JP2005048134A - Masterbatch for reclaimed resin, method for producing the same and method for producing reclaimed resin molded article - Google Patents

Masterbatch for reclaimed resin, method for producing the same and method for producing reclaimed resin molded article Download PDF

Info

Publication number
JP2005048134A
JP2005048134A JP2003284099A JP2003284099A JP2005048134A JP 2005048134 A JP2005048134 A JP 2005048134A JP 2003284099 A JP2003284099 A JP 2003284099A JP 2003284099 A JP2003284099 A JP 2003284099A JP 2005048134 A JP2005048134 A JP 2005048134A
Authority
JP
Japan
Prior art keywords
resin
recycled
producing
recovered
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003284099A
Other languages
Japanese (ja)
Other versions
JP4999036B2 (en
Inventor
Takamitsu Nakamura
貴光 中村
Koichi Kimura
浩一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003284099A priority Critical patent/JP4999036B2/en
Publication of JP2005048134A publication Critical patent/JP2005048134A/en
Application granted granted Critical
Publication of JP4999036B2 publication Critical patent/JP4999036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a masterbatch for reclaimed resin effective for preventing the degradation of a virgin resin in a recycling method using a virgin resin and a reclaimed resin, a method for producing the masterbatch and a method for producing a molded article of a reclaimed resin. <P>SOLUTION: The method for producing a molded article of a reclaimed resin contains a step to knead a material containing a reclaimed resin and an inorganic additive under melting to produce a masterbatch for a reclaimed resin, a step to produce a reclaimed resin composition by the dry-blending of a material containing a virgin resin and the masterbatch for reclaimed resin and a step to produce a molded article by using the reclaimed resin composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子機器、家電製品、およびインテリアなどに用いる再生樹脂成形体を製造するための再生樹脂用マスターバッチとその製造方法、および再生樹脂成形体の製造方法に関する。   The present invention relates to a recycled resin masterbatch for manufacturing a recycled resin molded body used for electronic devices, home appliances, interiors, and the like, a manufacturing method thereof, and a manufacturing method of the recycled resin molded body.

近年、資源有効利用法の成立など、資源対策に関する法整備が進み、製品の再資源化、資源の再利用、および廃棄物の減量に対する取り組みが活発となっている。特に、家電製品や電子機器のメーカーにとって、販売した製品の回収およびリサイクルは重要となってきた。   In recent years, legislation concerning resource countermeasures has progressed, such as the enactment of the Effective Resource Utilization Law, and efforts to recycle products, reuse resources, and reduce waste have become active. In particular, the collection and recycling of sold products has become important for manufacturers of home appliances and electronic devices.

例えば、ノートパソコンや携帯電話などのモバイル型電子機器においては、その筐体を構成する材料として、軽量性および成形性の観点より樹脂材料が採用される場合が多く、モバイル型電子機器の分野では、樹脂筐体のリサイクル技術の確立が強く望まれている。   For example, in mobile electronic devices such as notebook computers and mobile phones, resin materials are often used from the viewpoints of lightness and moldability as the material constituting the housing, and in the field of mobile electronic devices The establishment of recycling technology for resin casings is strongly desired.

モバイル型電子機器の樹脂筐体は、一般に金型成形により製造されており、熱可塑性の樹脂組成物よりなる。従って、樹脂筐体を回収すれば、再溶融して再び金型成形に供することが可能である。従来の樹脂筐体のリサイクル方法としては、回収した樹脂成形体のみを樹脂材料として再溶融して再び金型成形する方法(例えば、特許文献1、特許文献2参照。)や、回収した樹脂成形体と新規樹脂との混練物を樹脂材料として溶融して金型成形に供する方法(例えば、特許文献3、特許文献4参照。)が提案されている。
特開平7−60819号公報 特開2001−277279号公報 特開平9−235405号公報 特開2001−38729号公報
A resin casing of a mobile electronic device is generally manufactured by molding and is made of a thermoplastic resin composition. Therefore, if the resin casing is collected, it can be remelted and used again for molding. As a conventional recycling method for the resin casing, only a recovered resin molded body is remelted as a resin material and molded again (for example, refer to Patent Document 1 and Patent Document 2), or recovered resin molding. There has been proposed a method of melting a kneaded product of a body and a new resin as a resin material and using it for molding (see, for example, Patent Document 3 and Patent Document 4).
Japanese Patent Laid-Open No. 7-60819 JP 2001-277279 A Japanese Patent Laid-Open No. 9-235405 JP 2001-38729 A

しかし、回収した樹脂成形体のみを樹脂材料として再溶融して再び金型成形する方法では、新規樹脂に比べて著しく成形体の特性が劣化してしまう。また、回収した樹脂成形体と新規樹脂との混練物を樹脂材料として溶融して金型成形に供する方法では、新規樹脂と回収樹脂とを溶融混練する工程により再生樹脂の物性が低下するという問題がある。   However, in the method in which only the collected resin molded body is remelted as a resin material and molded again, the characteristics of the molded body are significantly deteriorated as compared with the new resin. Further, in the method of melting the kneaded product of the collected resin molded body and the new resin as a resin material and using it for mold molding, there is a problem that the physical properties of the recycled resin are reduced by the process of melting and kneading the new resin and the recovered resin. There is.

以下、この問題について図面に基づき説明する。図2は、従来のリサイクル方法の一例を示すフロー図である。図2においては、新規樹脂と、回収樹脂、添加剤などとを溶融混練する方法により、再生樹脂が製造されるフローが示されている。   Hereinafter, this problem will be described with reference to the drawings. FIG. 2 is a flowchart showing an example of a conventional recycling method. FIG. 2 shows a flow in which a recycled resin is produced by a method of melt-kneading a new resin, a recovered resin, an additive, and the like.

この従来のリサイクル方法では、溶融混練工程が必ず必要になり、この工程により新規樹脂材料の高分子組織が破壊されて低分子化して劣化してしまう。また、この樹脂組成の変化により成形性の悪化も発生する。   In this conventional recycling method, a melt-kneading process is indispensable, and this process destroys the polymer structure of the new resin material, lowers the molecular weight, and deteriorates. Moreover, the deterioration of moldability also occurs due to the change in the resin composition.

本発明は、新規樹脂と回収樹脂とを用いたリサイクル方法において、新規樹脂の劣化を防止することができる再生樹脂用マスターバッチとその製造方法、および再生樹脂成形体の製造方法を提供する。   The present invention provides a recycled resin masterbatch capable of preventing deterioration of a new resin, a method for producing the same, and a method for producing a recycled resin molded article in a recycling method using a new resin and a recovered resin.

本発明は、回収樹脂と無機添加物とを含み、前記回収樹脂と前記無機添加物とが溶融混練されていることを特徴とする再生樹脂用マスターバッチを提供する。   The present invention provides a recycled resin masterbatch comprising a recovered resin and an inorganic additive, wherein the recovered resin and the inorganic additive are melt-kneaded.

また、本発明は、回収樹脂と無機添加物とを含む材料を溶融混練することを特徴とする再生樹脂用マスターバッチの製造方法を提供する。   Moreover, this invention provides the manufacturing method of the masterbatch for recycled resin characterized by melt-kneading the material containing collection | recovery resin and an inorganic additive.

また、本発明は、回収樹脂と無機添加物とを含む材料を溶融混練して再生樹脂用マスターバッチを製造する工程と、新規樹脂と前記再生樹脂用マスターバッチとを含む材料をドライブレンドして再生樹脂組成物を製造する工程と、前記再生樹脂組成物を用いて成形体を製造する工程とを含むことを特徴とする再生樹脂成形体の製造方法を提供する。   The present invention also includes a step of melt-kneading a material containing a recovered resin and an inorganic additive to produce a recycled resin masterbatch, and dry blending a material containing the new resin and the recycled resin masterbatch. There is provided a method for producing a recycled resin molded product, comprising a step of producing a recycled resin composition and a step of producing a molded product using the recycled resin composition.

本発明は、回収樹脂を再利用することができるとともに、新規樹脂と回収樹脂とを溶融混練しなくても再生樹脂成形体を製造できるため、新規樹脂に無駄な熱履歴が加わらず、新規樹脂の熱劣化を防止することができる。   In the present invention, since the recovered resin can be reused and a recycled resin molded body can be produced without melt-kneading the new resin and the recovered resin, the new resin does not add a wasteful heat history. It is possible to prevent thermal degradation of the.

本発明の再生樹脂成形体の製造方法の一例は、回収樹脂と無機添加物とを溶融混練して再生樹脂用マスターバッチを製造する工程と、新規樹脂と上記再生樹脂用マスターバッチとをドライブレンドして再生樹脂組成物を製造する工程と、上記再生樹脂組成物を用いて成形体を製造する工程とを含むことを特徴とする。   An example of a method for producing a recycled resin molded article of the present invention is a dry blend of a process for producing a masterbatch for recycled resin by melting and kneading a recovered resin and an inorganic additive, and a new resin and the masterbatch for recycled resin. And a step of producing a recycled resin composition, and a step of producing a molded body using the recycled resin composition.

回収樹脂と無機添加物とを予め溶融混練して再生樹脂用マスターバッチを製造した後に、新規樹脂と上記再生樹脂用マスターバッチとをドライブレンドすることにより、新規樹脂に無駄な熱履歴が加わることがなく、新規樹脂の特性が低下することを防止できる。また、新規樹脂に無駄な熱履歴が加わらないため、回収樹脂の配合量を多くしても新規樹脂と同等の物性を有した再生樹脂組成物を得ることが可能であり、廃棄物の減少と資源の有効利用の両立を達成できる。さらに、再生樹脂用マスターバッチの配合比率を変えることで容易に回収樹脂の使用率を変化させることが可能である。   After a recovered resin and an inorganic additive are melt-kneaded in advance to produce a recycled resin masterbatch, a wasteful heat history is added to the new resin by dry blending the new resin and the recycled resin masterbatch. It can prevent that the characteristic of a novel resin falls. In addition, since a wasteful heat history is not added to the new resin, it is possible to obtain a recycled resin composition having the same physical properties as the new resin even if the amount of the recovered resin is increased. Achieving both effective use of resources. Furthermore, it is possible to easily change the usage rate of the recovered resin by changing the blending ratio of the master batch for recycled resin.

ここで、新規樹脂とは、金型成形に未使用の樹脂材料である。回収樹脂とは、本実施形態においては、新規樹脂と同種の樹脂よりなり、市場に流通などした後に回収された樹脂成形体から得られる樹脂材料である。また、ドライブレンドとは、熱や溶媒を加えることなく、単に物理的に混合することをいう。   Here, the new resin is a resin material that is not used for mold molding. In the present embodiment, the recovered resin is a resin material made of the same type of resin as the new resin and obtained from the resin molded body recovered after being distributed to the market. Further, dry blending simply means physical mixing without adding heat or a solvent.

本実施形態で用いられる新規樹脂、回収樹脂としては、例えば、ポリカーボネート(PC)、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−スチレン(AS)樹脂、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、液晶ポリマー(LCP)などが挙げられる。   Examples of the new resin and recovery resin used in the present embodiment include polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polystyrene (PS), polypropylene (PP), and polyethylene. (PE), polyamide (PA), polyethylene terephthalate (PET), liquid crystal polymer (LCP) and the like.

上記新規樹脂の割合は、全体の重量割合で10重量%以上80重量%以下であることが好ましい。この範囲内であれば、新規樹脂の特性を維持しつつ回収樹脂の再利用を図ることができ、回収樹脂の廃棄を回避して資源を有効利用することが可能となり、且つ、新規樹脂に要する原料費が低減されるからである。   The ratio of the new resin is preferably 10% by weight or more and 80% by weight or less in terms of the total weight ratio. Within this range, it is possible to reuse the recovered resin while maintaining the characteristics of the new resin, and it is possible to effectively use resources by avoiding the disposal of the recovered resin, and for the new resin. This is because raw material costs are reduced.

上記無機添加物としては、グラスファイバー短繊維(繊維長約5〜10mm)、グラスファイバー長繊維(繊維長約10〜30mm)、カーボンファイバー、タルク、ガラスフレーク、マイカなどを使用できる。上記無機添加物の割合は、全体の重量割合で1重量%以上30重量%以下とすることができる。   As the inorganic additive, glass fiber short fibers (fiber length of about 5 to 10 mm), glass fiber long fibers (fiber length of about 10 to 30 mm), carbon fiber, talc, glass flakes, mica and the like can be used. The ratio of the inorganic additive can be 1% by weight or more and 30% by weight or less in terms of the total weight ratio.

上記再生樹脂用マスターバッチを製造する工程において、さらに難燃剤を溶融混練することが好ましい。難燃剤としては、例えば、ジフェニルホスフェート、エチルアシッドホスフェート、ジキシレニルホスフェートなどのリン酸エステル系難燃剤、赤リンを無機物コートした赤リン系難燃剤、シランカップリング剤、オルガノシルセスキロキサン、変性シリコーン、シリコーンポリマーなどのシリコン系難燃剤、その他の無機系難燃剤などが挙げられる。上記難燃剤の割合は、全体の重量割合で1重量%以上20重量%以下とすることができる。   In the step of producing the recycled resin master batch, it is preferable to further melt and knead the flame retardant. Examples of the flame retardant include phosphate ester flame retardants such as diphenyl phosphate, ethyl acid phosphate, and dixylenyl phosphate, red phosphorus flame retardant coated with inorganic substance of red phosphorus, silane coupling agent, organosilsesquioxane, Examples include silicone-based flame retardants such as modified silicones and silicone polymers, and other inorganic flame retardants. The ratio of the flame retardant can be 1% by weight or more and 20% by weight or less in the total weight ratio.

上記再生樹脂用マスターバッチは、新規樹脂に加えられる補填材料に相当する。本実施形態の再生樹脂用マスターバッチは、回収樹脂と無機添加物とを含み、上記回収樹脂と上記無機添加物とが溶融混練されていることを特徴とする。上記回収樹脂と上記無機添加物とを溶融混練することにより、両者の結びつきを強固にすることができる。   The recycled resin master batch corresponds to a filling material added to the new resin. The master batch for recycled resin according to the present embodiment includes a recovered resin and an inorganic additive, and the recovered resin and the inorganic additive are melt-kneaded. By melt-kneading the recovered resin and the inorganic additive, the bond between them can be strengthened.

上記回収樹脂の割合は、再生樹脂用マスターバッチ全体の重量割合で50重量%以上であることが好ましい。この範囲内であれば、十分な量の回収樹脂を再利用できるからである。   The ratio of the recovered resin is preferably 50% by weight or more in terms of the weight ratio of the entire recycled resin master batch. This is because, within this range, a sufficient amount of recovered resin can be reused.

次に、本発明の実施の形態を図面に基づき説明する。図1は、本発明の再生樹脂成形体の製造方法の一例を示すフロー図である。先ず、廃棄されたノートパソコンから回収されたグラスファイバー強化ポリカーボネート(GF強化PC)製の筐体を3〜8mm程度の大きさに粉砕して、回収樹脂として準備する。また、ポリカーボネート用強化グラスファイバー・チョップドストランド(PC用強化GF・CS)を無機添加物として準備する。さらに、難燃剤として、リン酸エステル系難燃剤を準備する。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing an example of a method for producing a recycled resin molded body of the present invention. First, a glass fiber reinforced polycarbonate (GF reinforced PC) casing recovered from a discarded notebook personal computer is pulverized to a size of about 3 to 8 mm to prepare a recovered resin. Further, reinforced glass fiber chopped strands for polycarbonate (reinforced GF · CS for PC) are prepared as inorganic additives. Furthermore, a phosphate ester flame retardant is prepared as a flame retardant.

次に、上記回収樹脂、無機添加物、難燃剤を二軸押出混練機に投入して溶融混練した後、二軸押出混練機の先端にあるダイスより押し出して直径2〜3mmのストランド状の樹脂を得る。このストランド状の樹脂をペレット状にカットして再生樹脂用マスターバッチとする。   Next, the recovered resin, the inorganic additive, and the flame retardant are put into a twin screw extruder kneader and melt kneaded, and then extruded from a die at the tip of the twin screw extruder kneader to form a strand-like resin having a diameter of 2 to 3 mm. Get. This strand resin is cut into pellets to obtain a recycled resin master batch.

次に、GF強化PCからなる新規樹脂と上記再生樹脂用マスターバッチとをドライブレンドした後、成形機に投入して本実施形態の再生樹脂成形体(樹脂筐体)を得る。   Next, after dry blending a new resin made of GF-reinforced PC and the recycled resin masterbatch, it is put into a molding machine to obtain a recycled resin molded body (resin casing) of the present embodiment.

従来のGF強化PCによって製造された成形品を粉砕した回収樹脂のみを使用して再生樹脂成形体を製造すると、成形体の物性の低下が激しく、電子機器筐体に適用するのは困難である。物性低下の原因としては、(i)樹脂の熱履歴による分子量の低下、(ii)成形、粉砕、混練の繰り返しによる含有されているグラスファイバー(GF)の微細化、(iii)熱履歴による含有されている難燃剤の劣化などが考えられる。   When a recycled resin molded product is manufactured using only a recovered resin obtained by pulverizing a molded product manufactured by a conventional GF reinforced PC, the physical properties of the molded product are drastically deteriorated and it is difficult to apply it to an electronic device casing. . Causes of physical properties decrease are: (i) decrease in molecular weight due to heat history of resin, (ii) refinement of glass fiber (GF) contained by repeated molding, grinding and kneading, (iii) inclusion due to heat history Deterioration of the flame retardant used can be considered.

これに対して図1に示す本実施形態の再生樹脂成形体の製造方法では、成形体の物性低下が低減できる。これは、(i)新規樹脂の熱劣化がなく、(ii)回収樹脂の分子量低下を配合した新規樹脂成分が補い、(iii)GFの微細化を新規に混入したPC用強化GF・CSが補い、さらに(iv)回収樹脂とGFとをマスターバッチ化することで回収樹脂とGFとの界面の結びつきが強固になり、強度向上に効果を発揮するからである。   On the other hand, in the method for producing a recycled resin molded body of the present embodiment shown in FIG. This is because (i) there is no thermal degradation of the new resin, (ii) a new resin component blended with the reduced molecular weight of the recovered resin, and (iii) reinforced GF / CS for PC newly mixed with GF refinement In addition, (iv) by making the recovered resin and GF into a master batch, the interface between the recovered resin and GF becomes stronger, and the effect of improving the strength is exhibited.

(実施例1)
<再生樹脂用マスターバッジの作製>
20重量%のGFを含有するGF強化PC(商品名:タフロンGZK3200、出光石油化学製)製の無塗装ノートパソコン筐体を粉砕することにより、PC回収樹脂を得た。また、無機添加物として、平均繊維長さ6mmのGF(商品名:CS03MAFT737、旭ファイバーグラス製)を準備した。
(Example 1)
<Production of master badge for recycled resin>
A PC recovery resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF reinforced PC (trade name: Toughlon GZK3200, manufactured by Idemitsu Petrochemical Co., Ltd.) containing 20% by weight of GF. Moreover, GF (trade name: CS03MAFT737, manufactured by Asahi Fiber Glass Co., Ltd.) having an average fiber length of 6 mm was prepared as an inorganic additive.

次に、二軸押出混練機(商品名:KZW−15−30MG、テクノベル製)を使用して、上記PC回収樹脂を約260℃で溶融混練し、スクリュ回転数を250rpmに設定してシリンダ温度260℃にて溶融混練押出を行った。その際、二軸押出混練機の途中サイドに設けたベント口に、KZW15用2軸サイドフィーダ(商品名:SFD152、テクノベル製)を取り付け、上記GFを供給して溶融状態の樹脂に添加した。その後、シリンダ先端に取り付けたダイスより吐出されるストランド状の樹脂組成物を冷却し、ストランドカットペレタイザー(商品名:SCP−102、テクノベル製)を用いてペレット状の再生樹脂用マスターバッチを得た。   Next, using a twin-screw extrusion kneader (trade name: KZW-15-30MG, manufactured by Technobel), the PC recovered resin is melt-kneaded at about 260 ° C., the screw speed is set to 250 rpm, and the cylinder temperature is set. Melt kneading extrusion was performed at 260 ° C. At that time, a biaxial side feeder for KZW15 (trade name: SFD152, manufactured by Technobell) was attached to a vent port provided on the middle side of the biaxial extrusion kneader, and the GF was supplied and added to the molten resin. Thereafter, the strand-shaped resin composition discharged from the die attached to the cylinder tip was cooled, and a pellet-shaped recycled resin master batch was obtained using a strand cut pelletizer (trade name: SCP-102, manufactured by Technobel). .

<再生樹脂組成物の作製>
GF強化PC(商品名:タフロンGZK3200、出光石油化学製)製のペレット状のPC新規樹脂を準備した。
<Preparation of recycled resin composition>
A pellet-shaped PC new resin made of GF reinforced PC (trade name: Toughlon GZK3200, manufactured by Idemitsu Petrochemical Co., Ltd.) was prepared.

次に、PC新規樹脂と上記再生樹脂用マスターバッチとを乾燥状態でミキサーを用いてドライブレンドして、再生樹脂組成物を得た。本実施例の再生樹脂組成物の配合組成(重量%)は表1に示すように、PC新規樹脂:PC回収樹脂:GF=15:80:5とした。   Next, the PC new resin and the recycled resin master batch were dry blended in a dry state using a mixer to obtain a recycled resin composition. As shown in Table 1, the blended composition (% by weight) of the recycled resin composition of this example was PC new resin: PC recovered resin: GF = 15: 80: 5.

<再生樹脂成形体の作製>
上述のようにして得た再生樹脂組成物から、射出成形機(商品名:SG50、住友機械製)を使用して、シリンダ温度280℃、金型温度80℃にて、曲げ試験用成形体サンプル(長さ126mm、幅12.8mm、厚さ3.2mm)、アイゾット衝撃試験用成形体サンプル(長さ126mm×幅12.8mm×厚さ3.2mm、厚さ方向に深さを有するノッチの深さ2.54mm)、および燃焼試験用成形体サンプル(長さ126mm、幅12.8mm、厚さ0.8mm)を金型成形した。
<Preparation of recycled resin molding>
Using the recycled resin composition obtained as described above, an injection molding machine (trade name: SG50, manufactured by Sumitomo Machinery Co., Ltd.) and a cylinder sample for bending test at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C. (Length 126 mm, width 12.8 mm, thickness 3.2 mm), molded sample for Izod impact test (length 126 mm × width 12.8 mm × thickness 3.2 mm, notch having depth in thickness direction) Depth 2.54 mm) and a molded sample for combustion test (length 126 mm, width 12.8 mm, thickness 0.8 mm) were molded.

<アイゾット衝撃試験>
上述のようにして作製したアイゾット衝撃試験用成形体サンプルについて、耐衝撃性を調べた。具体的には、アイゾット衝撃試験機(商品名:インパクトテスタ、東洋精機製)を使用して、JIS K 7110に準拠してアイゾット衝撃試験を行った。その結果、表2に示すようにアイゾット衝撃強度は、6kgf・cm/cmであった。
<Izod impact test>
The impact resistance of the molded sample for Izod impact test produced as described above was examined. Specifically, an Izod impact test was performed in accordance with JIS K 7110 using an Izod impact tester (trade name: Impact Tester, manufactured by Toyo Seiki). As a result, as shown in Table 2, the Izod impact strength was 6 kgf · cm / cm.

<曲げ試験>
上述のようにして作製した曲げ試験用成形体サンプルについて、曲げ強度と曲げ弾性率とを測定した。具体的には、万能試験機(商品名:インストロン5581、インストロンジャパン製)を使用して、JIS K 7055に準拠して、成形体サンプルについて3点曲げ試験を行った。即ち、支持2点間距離(スパン)を51.2mmとし、この支持2点間の略中央に対して押圧力を加えることによって、成形体サンプルの曲げ強度および曲げ弾性率を測定した。その結果、表2に示すように曲げ強度は911kgf/cm2、曲げ弾性率は49356kgf/cm2であった。
<Bending test>
The bending strength and bending elastic modulus of the molded sample for bending test produced as described above were measured. Specifically, using a universal testing machine (trade name: Instron 5581, manufactured by Instron Japan), a three-point bending test was performed on the molded body sample in accordance with JIS K 7055. That is, the distance (span) between the two support points was 51.2 mm, and the bending strength and the bending elastic modulus of the molded body sample were measured by applying a pressing force to the approximate center between the two support points. As a result, as shown in Table 2, the bending strength was 911 kgf / cm 2 and the bending elastic modulus was 49356 kgf / cm 2 .

<燃焼試験>
上述のようにして作製した燃焼試験用成形体サンプルについて燃焼性を調べた。具体的には、UL94に準拠して、燃焼試験を行った。その結果、表2に示すように燃焼性は、V−2であった。
<Combustion test>
The combustibility of the molded sample for combustion test produced as described above was examined. Specifically, a combustion test was performed in accordance with UL94. As a result, as shown in Table 2, the combustibility was V-2.

(実施例2)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF=45:50:5とした以外は、実施例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Example 2)
As shown in Table 1, a molded product sample was prepared in the same manner as in Example 1 except that the composition (weight%) of the recycled resin composition was PC new resin: PC recovery resin: GF = 45: 50: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 2.

(実施例3)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF=75:20:5とした以外は、実施例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Example 3)
As shown in Table 1, a molded product sample was prepared in the same manner as in Example 1 except that the composition (weight%) of the recycled resin composition was PC new resin: PC recovered resin: GF = 75: 20: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 2.

(実施例4)
<再生樹脂用マスターバッジの作製>
20重量%のGFを含有するGF強化PC(商品名:タフロンGZK3200、出光石油化学製)製の無塗装ノートパソコン筐体を粉砕することにより、PC回収樹脂を得た。また、無機添加物として、平均繊維長さ6mmのGF(商品名:CS03MAFT737、旭ファイバーグラス製)を準備した。さらに、難燃剤として、リン系難燃剤(商品名:レオフォスTPP、味の素ファインテクノ製)を準備した。
(Example 4)
<Production of master badge for recycled resin>
A PC recovery resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF reinforced PC (trade name: Toughlon GZK3200, manufactured by Idemitsu Petrochemical Co., Ltd.) containing 20% by weight of GF. Moreover, GF (trade name: CS03MAFT737, manufactured by Asahi Fiber Glass Co., Ltd.) having an average fiber length of 6 mm was prepared as an inorganic additive. Furthermore, a phosphorus flame retardant (trade name: Leophos TPP, manufactured by Ajinomoto Fine Techno) was prepared as a flame retardant.

次に、二軸押出混練機(商品名:KZW−15−30MG、テクノベル製)を使用して、上記PC回収樹脂と難燃剤とを約260℃で溶融混練し、スクリュ回転数を250rpmに設定してシリンダ温度260℃にて溶融混練押出を行った。その際、二軸押出混練機の途中サイドに設けたベント口に、KZW15用2軸サイドフィーダ(商品名:SFD152、テクノベル製)を取り付け、上記GFを供給して溶融状態の樹脂に添加した。その後、シリンダ先端に取り付けたダイスより吐出されるストランド状の樹脂組成物を冷却し、ストランドカットペレタイザー(商品名:SCP−102、テクノベル製)を用いてペレット状の再生樹脂用マスターバッチを得た。   Next, using a twin-screw extrusion kneader (trade name: KZW-15-30MG, manufactured by Technobel), the PC recovery resin and the flame retardant are melt-kneaded at about 260 ° C., and the screw speed is set to 250 rpm. Then, melt-kneading extrusion was performed at a cylinder temperature of 260 ° C. At that time, a biaxial side feeder for KZW15 (trade name: SFD152, manufactured by Technobell) was attached to a vent port provided on the middle side of the biaxial extrusion kneader, and the GF was supplied and added to the molten resin. Thereafter, the strand-shaped resin composition discharged from the die attached to the cylinder tip was cooled, and a pellet-shaped recycled resin master batch was obtained using a strand cut pelletizer (trade name: SCP-102, manufactured by Technobel). .

<再生樹脂組成物の作製>
GF強化PC(商品名:タフロンGZK3200、出光石油化学製)製のペレット状のPC新規樹脂を準備した。
<Preparation of recycled resin composition>
A pellet-shaped PC new resin made of GF reinforced PC (trade name: Toughlon GZK3200, manufactured by Idemitsu Petrochemical Co., Ltd.) was prepared.

次に、上記PC新規樹脂と上記再生樹脂用マスターバッチとを乾燥状態でミキサーを用いてドライブレンドして、再生樹脂組成物を得た。本実施例の再生樹脂組成物の配合組成(重量%)は表1に示すように、PC新規樹脂:PC回収樹脂:GF:難燃剤=15:75:5:5とした。   Next, the PC new resin and the recycled resin master batch were dry blended in a dry state using a mixer to obtain a recycled resin composition. As shown in Table 1, the blended composition (% by weight) of the recycled resin composition of this example was PC new resin: PC recovered resin: GF: flame retardant = 15: 75: 5: 5.

上述した以外は、実施例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。   Except as described above, a molded body sample was prepared in the same manner as in Example 1, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 2.

(実施例5)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF:難燃剤=45:45:5:5とした以外は、実施例4と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Example 5)
As shown in Table 1, the composition of the recycled resin composition (% by weight) was the same as that of Example 4 except that PC new resin: PC recovered resin: GF: flame retardant = 45: 45: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 2.

(実施例6)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF:難燃剤=70:20:5:5とした以外は、実施例4と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Example 6)
As shown in Table 1, the composition of the recycled resin composition (% by weight) was the same as in Example 4 except that PC new resin: PC recovered resin: GF: flame retardant = 70: 20: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 2.

(比較例1)
20重量%のGFを含有するGF強化PC(商品名:タフロンGZK3200、出光石油化学製)製の無塗装ノートパソコン筐体を粉砕することにより、PC回収樹脂を得た。また、無機添加物として、平均繊維長さ6mmのGF(商品名:CS03MAFT737、旭ファイバーグラス製)を準備した。さらに、GF強化PC(商品名:タフロンGZK3200、出光石油化学製)製のペレット状のPC新規樹脂を準備した。
(Comparative Example 1)
A PC recovery resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF-reinforced PC (trade name: Toughlon GZK3200, manufactured by Idemitsu Petrochemical Co., Ltd.) containing 20% by weight of GF. Moreover, GF (trade name: CS03MAFT737, manufactured by Asahi Fiber Glass Co., Ltd.) having an average fiber length of 6 mm was prepared as an inorganic additive. Furthermore, a pellet-like PC new resin made of GF reinforced PC (trade name: Toughlon GZK3200, manufactured by Idemitsu Petrochemical Co., Ltd.) was prepared.

次に、二軸押出混練機(商品名:KZW−15−30MG、テクノベル製)を使用して、上記PC回収樹脂とPC新規樹脂とを約260℃で溶融混練し、スクリュ回転数を250rpmに設定してシリンダ温度260℃にて溶融混練押出を行った。その際、二軸押出混練機の途中サイドに設けたベント口に、KZW15用2軸サイドフィーダ(商品名:SFD152、テクノベル製)を取り付け、上記GFを供給して溶融状態の樹脂に添加した。その後、シリンダ先端に取り付けたダイスより吐出されるストランド状の樹脂組成物を冷却し、ストランドカットペレタイザー(商品名:SCP−102、テクノベル製)を用いてペレット状の再生樹脂組成物を得た。本比較例の再生樹脂組成物の配合組成(重量%)は表1に示すように実施例1と同様に、PC新規樹脂:PC回収樹脂:GF=15:80:5とした。   Next, using a twin-screw extrusion kneader (trade name: KZW-15-30MG, manufactured by Technobel), the PC recovery resin and the PC new resin are melt-kneaded at about 260 ° C., and the screw rotation speed is 250 rpm. It was set and melt kneading extrusion was performed at a cylinder temperature of 260 ° C. At that time, a biaxial side feeder for KZW15 (trade name: SFD152, manufactured by Technobell) was attached to a vent port provided on the middle side of the biaxial extrusion kneader, and the GF was supplied and added to the molten resin. Thereafter, the strand-shaped resin composition discharged from a die attached to the tip of the cylinder was cooled, and a pellet-shaped regenerated resin composition was obtained using a strand cut pelletizer (trade name: SCP-102, manufactured by Technobel). As shown in Table 1, the blended composition (% by weight) of the recycled resin composition of this comparative example was set to PC new resin: PC recovered resin: GF = 15: 80: 5 as in Example 1.

上述した以外は、実施例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。   Except as described above, a molded body sample was prepared in the same manner as in Example 1, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 2.

(比較例2)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF=45:50:5とした以外は、比較例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Comparative Example 2)
As shown in Table 1, a molded product sample was prepared in the same manner as in Comparative Example 1 except that the composition (weight%) of the recycled resin composition was PC new resin: PC recovered resin: GF = 45: 50: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 2.

(比較例3)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF=75:20:5とした以外は、比較例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Comparative Example 3)
As shown in Table 1, a molded product sample was prepared in the same manner as in Comparative Example 1 except that the blended composition (% by weight) of the recycled resin composition was changed to PC new resin: PC recovered resin: GF = 75: 20: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 2.

(比較例4)
さらに、難燃剤として、リン系難燃剤(商品名:レオフォスTPP、味の素ファインテクノ製)を溶融混練して、表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF:難燃剤=15:75:5:5とした以外は、比較例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Comparative Example 4)
Furthermore, as a flame retardant, a phosphorus-based flame retardant (trade name: Leophos TPP, manufactured by Ajinomoto Fine-Techno) is melt-kneaded, and as shown in Table 1, the blended composition (% by weight) of the recycled resin composition is changed to a new PC resin. : PC recovery resin: GF: Flame retardant = 15: 75: 5: 5 A molded body sample was prepared in the same manner as in Comparative Example 1, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 2.

(比較例5)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF:難燃剤=45:45:5:5とした以外は、比較例4と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Comparative Example 5)
As shown in Table 1, the composition of the recycled resin composition (% by weight) was the same as that of Comparative Example 4 except that PC new resin: PC recovered resin: GF: flame retardant = 45: 45: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 2.

(比較例6)
表1に示すように再生樹脂組成物の配合組成(重量%)を、PC新規樹脂:PC回収樹脂:GF:難燃剤=70:20:5:5とした以外は、比較例4と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表2に示す。
(Comparative Example 6)
As shown in Table 1, the composition of the recycled resin composition (% by weight) was the same as that of Comparative Example 4 except that PC new resin: PC recovered resin: GF: flame retardant = 70: 20: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 2.

Figure 2005048134
Figure 2005048134

Figure 2005048134
表2から明らかなように、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例4、実施例5と比較例5、および実施例6と比較例6は、それぞれ同一組成の組み合わせであるにもかかわらず、各組み合わせにおいて、実施例1〜6は、比較例1〜6に比べてアイゾット衝撃強度、曲げ強度、および曲げ弾性率は高い値を示した。これは、実施例1〜6では、新規樹脂に無駄な熱履歴を加えていないためと考えられる。また、燃焼性については、実施例6でV−0を達成したが、比較例6ではV−2であった。
Figure 2005048134
As is apparent from Table 2, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, Example 4 and Comparative Example 4, Example 5 and Comparative Example 5, and Example Although Example 6 and Comparative Example 6 are each a combination of the same composition, in each combination, Examples 1 to 6 are compared with Comparative Examples 1 to 6 in Izod impact strength, bending strength, and bending elastic modulus. Showed a high value. This is thought to be because in Examples 1 to 6, no wasteful heat history was added to the new resin. Moreover, about combustibility, although V-0 was achieved in Example 6, it was V-2 in the comparative example 6.

(実施例7)
20重量%のGFを含有するGF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製の無塗装ノートパソコン筐体を粉砕することにより、ABS回収樹脂を得た。また、上記GF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製のペレット状のABS新規樹脂を準備した。
(Example 7)
An ABS-collected resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF-reinforced ABS resin (trade name: Stylac VGB20, manufactured by Asahi Kasei) containing 20% by weight of GF. Moreover, the pellet-shaped ABS new resin made from the said GF reinforcement | strengthening ABS resin (Brand name: Stylac VGB20, Asahi Kasei make) was prepared.

PC新規樹脂とPC回収樹脂に代えて上記ABS新規樹脂およびABS回収樹脂を用い、表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF=15:80:5とした以外は、実施例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。   Instead of the PC new resin and the PC recovery resin, the above ABS new resin and ABS recovery resin were used, and as shown in Table 3, the blended composition (% by weight) of the recycled resin composition was changed to ABS new resin: ABS recovery resin: GF = A molded body sample was produced in the same manner as in Example 1 except that the ratio was 15: 80: 5, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 4.

(実施例8)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF=45:50:5とした以外は、実施例7と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Example 8)
As shown in Table 3, a molded product sample was prepared in the same manner as in Example 7 except that the composition (weight%) of the recycled resin composition was changed to ABS new resin: ABS recovered resin: GF = 45: 50: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 4.

(実施例9)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF=75:20:5とした以外は、実施例7と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
Example 9
As shown in Table 3, a molded product sample was prepared in the same manner as in Example 7 except that the blended composition (% by weight) of the recycled resin composition was changed to ABS new resin: ABS recovered resin: GF = 75: 20: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 4.

(実施例10)
20重量%のGFを含有するGF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製の無塗装ノートパソコン筐体を粉砕することにより、ABS回収樹脂を得た。また、上記GF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製のペレット状のABS新規樹脂を準備した。
(Example 10)
An ABS-collected resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF-reinforced ABS resin (trade name: Stylac VGB20, manufactured by Asahi Kasei) containing 20% by weight of GF. Moreover, the pellet-shaped ABS new resin made from the said GF reinforcement | strengthening ABS resin (Brand name: Stylac VGB20, Asahi Kasei make) was prepared.

PC新規樹脂とPC回収樹脂に代えて上記ABS新規樹脂およびABS回収樹脂を用い、表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF:難燃剤=15:75:5:5とした以外は、実施例4と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。   Instead of the PC new resin and PC recovery resin, the above ABS new resin and ABS recovery resin were used. As shown in Table 3, the blended composition (% by weight) of the recycled resin composition was changed to ABS new resin: ABS recovery resin: GF: Except that the flame retardant was set to 15: 75: 5: 5, a molded body sample was prepared in the same manner as in Example 4, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 4.

(実施例11)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF:難燃剤=45:45:5:5とした以外は、実施例10と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Example 11)
As shown in Table 3, the composition of the recycled resin composition (% by weight) was the same as in Example 10 except that the composition was ABS new resin: ABS recovered resin: GF: flame retardant = 45: 45: 5: 5. A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 4.

(実施例12)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF:難燃剤=70:20:5:5とした以外は、実施例10と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Example 12)
As shown in Table 3, the composition of the recycled resin composition (% by weight) was the same as that of Example 10, except that the ABS new resin: ABS recovered resin: GF: flame retardant = 70: 20: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 4.

(比較例7)
20重量%のGFを含有するGF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製の無塗装ノートパソコン筐体を粉砕することにより、ABS回収樹脂を得た。また、上記GF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製のペレット状のABS新規樹脂を準備した。
(Comparative Example 7)
An ABS-collected resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF-reinforced ABS resin (trade name: Stylac VGB20, manufactured by Asahi Kasei) containing 20% by weight of GF. Moreover, the pellet-shaped ABS new resin made from the said GF reinforcement | strengthening ABS resin (Brand name: Stylac VGB20, Asahi Kasei make) was prepared.

PC新規樹脂とPC回収樹脂に代えて上記ABS新規樹脂およびABS回収樹脂を用い、表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF=15:80:5とした以外は、比較例1と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。   Instead of the PC new resin and the PC recovery resin, the above ABS new resin and ABS recovery resin were used, and as shown in Table 3, the blended composition (% by weight) of the recycled resin composition was changed to ABS new resin: ABS recovery resin: GF = A molded body sample was prepared in the same manner as in Comparative Example 1 except that the ratio was 15: 80: 5, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 4.

(比較例8)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF=45:50:5とした以外は、比較例7と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Comparative Example 8)
As shown in Table 3, a molded product sample was prepared in the same manner as in Comparative Example 7 except that the composition (weight%) of the recycled resin composition was changed to ABS new resin: ABS recovered resin: GF = 45: 50: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 4.

(比較例9)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF=75:20:5とした以外は、比較例7と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Comparative Example 9)
As shown in Table 3, a molded product sample was prepared in the same manner as in Comparative Example 7 except that the blended composition (% by weight) of the recycled resin composition was changed to ABS new resin: ABS recovered resin: GF = 75: 20: 5. The Izod impact test, bending test, and combustion test were performed. The results are shown in Table 4.

(比較例10)
20重量%のGFを含有するGF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製の無塗装ノートパソコン筐体を粉砕することにより、ABS回収樹脂を得た。また、上記GF強化ABS樹脂(商品名:スタイラックVGB20、旭化成製)製のペレット状のABS新規樹脂を準備した。
(Comparative Example 10)
An ABS-collected resin was obtained by pulverizing an unpainted notebook personal computer casing made of GF-reinforced ABS resin (trade name: Stylac VGB20, manufactured by Asahi Kasei) containing 20% by weight of GF. Moreover, the pellet-shaped ABS new resin made from the said GF reinforcement | strengthening ABS resin (Brand name: Stylac VGB20, Asahi Kasei make) was prepared.

PC新規樹脂とPC回収樹脂に代えて上記ABS新規樹脂およびABS回収樹脂を用い、表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF:難燃剤=15:75:5:5とした以外は、比較例4と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。   Instead of the PC new resin and PC recovery resin, the above ABS new resin and ABS recovery resin were used. As shown in Table 3, the blended composition (% by weight) of the recycled resin composition was changed to ABS new resin: ABS recovery resin: GF: Except that the flame retardant was set to 15: 75: 5: 5, a molded body sample was prepared in the same manner as in Comparative Example 4, and an Izod impact test, a bending test, and a combustion test were performed. The results are shown in Table 4.

(比較例11)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF:難燃剤=45:45:5:5とした以外は、比較例10と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Comparative Example 11)
As shown in Table 3, the composition of the recycled resin composition (% by weight) was the same as Comparative Example 10 except that the composition was ABS new resin: ABS recovered resin: GF: flame retardant = 45: 45: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 4.

(比較例12)
表3に示すように再生樹脂組成物の配合組成(重量%)を、ABS新規樹脂:ABS回収樹脂:GF:難燃剤=70:20:5:5とした以外は、比較例10と同様にして成形体サンプルを作製して、アイゾット衝撃試験、曲げ試験、燃焼試験を行った。その結果を表4に示す。
(Comparative Example 12)
As shown in Table 3, the composition of the recycled resin composition (% by weight) was the same as Comparative Example 10 except that the composition was ABS new resin: ABS recovered resin: GF: flame retardant = 70: 20: 5: 5 A molded body sample was prepared and subjected to an Izod impact test, a bending test, and a combustion test. The results are shown in Table 4.

Figure 2005048134
Figure 2005048134

Figure 2005048134
表4から明らかなように、PCに代えてABS樹脂を用いた場合でも、前述と同様の結果となった。
Figure 2005048134
As is clear from Table 4, even when ABS resin was used instead of PC, the same results as described above were obtained.

以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。   As a summary of the above, the configurations of the present invention and variations thereof are listed below as supplementary notes.

(付記1) 回収樹脂と無機添加物とを含み、前記回収樹脂と前記無機添加物とが溶融混練されていることを特徴とする再生樹脂用マスターバッチ。   (Supplementary note 1) A masterbatch for recycled resin, comprising a recovered resin and an inorganic additive, wherein the recovered resin and the inorganic additive are melt-kneaded.

(付記2) 前記回収樹脂の割合が、全体の重量割合で50重量%以上である付記1に記載の再生樹脂用マスターバッチ。   (Additional remark 2) The masterbatch for regenerated resin of Additional remark 1 whose ratio of the said collection | recovery resin is 50 weight% or more in the weight ratio of the whole.

(付記3) さらに難燃剤を含む付記1または2に記載の再生樹脂用マスターバッチ。   (Additional remark 3) The masterbatch for recycled resin of Additional remark 1 or 2 containing a flame retardant further.

(付記4) 回収樹脂と無機添加物とを含む材料を溶融混練することを特徴とする再生樹脂用マスターバッチの製造方法。   (Additional remark 4) The manufacturing method of the masterbatch for recycled resin characterized by melt-kneading the material containing collection | recovery resin and an inorganic additive.

(付記5) 回収樹脂と無機添加物とを含む材料を溶融混練して再生樹脂用マスターバッチを製造する工程と、
新規樹脂と前記再生樹脂用マスターバッチとを含む材料をドライブレンドして再生樹脂組成物を製造する工程と、
前記再生樹脂組成物を用いて成形体を製造する工程と、
を含むことを特徴とする再生樹脂成形体の製造方法。
(Additional remark 5) The process of melt-kneading the material containing collection | recovery resin and an inorganic additive, and manufacturing the masterbatch for recycled resin,
A process of dry blending a material containing a new resin and the masterbatch for recycled resin to produce a recycled resin composition;
A step of producing a molded body using the recycled resin composition;
A method for producing a recycled resin molded product comprising:

(付記6) 前記新規樹脂の割合が、全体の重量割合で10重量%以上80重量%以下である付記5に記載の再生樹脂成形体の製造方法。   (Additional remark 6) The manufacturing method of the recycled resin molded object of Additional remark 5 whose ratio of the said novel resin is 10 to 80 weight% in the whole weight ratio.

(付記7) 前記再生樹脂用マスターバッチを製造する工程において、さらに難燃剤を溶融混練する付記5または6に記載の再生樹脂成形体の製造方法。   (Additional remark 7) The manufacturing method of the regenerated resin molded object of Additional remark 5 or 6 which melt-kneads a flame retardant further in the process of manufacturing the said masterbatch for regenerated resin.

以上のように本発明は、再生樹脂成形体において、良好かつ安定な物性を得ることができる。また、本発明によると、リサイクル制度によって回収される樹脂筐体を用いて製品化することができるので、資源の有効利用を達成しつつ、廃棄物の焼却により排出される二酸化炭素の量を低減することが可能となる。   As described above, the present invention can obtain good and stable physical properties in a recycled resin molded body. In addition, according to the present invention, since it can be commercialized using a resin casing recovered by a recycling system, the amount of carbon dioxide emitted by incineration of waste is reduced while achieving effective use of resources. It becomes possible to do.

本発明の再生樹脂成形体の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the recycled resin molding of this invention. 従来のリサイクル方法の一例を示すフロー図である。It is a flowchart which shows an example of the conventional recycling method.

Claims (5)

回収樹脂と無機添加物とを含み、前記回収樹脂と前記無機添加物とが溶融混練されていることを特徴とする再生樹脂用マスターバッチ。   A recycled resin masterbatch comprising a recovered resin and an inorganic additive, wherein the recovered resin and the inorganic additive are melt-kneaded. 回収樹脂と無機添加物とを含む材料を溶融混練することを特徴とする再生樹脂用マスターバッチの製造方法。   A method for producing a masterbatch for recycled resin, comprising melting and kneading a material containing a recovered resin and an inorganic additive. 回収樹脂と無機添加物とを含む材料を溶融混練して再生樹脂用マスターバッチを製造する工程と、
新規樹脂と前記再生樹脂用マスターバッチとを含む材料をドライブレンドして再生樹脂組成物を製造する工程と、
前記再生樹脂組成物を用いて成形体を製造する工程と、
を含むことを特徴とする再生樹脂成形体の製造方法。
A step of producing a master batch for recycled resin by melting and kneading a material containing a recovered resin and an inorganic additive;
A process of dry blending a material containing a new resin and the masterbatch for recycled resin to produce a recycled resin composition;
A step of producing a molded body using the recycled resin composition;
A method for producing a recycled resin molded product comprising:
前記新規樹脂の割合が、全体の重量割合で10重量%以上80重量%以下である請求項3に記載の再生樹脂成形体の製造方法。   The method for producing a recycled resin molded article according to claim 3, wherein the ratio of the new resin is 10% by weight or more and 80% by weight or less in terms of the total weight ratio. 前記再生樹脂用マスターバッチを製造する工程において、さらに難燃剤を溶融混練する請求項3または4に記載の再生樹脂成形体の製造方法。   The method for producing a recycled resin molded article according to claim 3 or 4, wherein a flame retardant is further melt-kneaded in the step of producing the master batch for recycled resin.
JP2003284099A 2003-07-31 2003-07-31 Recycled resin masterbatch, method for producing the same, and method for producing reclaimed resin moldings Expired - Fee Related JP4999036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284099A JP4999036B2 (en) 2003-07-31 2003-07-31 Recycled resin masterbatch, method for producing the same, and method for producing reclaimed resin moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284099A JP4999036B2 (en) 2003-07-31 2003-07-31 Recycled resin masterbatch, method for producing the same, and method for producing reclaimed resin moldings

Publications (2)

Publication Number Publication Date
JP2005048134A true JP2005048134A (en) 2005-02-24
JP4999036B2 JP4999036B2 (en) 2012-08-15

Family

ID=34268807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284099A Expired - Fee Related JP4999036B2 (en) 2003-07-31 2003-07-31 Recycled resin masterbatch, method for producing the same, and method for producing reclaimed resin moldings

Country Status (1)

Country Link
JP (1) JP4999036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231764A (en) * 2003-01-30 2004-08-19 Tomoegawa Paper Co Ltd Metallic powder coating material
JP2014177596A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Recycled resin composition, molding, image forming apparatus, and method for producing recycled resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231764A (en) * 2003-01-30 2004-08-19 Tomoegawa Paper Co Ltd Metallic powder coating material
JP2014177596A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Recycled resin composition, molding, image forming apparatus, and method for producing recycled resin composition

Also Published As

Publication number Publication date
JP4999036B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US6737459B2 (en) Polyphenylene ether group resin composite and methods of making articles
WO2022110673A1 (en) Shock-absorbing, damping, halogen-containing, flame-retardant, reinforced pbt material, and preparation method therefor
CN110857351A (en) Cellulose composite resin and method for producing same
JP2013163813A (en) Recycled resin and method of producing the same
JP3584890B2 (en) Thermoplastic resin molded article and method for producing the same
KR102589600B1 (en) Thermoplastic composition comprising natural fibers with good mechanical properties and good dielectric properties
JP6472350B2 (en) Flame retardant masterbatch
JP4999036B2 (en) Recycled resin masterbatch, method for producing the same, and method for producing reclaimed resin moldings
JP4917566B2 (en) Resin composition for cleaning plastic molding machines
JP5209178B2 (en) Resin composition
JP3592845B2 (en) Method for producing masterbatch comprising thermoplastic organic resin and organopolysiloxane
JP2019014163A (en) Injection molded article and production method thereof
JP2000063654A (en) Polycarbonate resin composition and sliding member made therefrom
JP2001279114A (en) Recycled resin composition, its preparation method and recycled resin molded article
JP6816489B2 (en) Injection molded products and their manufacturing methods
JPH10139927A (en) Recycled resin composition
JP4125942B2 (en) Mixed material using plastic waste, manufacturing apparatus thereof, and manufacturing method thereof
KR960007276B1 (en) Method of injection molding of liquid crystal resin composite and the article
JP2008222749A (en) Crystalline polypropylene-based resin composition
JP2003268108A (en) Compatibilizer, plastic material, recycled plastic material and molding
JPH0586288A (en) Resin composition for molding
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JP3046417B2 (en) Filler for fiber-reinforced thermoplastic resin and method for producing the same
JP2004035745A (en) Regenerated resin molded product and regenerated resin composition
JPH0586257A (en) Molding resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees