 2005-02-02 |
US20050025655A1 (en) | 2005-02-03 |
CN1575891A (en) | 2005-02-09 |
KR20050013329A (en) | 2005-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1636654B (en) | Cemented carbide tool and method of making the same | |
JP2005048276A (en) | Method of producing cutter stock, and cutter stock thereby | |
US5983507A (en) | Sintered titanium cutlery having antibiotic activity | |
JP3174409U (en) | Blade with diamond particles | |
EP2105266A2 (en) | Blade using ultra-hard microscopic particles | |
CN102357657A (en) | Preparation method of superfine hard alloy blade for processing automobile aluminum alloy | |
JP5956609B2 (en) | Total shape cutter and wood total shape tool | |
CN109794862A (en) | Stainless steel pulp cavity reamer combined binder CBN grinding wheel and its application | |
JP3614872B2 (en) | Sintered titanium-based carbonitride alloy and method for producing the same | |
KR20050068506A (en) | Method for making a blade and blade manufactured thereby | |
WO2019058872A1 (en) | Machining method, planetary carrier manufacturing method, and planetary carrier | |
CN116275167B (en) | Bionic cutting knife based on sea urchin tooth self-sharpening structure and preparation method thereof | |
KR101609972B1 (en) | Sintered alloy for cutting tools | |
EP3109333B1 (en) | Iron-based sintered alloy and method for producing the same | |
CN1636653A (en) | Cemented carbide insert and method of making the same | |
JP4172754B2 (en) | TiCN-based cermet and method for producing the same | |
CN114716245A (en) | Ceramic cutting tool and method for manufacturing same | |
CN114656257A (en) | Ceramic cutting tool and method for manufacturing same | |
CN105132802A (en) | Powder metallurgy material for gear and preparing method of powder metallurgy material | |
CN100503512C (en) | Azotized metal ceramic and its preparing process | |
JPS6315981B2 (en) | ||
KR100545749B1 (en) | Multi-Layer Powder Sintering Tool Parts and Manufacturing Method Thereof | |
JPS6033609B2 (en) | Super hard alloy end mill | |
RU2332482C1 (en) | Sintered hard alloy on base of tungsten carbide | |
JPH05171338A (en) | Sintered titanium-based carbonitride alloy and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20041110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050329 |