JP2005048107A - Phosphor and method for producing the same - Google Patents

Phosphor and method for producing the same Download PDF

Info

Publication number
JP2005048107A
JP2005048107A JP2003283089A JP2003283089A JP2005048107A JP 2005048107 A JP2005048107 A JP 2005048107A JP 2003283089 A JP2003283089 A JP 2003283089A JP 2003283089 A JP2003283089 A JP 2003283089A JP 2005048107 A JP2005048107 A JP 2005048107A
Authority
JP
Japan
Prior art keywords
phosphor
zeolite
rare earth
ion
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003283089A
Other languages
Japanese (ja)
Other versions
JP4244744B2 (en
Inventor
Tatsuya Okamura
達也 岡村
Takeshi Kawashima
健 川島
Takayuki Yamada
隆之 山田
Taiji Matsumoto
泰治 松本
Yoshiaki Goto
義昭 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshizawa Lime Industry Co Ltd
Original Assignee
Yoshizawa Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshizawa Lime Industry Co Ltd filed Critical Yoshizawa Lime Industry Co Ltd
Priority to JP2003283089A priority Critical patent/JP4244744B2/en
Publication of JP2005048107A publication Critical patent/JP2005048107A/en
Application granted granted Critical
Publication of JP4244744B2 publication Critical patent/JP4244744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor emitting red light on receiving ultraviolet excitation, suitable for uses such as a fluorescent lamp, an LED display and others, and to provide an inexpensive method for producing the same. <P>SOLUTION: The phosphor is obtained by immersing zeolite, especially faujasite-type zeolite, in an aqueous solution of a trivalent europium soluble salt to ion-exchange and firing the ion-exchanged zeolite at 700-1,100°C in an oxidizing atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、紫外線の励起を受けて発光する蛍光体と、その製造方法に関する。   The present invention relates to a phosphor that emits light upon being excited by ultraviolet rays, and a method for producing the same.

紫外〜近紫外線を受けて可視光を発光する蛍光体が、広い分野で実用されている。そうした蛍光体は、金属の酸化物、硫化物、ハロゲン化物のような、基礎となる材料に、ユーロピウムEu、テルビウムTb、セリウムCeなどの希土類元素を加えて付活したものである。たとえばイットリア系蛍光体は、イットリアYに三価のユーロピウム酸化物Euを混合し、焼成することにより製造する。 A phosphor that emits visible light in response to ultraviolet light to near ultraviolet light has been put to practical use in a wide field. Such a phosphor is activated by adding a rare earth element such as europium Eu, terbium Tb, or cerium Ce to a basic material such as a metal oxide, sulfide, or halide. For example, the yttria-based phosphor is manufactured by mixing the trivalent europium oxide Eu 2 O 3 with yttria Y 2 O 3 and baking it.

これまでに提案された技術の例としては、まず、希土類金属のイオンをゼオライトキャビティに混入したものにおいて、希土類金属(たとえばRb)のイオンが芳香族カルボキシレートを配位子とする錯体を形成したものとし、量子効率を高めた蛍光体がある(特開平5−194941)。しかし錯体は、安定に存在させることが困難であるから、蛍光体の使用条件がきびしい場合は、寿命が短くなる。   As an example of the technology proposed so far, first, a rare earth metal ion mixed in a zeolite cavity is formed into a complex in which a rare earth metal ion (for example, Rb) has an aromatic carboxylate as a ligand. There is a phosphor with improved quantum efficiency (Japanese Patent Laid-Open No. 5-194951). However, since it is difficult to make the complex exist stably, the lifetime is shortened when the use condition of the phosphor is severe.

安定した寿命を享受できる蛍光体は、酸化物の基材を希土類金属酸化物で付活した構成を有する。たとえば、霞石型の結晶構造を有するアルミノ珪酸塩化合物を二価のEuで付活したもの(特開2003−105334)が挙げられる。この蛍光体は、原料となる炭酸水素ナトリウム、シリカ、アルミナ、酸化ユーロピウムなどの粉末を混合し、還元性雰囲気で焼成することにより製造され、220〜400nmの波長域の紫外線により、538nm付近にピークを有する黄色の発光をする。   A phosphor that can enjoy a stable lifetime has a structure in which an oxide base is activated by a rare earth metal oxide. For example, an aluminosilicate compound having a meteorite-type crystal structure activated with divalent Eu (Japanese Patent Laid-Open No. 2003-105334) can be mentioned. This phosphor is manufactured by mixing powders such as sodium hydrogen carbonate, silica, alumina, and europium oxide as raw materials and firing in a reducing atmosphere, and has a peak at around 538 nm due to ultraviolet rays in the wavelength range of 220 to 400 nm. It emits yellow light.

いまひとつの例は、斜方晶型の結晶構造を有するアルカリ金属アルミノ珪酸塩を二価のEuで付活したもの(特開2003−105335号)である。この蛍光体も、原料となる炭酸カリウム、炭酸水素ナトリウム、シリカ、アルミナ、酸化ユーロピウムなどの粉末を混合し、還元性雰囲気で焼成することにより製造され、220〜400nmの波長域の紫外線により、440および446nmにピークを有する青色の発光をする。     Another example is an alkali metal aluminosilicate having an orthorhombic crystal structure activated with divalent Eu (Japanese Patent Laid-Open No. 2003-105335). This phosphor is also produced by mixing powders such as potassium carbonate, sodium hydrogen carbonate, silica, alumina, and europium oxide as raw materials and firing in a reducing atmosphere, and by using ultraviolet rays in a wavelength range of 220 to 400 nm, 440 And emits blue light having a peak at 446 nm.

この種の蛍光体の輝度は、付活剤の量に比例して強くなるため、蛍光体の製造に当たっては、付活剤含有量を高める努力がなされている。しかし、上記のような製造方法においては、基礎となる材料も付活剤もともに粉末であって、粉末を均一に混合することは困難であるから、付活剤が局所的に偏在しやすい。偏在すると、付活剤の間でエネルギーの共鳴伝達が起こり、励起光により与えられたエネルギーの一部しか発光に利用することができなくなる。これは、発光強度の低下を意味する。   Since the luminance of this type of phosphor increases in proportion to the amount of activator, efforts are made to increase the activator content in the production of the phosphor. However, in the manufacturing method as described above, since both the base material and the activator are powders, and it is difficult to mix the powders uniformly, the activators are likely to be unevenly distributed locally. When unevenly distributed, resonance transfer of energy occurs between the activators, and only a part of the energy given by the excitation light can be used for light emission. This means a decrease in emission intensity.

レーザー発光を行なうためのレーザーガラスとしては、希土類元素を固定したゼオライトとシリカとを混合し、1750℃程度の温度で焼結したものが提案された(特開平9−86951、特開平9−86952)。この構成は、希土類元素の会合に起因する発光強度の低下が生じない、という利点があるとのことである。   As a laser glass for performing laser light emission, there have been proposed ones in which a zeolite and silica, on which a rare earth element is fixed, are mixed and sintered at a temperature of about 1750 ° C. (JP-A-9-86951, JP-A-9-86952). ). This configuration is advantageous in that the emission intensity is not reduced due to the association of rare earth elements.

発明者らは、ゼオライトのもつイオン交換能を利用すれば、希土類元素を高濃度でも均一に分散した状態の担持が可能であることに着目し、希土類元素でイオン交換したゼオライトを焼成し、ゼオライト本来の結晶組織を破壊することにより、高い発光強度と発光効率をもつ蛍光体が得られることを見出した。
特開平5−194941 特開2003−105334 特開2003−105335 特開平9−86951 特開平9−86952
The inventors noticed that if the ion exchange ability of zeolite is used, it is possible to carry a state in which the rare earth element is uniformly dispersed even at a high concentration. It has been found that a phosphor having high emission intensity and emission efficiency can be obtained by destroying the original crystal structure.
JP-A-5-194941 JP 2003-105334 A JP 2003-105335 A JP-A-9-86951 JP-A-9-86952

本発明の目的は、上記した発明者らの知見を活用し、前記した蛍光ランプ、LEDディスプレイをはじめとする用途に適した蛍光体、とくに赤色の発光をする蛍光体を提供することにある。上記の蛍光体を低コストで製造することができる製造方法を提供することもまた、本発明の目的に含まれる。   An object of the present invention is to provide a phosphor suitable for applications such as the above-described fluorescent lamp and LED display, particularly a phosphor emitting red light, by utilizing the knowledge of the inventors. It is also included in the object of the present invention to provide a production method capable of producing the above phosphor at a low cost.

上記の目的を達成する本発明の蛍光体は、希土類元素でイオン交換したゼオライトを焼成してなる蛍光体である。   The phosphor of the present invention that achieves the above object is a phosphor obtained by firing zeolite ion-exchanged with a rare earth element.

上記の蛍光体を製造する本発明の方法は、ゼオライトを希土類元素の可溶性塩の水溶液で処理することによりイオン交換し、ついで700〜1100℃の温度で焼成することからなる製造方法である。   The method of the present invention for producing the above phosphor is a production method comprising subjecting zeolite to ion exchange by treating with an aqueous solution of a soluble salt of a rare earth element, followed by firing at a temperature of 700 to 1100 ° C.

本発明の蛍光体は、ゼオライトを基材とし、そのイオン交換により付活剤である希土類元素を担持させて製造したから、比較的高濃度の希土類を均一に分散させてあるにもかかわらず、付活剤の局部的偏在に起因する発光強度の低下を避けて、高い発光強度を実現することができる。ゼオライト本来の結晶組織が焼成により破壊された結果、大気中に放置しても吸湿して発光強度が低下するおそれもない。   Since the phosphor of the present invention is produced by using zeolite as a base material and carrying a rare earth element as an activator by its ion exchange, even though a relatively high concentration of rare earth is uniformly dispersed, A high emission intensity can be realized by avoiding a decrease in emission intensity due to local uneven distribution of the activator. As a result of the destruction of the original crystal structure of the zeolite by firing, there is no possibility that the light emission is absorbed and the emission intensity is lowered even when left in the atmosphere.

焼成温度は低温であって、焼成のための設備は簡単なもので済み、かつ、焼成に要するエネルギーは少ないから、本発明の蛍光体の製造コストは低廉である。焼成の温度を選択することにより、蛍光体粒子の形状やサイズを、ある範囲内で調節できるから、用途に適切な最終製品、たとえば塗料や成形品とすることができる。   Since the firing temperature is low, the equipment for firing is simple and the energy required for firing is small, the production cost of the phosphor of the present invention is low. By selecting the firing temperature, the shape and size of the phosphor particles can be adjusted within a certain range, so that a final product suitable for the application, for example, a paint or a molded product can be obtained.

本発明で原料とするゼオライトは、天然および合成ゼオライトの任意のものが使用できるが、合成ゼオライトのフォージャサイト型のもの、代表的にはゼオライトXおよびYが好適である。いうまでもないが、発明の原理からして、イオン交換容量(CEC)が高いゼオライトが好ましい。   The zeolite used as a raw material in the present invention may be any of natural and synthetic zeolites, but synthetic zeolites of faujasite type, typically zeolites X and Y are preferred. Needless to say, zeolite having a high ion exchange capacity (CEC) is preferred from the principle of the invention.

希土類元素としては、紫外線励起により赤色に発光する蛍光体を得ようとする場合、三価のユーロピウムを使用する。ゼオライトに当初存在するナトリウムやカリウムとイオン交換するには、希土類元素の可溶性塩、たとえば塩化物、硫酸塩、硝酸塩およびある種の酸化物の水溶液にゼオライトを浸漬する、いわゆる含浸法が適切である。   As the rare earth element, trivalent europium is used in order to obtain a phosphor that emits red light by ultraviolet excitation. The so-called impregnation method, in which the zeolite is immersed in an aqueous solution of soluble salts of rare earth elements, such as chlorides, sulfates, nitrates and certain oxides, is suitable for ion exchange with sodium and potassium originally present in the zeolite. .

ゼオライトのカチオンと希土類元素とをイオン交換しただけでは、蛍光体としては、発光強度が弱くて実用的でない。これは、ゼオライトの結晶構造内に存在する水分子により消光現象が起こるためである。結晶内の水の分子は100℃以上250℃までの加熱で脱水し、発光が強くなる。しかし、大気中に放置しておくと吸湿し、再び発光強度が低下する。   Simply exchanging zeolite cations and rare earth elements is not practical as a phosphor because the emission intensity is weak. This is because a quenching phenomenon occurs due to water molecules present in the crystal structure of the zeolite. Water molecules in the crystal are dehydrated by heating to 100 ° C. or higher and 250 ° C., and light emission becomes stronger. However, if left in the atmosphere, it absorbs moisture and the emission intensity decreases again.

本発明では、希土類元素でイオン交換したゼオライトを、単なる脱水温度よりは高温に焼成し、ゼオライトの結晶構造を破壊することにより、大気中に放置しても、もはや吸湿してもとに戻らない蛍光体とするわけである。焼成により、希土類元素が三価のEuである場合、350〜470nmの紫外線の励起を受けて、560〜660nmの波長の赤色の発光をする蛍光体が得られる。   In the present invention, zeolite ion-exchanged with a rare earth element is calcined to a temperature higher than a mere dehydration temperature, and the crystal structure of the zeolite is destroyed. It is a phosphor. When the rare earth element is trivalent Eu by firing, a phosphor that emits red light having a wavelength of 560 to 660 nm is obtained by excitation with ultraviolet light of 350 to 470 nm.

焼成は、通常、700〜1100℃の範囲の温度で行なうのが適当である。好適なゼオライトであるゼオライトXまたはYの場合、800℃またはそれ以上が好適である。ゼオライトXは、900〜1000℃で、非晶質になる。1000〜1100℃に加熱すると、カーネギライト型またはネフェリン型の結晶構造となる。非晶質か結晶質(ゼオライト本来の結晶構造とは別の結晶)であるか、またどの型の結晶であるかによって、蛍光体の粒子の形状は異なるが、発光強度にはあまり差が生じないことが確認された。したがって、蛍光体の用途にとって適当である粒子形状を与える焼成温度を選択すべきことになる。   It is appropriate to perform the baking at a temperature in the range of 700 to 1100 ° C. In the case of zeolite X or Y, which are suitable zeolites, 800 ° C. or higher is preferred. Zeolite X becomes amorphous at 900-1000 ° C. When heated to 1000 to 1100 ° C., a carnegilite-type or nepheline-type crystal structure is obtained. Depending on whether it is amorphous or crystalline (a crystal different from the original crystal structure of the zeolite) and what type of crystal it is, the shape of the phosphor particles will differ, but the emission intensity will vary greatly. Not confirmed. Therefore, a firing temperature that gives a particle shape suitable for the phosphor application should be selected.

焼成の条件は、希土類元素の種類および原子価に応じて、適切に選択する。上記した三価のEuの場合、還元性雰囲気にすると、二価に還元されるので、酸化性雰囲気で焼成する必要がある。焼成物は、用途に応じて、粉砕および分級による粒度調製などを行なって、蛍光体製品を得る。これを、適宜のバインダーや用材と組み合わせて、ペースト、塗料、あるいは成形体などの製品にすることにより、所望の用途に適した最終製品とすることができる。   The firing conditions are appropriately selected according to the type and valence of the rare earth element. In the case of the above-described trivalent Eu, if it is made a reducing atmosphere, it is reduced to divalent, so it is necessary to fire in an oxidizing atmosphere. The fired product is subjected to particle size adjustment by pulverization and classification in accordance with the use to obtain a phosphor product. By combining this with an appropriate binder or material to make a product such as a paste, paint or molded article, a final product suitable for the desired application can be obtained.

EuCl(関東化学株式会社、純度99.95%)の濃度0.1mol/Lの水溶液200mLを用意し、それにゼオライト「F−9」(東ソー株式会社製のゼオライトX)5gを入れ、室温で撹拌してイオン交換した。24時間後、吸引濾過により固液分離し、ケークを蒸留水で洗浄した。洗浄は、濾液中に硝酸銀溶液を滴下し、白濁が生じなくなるまで行なった。洗浄後、60℃で24時間乾燥して、Eu交換ゼオライトを得た。これを白金ルツボに入れて、大気雰囲気で、900℃に2時間焼成し、本発明の蛍光体を得た。 Prepare 200 mL of EuCl 3 (Kanto Chemical Co., Inc., purity 99.95%) 0.1 mol / L aqueous solution, and add 5 g of zeolite “F-9” (Zeolite X manufactured by Tosoh Corporation) at room temperature. Stirred and ion exchanged. After 24 hours, solid-liquid separation was performed by suction filtration, and the cake was washed with distilled water. The washing was performed by dropping a silver nitrate solution into the filtrate until no cloudiness occurred. After washing, it was dried at 60 ° C. for 24 hours to obtain Eu-exchanged zeolite. This was put into a platinum crucible and baked at 900 ° C. for 2 hours in an air atmosphere to obtain the phosphor of the present invention.

上記の製造過程で得たEu交換ゼオライトと、その焼成品のX線回折チャートを図1に示す。焼成により非晶質化したことがわかる。   FIG. 1 shows an X-ray diffraction chart of the Eu exchanged zeolite obtained in the above production process and the fired product. It turns out that it became amorphous by baking.

この蛍光体の蛍光特性を、分光蛍光光度計を用いて測定した。その結果、励起波長395nmで発光波長610nmの赤色蛍光が見られた。励起波長395nmにおける発光スペクトルを、図2に示す。発光強度は、通常の蛍光灯に使用されているハロリン酸カルシウムのそれの200倍以上であった。   The fluorescence characteristics of this phosphor were measured using a spectrofluorometer. As a result, red fluorescence having an excitation wavelength of 395 nm and an emission wavelength of 610 nm was observed. An emission spectrum at an excitation wavelength of 395 nm is shown in FIG. The emission intensity was 200 times or more that of calcium halophosphate used in ordinary fluorescent lamps.

本発明の蛍光体は、蛍光ランプ、LEDディスプレイ、放射線増感紙、屋内および屋外の装飾など、広い分野で実用可能である。   The phosphor of the present invention can be used in a wide range of fields such as fluorescent lamps, LED displays, radiation intensifying screens, indoor and outdoor decorations, and the like.

実施例の蛍光体製造過程におけるEu交換ゼオライトと、それを焼成して得た蛍光体のX線回折チャート。The X-ray-diffraction chart of the Eu exchange zeolite in the fluorescent substance manufacturing process of an Example, and the fluorescent substance obtained by baking it. 実施例で製造した蛍光体の、励起波長395nmにおける発光スペクトルのチャート。The chart of the emission spectrum in the excitation wavelength of 395 nm of the fluorescent substance manufactured in the Example.

Claims (6)

希土類元素でイオン交換したゼオライトを焼成してなる蛍光体。 A phosphor made by firing zeolite ion-exchanged with rare earth elements. ゼオライトがフォージャサイト型ゼオライトである請求項1の蛍光体。 The phosphor according to claim 1, wherein the zeolite is a faujasite type zeolite. 希土類元素が三価のユーロピウムであって、紫外線励起により赤色に発光する請求項2の蛍光体。 The phosphor according to claim 2, wherein the rare earth element is trivalent europium and emits red light when excited by ultraviolet rays. 励起波長が350〜470nmであり、発光波長が560〜660nmである請求項3の蛍光体。 The phosphor according to claim 3, wherein the excitation wavelength is 350 to 470 nm and the emission wavelength is 560 to 660 nm. ゼオライトがアモルファスであるか、またはネフェリン型もしくはカーネギライト型の構造を有する請求項3の蛍光体。 4. The phosphor according to claim 3, wherein the zeolite is amorphous or has a nepheline type or carnegilite type structure. ゼオライトを希土類元素の可溶性塩の水溶液で処理することによりイオン交換し、ついで700〜1100℃の温度で焼成することからなる請求項1の蛍光体の製造方法。
The method for producing a phosphor according to claim 1, wherein the zeolite is ion-exchanged by treating with an aqueous solution of a soluble salt of a rare earth element, and then calcined at a temperature of 700 to 1100 ° C.
JP2003283089A 2003-07-30 2003-07-30 Phosphor Expired - Fee Related JP4244744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283089A JP4244744B2 (en) 2003-07-30 2003-07-30 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283089A JP4244744B2 (en) 2003-07-30 2003-07-30 Phosphor

Publications (2)

Publication Number Publication Date
JP2005048107A true JP2005048107A (en) 2005-02-24
JP4244744B2 JP4244744B2 (en) 2009-03-25

Family

ID=34268081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283089A Expired - Fee Related JP4244744B2 (en) 2003-07-30 2003-07-30 Phosphor

Country Status (1)

Country Link
JP (1) JP4244744B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069290A (en) * 2006-09-14 2008-03-27 Tochigi Prefecture Plate-like phosphor and display using the same
JP2011001409A (en) * 2009-06-16 2011-01-06 Tochigi Prefecture Plate-like phosphor and application of the same
JP2011190297A (en) * 2010-03-11 2011-09-29 Tochigi Prefecture Phosphor emitting blue light, method for producing the same, and utilization of the same
ITMI20101250A1 (en) * 2010-07-07 2012-01-08 Getters Spa IMPROVEMENTS FOR PHOSPHORS
DE102011108618A1 (en) 2010-08-02 2012-02-02 Rengo Co., Ltd. Photoluminescent material containing silver ions
JP2013079342A (en) * 2011-10-04 2013-05-02 Tochigi Prefecture Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same
WO2014196305A1 (en) 2013-06-03 2014-12-11 第一稀元素化学工業株式会社 Phosphor and method for producing same
WO2017209033A1 (en) * 2016-05-30 2017-12-07 レンゴー株式会社 Photo-luminescent material
CN108893109A (en) * 2018-08-31 2018-11-27 上海理工大学 A kind of divalent europium activates the preparation method of six side's nepheline phase fluorescent materials
JP2018197296A (en) * 2017-05-23 2018-12-13 レンゴー株式会社 Photoluminescent material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069290A (en) * 2006-09-14 2008-03-27 Tochigi Prefecture Plate-like phosphor and display using the same
JP2011001409A (en) * 2009-06-16 2011-01-06 Tochigi Prefecture Plate-like phosphor and application of the same
JP2011190297A (en) * 2010-03-11 2011-09-29 Tochigi Prefecture Phosphor emitting blue light, method for producing the same, and utilization of the same
WO2012004222A3 (en) * 2010-07-07 2012-05-03 Saes Getters S.P.A. Improvements to phosphors
ITMI20101250A1 (en) * 2010-07-07 2012-01-08 Getters Spa IMPROVEMENTS FOR PHOSPHORS
US8541936B2 (en) 2010-07-07 2013-09-24 Saes Getters S.P.A. Composite layer containing a layer of phosphors and related electroluminescent device
US8491141B2 (en) 2010-08-02 2013-07-23 Rengo Co., Ltd. Photoluminescent material containing silver ion
JP2012052102A (en) * 2010-08-02 2012-03-15 Rengo Co Ltd Photoluminescent material containing silver ion
DE102011108618A1 (en) 2010-08-02 2012-02-02 Rengo Co., Ltd. Photoluminescent material containing silver ions
KR101750566B1 (en) 2010-08-02 2017-06-23 렝고 가부시끼가이샤 Photoluminescent material containing silver ion
JP2013079342A (en) * 2011-10-04 2013-05-02 Tochigi Prefecture Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same
WO2014196305A1 (en) 2013-06-03 2014-12-11 第一稀元素化学工業株式会社 Phosphor and method for producing same
US9809745B2 (en) 2013-06-03 2017-11-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Phosphor and method for producing same
WO2017209033A1 (en) * 2016-05-30 2017-12-07 レンゴー株式会社 Photo-luminescent material
JP2018197296A (en) * 2017-05-23 2018-12-13 レンゴー株式会社 Photoluminescent material
CN108893109A (en) * 2018-08-31 2018-11-27 上海理工大学 A kind of divalent europium activates the preparation method of six side's nepheline phase fluorescent materials

Also Published As

Publication number Publication date
JP4244744B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
Gupta et al. Rare earth (RE) doped phosphors and their emerging applications: A review
Shi et al. Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor
Jiao et al. Ca2Al2SiO7: Ce3+, Tb3+: a white-light phosphor suitable for white-light-emitting diodes
Zhu et al. Ca5La5 (SiO4) 3 (PO4) 3O2: Ce3+, Mn2+: a color-tunable phosphor with efficient energy transfer for white-light-emitting diodes
Hsu et al. Color-tunable, single phased MgY4Si3O13: Ce3+, Mn2+ phosphors with efficient energy transfer for white-light-emitting diodes
Liu et al. Synthesis, broad-band absorption and luminescence properties of blue-emitting phosphor Sr8La2 (PO4) 6O2: Eu2+ for n-UV white-light-emitting diodes
CN101445728B (en) Blue fluorescent material excited by broadband ultraviolet and preparation method thereof
JP4244744B2 (en) Phosphor
Zhou et al. Color-tunable luminescence properties and energy transfer of Tb3+/Sm3+ co-doped Ca9La (PO4) 5 (SiO4) F2 phosphors
Marzouk et al. Crystallization and photoluminescent properties of Eu, Gd, Sm, Nd co-doped SrAl2B2O7 nanocrystals phosphors prepared by glass-ceramic technique
Yang et al. Ultraviolet long afterglow emission in Bi3+ doped CdSiO3 phosphors
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
CN101445729B (en) Preparation method of phosphor powder for white LED
Cao et al. Synthesis and luminescence properties of BaSO4 phosphor activated with Sm
JP5034033B2 (en) Plate-like phosphor and display using it
Zhao et al. Facile synthesis of CaO: Eu3+ and comparative study on the luminescence properties of CaO: Eu3+ and CaCO3: Eu3+
CN109370580B (en) Bismuth ion activated titanium aluminate fluorescent powder and preparation method and application thereof
Vidyadharan et al. Luminescent characteristics of UV excited Sr0. 5Ca0. 5TiO3: Pr3+ reddish-orange phosphor
Tang et al. Effect of Ce3+ and Tb3+ codoping on luminescence properties of Na3SrMg11 (PO4) 9: Eu2+ phosphors
CN105419798B (en) A kind of preparation method and application of orange red antimonate luminescent materials
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
Pan et al. Luminescence and energy transfer of SrMgB6O11: Eu2+, Mn2+ for white light emitting diodes
Sun et al. Green-emitting Ca6Sr4 (Si2O7) 3Cl2: Eu2+ phosphors for white light-emitting diodes
JPH09272867A (en) Aluminate phosphor and its production
KR101531123B1 (en) Method for producing fluorescent substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees