JP2005048092A - Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same - Google Patents

Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same Download PDF

Info

Publication number
JP2005048092A
JP2005048092A JP2003282720A JP2003282720A JP2005048092A JP 2005048092 A JP2005048092 A JP 2005048092A JP 2003282720 A JP2003282720 A JP 2003282720A JP 2003282720 A JP2003282720 A JP 2003282720A JP 2005048092 A JP2005048092 A JP 2005048092A
Authority
JP
Japan
Prior art keywords
luvo
light
emitting
activator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282720A
Other languages
Japanese (ja)
Inventor
Kunihiko Oka
邦彦 岡
Hajime Shibata
肇 柴田
Hiroshi Eisaki
洋 永崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003282720A priority Critical patent/JP2005048092A/en
Publication of JP2005048092A publication Critical patent/JP2005048092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a LuVO<SB>4</SB>light-emitting material capable of causing a parent material to emit in the primary blue, red and yellow colors without changing the type of the parent material, its manufacturing method and a light-emitting device using it. <P>SOLUTION: The material consists of a LuVO<SB>4</SB>light-emitting material mixed with an activator and is produced by forming portions without the activator mixed and spots of oxide powders of the Dy and Eu activating elements dissolved in a solvent, on a substrate rod of LuVO<SB>4</SB>obtained by sintering, melting the sintered material in a solidification furnace and growing crystals by the floating method. The material serves as a light-emitting material for light-emitting devices: the portions without the activator mixed emit in the primary blue color, the portions with the Dy activating agent mixed do in the primary red color, and the portions with the Eu activating agent do in the primary yellow color. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願発明は、特定の希土類元素、特定の遷移元素及び特定のカルコゲン元素(酸素を含む)から構成される発光材料に関するものであり、蛍光体材料、レーザー材料、プラズマディスプレイ、エレクトロルミネッセンス素子、放射線検出器等に応用されるものである。   The present invention relates to a light emitting material composed of a specific rare earth element, a specific transition element, and a specific chalcogen element (including oxygen), and a phosphor material, a laser material, a plasma display, an electroluminescence element, and a radiation detection It is applied to a container.

従来、発光材料は種々知られている。例えば、発光強度が強い希土類元素を含有するバナジウム酸イットリウム(特許文献1)や、Tb含有Al酸化物単結晶(特許文献2)などが知られている。
しかし、一種類の母体物質を利用しながら、系統的に、多数の色で発光させることが可能な発光物質を開発することは、行われていなかった。
Conventionally, various luminescent materials are known. For example, yttrium vanadate (Patent Document 1) containing a rare earth element having high emission intensity, a Tb-containing Al oxide single crystal (Patent Document 2), and the like are known.
However, there has been no systematic development of a luminescent material that can emit light in a number of colors while using one kind of base material.

特開平08−91999号公報Japanese Patent Application Laid-Open No. 08-91999 特開平07−149599号公報JP 07-149599 A

高機能な発光物質を実現するため、本願発明者らが解決しようとする問題は、一種類の母体物質を利用しながら、多数の色で発光させる事が可能な発光物質を開発する事である。特に、母体物質の種類を変えずに、青・赤・黄色の三原色で発光させる事が可能な物質があれば、表示用の発光素子として高い利用価値があると考えられる。
希土類元素は、発光物質の発光中心として優れており、また、希土類元素、遷移元素及びカルコゲン元素(酸素を含む)から構成される発光材料は、希土類元素を含むため発光物質として利用できる可能性を秘めていたが、LuVO4を母体とする物質群については、これまで発光物質としての系統的な調査・研究は行われていなかった。
本発明は、LuVO4を母体とする物質群とする発光材料、その製造方法及び発光素子を提供する。
In order to realize a high-performance light-emitting substance, the problem that the present inventors are trying to solve is to develop a light-emitting substance that can emit light in many colors while using one kind of base material. . In particular, if there is a substance that can emit light in three primary colors of blue, red, and yellow without changing the type of the host substance, it is considered that the display element has high utility value.
Rare earth elements are excellent as luminescent centers of luminescent materials, and luminescent materials composed of rare earth elements, transition elements and chalcogen elements (including oxygen) contain rare earth elements, and thus can be used as luminescent materials. However, there has been no systematic investigation or research as a luminescent material for the substance group based on LuVO 4 .
The present invention provides a light emitting material having a substance group based on LuVO 4 , a method for producing the light emitting material, and a light emitting element.

これに対して、本願発明者らは、LuVO4について、発光物質としての特性を研究した結果、純粋なLuVO4は青色で発光し、その発光効率も非常に高いものである事実を発見した。さらに付活剤としてDyを添加した場合、及びEuを添加した場合、それぞれ赤色と黄色で発光し、その発光効率も非常に高いものである事実を発見した。 On the other hand, the inventors of the present invention have studied the characteristics of LuVO 4 as a luminescent substance, and as a result, discovered that pure LuVO 4 emits blue light and has a very high luminous efficiency. Furthermore, when Dy was added as an activator and when Eu was added, it was found that the light emitted was red and yellow, respectively, and the luminous efficiency was very high.

LuVO4単独、LuVO4にDyを添加した場合、LuVO4にEuを添加した場合、それぞれ青色、赤色と黄色で発光し、LuVO4系化合物ですべて三原色を作ることが出来る。したがって、LuVO4系化合物のみで、カラー表示することが出来る。 LuVO 4 alone, in the case of adding Dy in LuVO 4, in the case of adding Eu to LuVO 4, respectively emitting blue, red and yellow, can be made three primary colors all in LuVO 4 compound. Therefore, color display is possible only with LuVO 4 compounds.

本発明のLuVO4系化合物は、単結晶又は多結晶のいずれかの結晶系で作成することが出来る。
上記発光材料の製造方法としては、まず、上記発光材料の構成元素を上記発光材料の化学量論比と同じモル比率で混合する。次に、その混合原料を融解又は溶解し、固化させてから成形する。ここで成形とは、インゴット状、薄膜状又は粉末状に加工することを意味する。混合原料を融解又は溶解させる前に、それをいったん焼結させても良い。また焼結させたものは、融解又は溶解させずに、そのまま成形しても良い。
The LuVO 4 -based compound of the present invention can be prepared with either a single crystal or a polycrystalline crystal system.
As a method for producing the light emitting material, first, the constituent elements of the light emitting material are mixed in the same molar ratio as the stoichiometric ratio of the light emitting material. Next, the mixed raw material is melted or dissolved and solidified, and then molded. Here, forming means processing into an ingot shape, a thin film shape or a powder shape. Before the mixed raw material is melted or dissolved, it may be sintered once. The sintered product may be molded as it is without melting or dissolving.

上記焼結温度は、500℃〜1500℃であり、雰囲気は、酸素又は酸素及び酸素以外の少なくとも1種類以上の気体の混合気体である。また、必要に応じてバインダー(焼結助剤)を添加する。
上記融解又は溶融過程の雰囲気は、酸素又は酸素及び酸素以外の少なくとも1種類以上の気体の混合気体である。
The sintering temperature is 500 ° C. to 1500 ° C., and the atmosphere is oxygen or a mixed gas of at least one gas other than oxygen and oxygen. Further, a binder (sintering aid) is added as necessary.
The atmosphere of the melting or melting process is oxygen or a mixed gas of oxygen and at least one gas other than oxygen.

本発明のLuVO4系化合物の結晶の製造は、チョクラルスキー法またはフローティングゾーン法により、融解又は溶解過程において、該材料の融液または溶液に該材料と同等もしくは類似の結晶構造を持つ物質を接触させて該材料の結晶を育成することができる。 In the production of the crystal of the LuVO 4 compound of the present invention, a substance having a crystal structure equivalent or similar to that of the material is added to the melt or solution of the material in the melting or dissolution process by the Czochralski method or the floating zone method. Crystals of the material can be grown by contact.

上記発光材料を基板上に堆積する方法としては、真空蒸着法、MBE法、スパッタ法、反応性スパッタ法、CVD法又は、MOCVD法等により行うことができる。
また、上記発光材料の化学量論比を制御するために、該プロセス終了後に該元素の補充及び抜き取りを行ってもよい。
As a method for depositing the light emitting material on the substrate, vacuum evaporation, MBE, sputtering, reactive sputtering, CVD, MOCVD, or the like can be performed.
Further, in order to control the stoichiometric ratio of the light emitting material, the element may be replenished and extracted after the end of the process.

また、本発明の発光材料を利用し、発光材料に磁場、電場又は応力を作用させることによって発光の強度、波長、偏光方向を変化させて光源装置を作製することもできる。   Further, by using the light emitting material of the present invention, a light source device can be manufactured by changing the intensity, wavelength, and polarization direction of light emission by applying a magnetic field, an electric field, or stress to the light emitting material.

実施例には第1図に示すように、石英管1、集光用の回転楕円ミラー2、熱源にハロゲンランプまたはキセノンランプ3、監視窓4、レンズ5およびスクリーン6を備えた赤外線加熱方式の結晶成長炉を用い、フローティングゾーン法で単結晶を製造した。   In the embodiment, as shown in FIG. 1, an infrared heating system comprising a quartz tube 1, a condensing spheroid mirror 2, a halogen lamp or xenon lamp 3, a monitoring window 4, a lens 5 and a screen 6 as a heat source. A single crystal was produced by a floating zone method using a crystal growth furnace.

原料焼成体中に複数の異なる種類の付活材物質を濃度傾斜を付けて設けた原料焼成体を用いて、結晶中に連続して発光色の異なる三色発光単結晶を以下のように作製した。
Lu2O3とV2O5を1 : 1に混合し、ゴム管に充填して静水圧をかけ、直径8ミリ長さ50ミリの棒状に成型し、その後、1200℃で焼成し、LuVO4原料棒を作成する。LuVO4原料棒に付活剤をつけない部分と水に溶いたEuOとDy2O3粉末をそれぞれ筆につけてスポットを設け、3つのゾーンを設けた。
すなわち、LuVO4原料焼成体の重さの約1%を付活剤とし、EuOが赤発光、Dy2O3が黄発光する粉末として用意し、水に溶いて溶液を作成した。それを多孔質表面に筆または楊子でスポット状に塗布し、原料焼成体を作製する。この原料焼成体を用いて結晶炉において溶融させ、この溶融帯を原料焼成体方向に5〜10mm/hで走査させてゆくフローティングゾーン法による結晶育成を行うと、無色透明の単結晶が作製出来た。
この単結晶に波長が254nm、365nmのブラックライトを照射すると、付活剤を塗布しなかった純粋のLuVO4部分は青発光、EuOを塗布した部分は赤発光、Dy2O3を塗布した部分は黄発光した。すなわち、1本で三色発光するLuVO4単結晶が製造できた。
Using a raw material fired body in which a plurality of different types of activator materials are provided in the raw material fired body with a concentration gradient, a three-color light emitting single crystal having different emission colors in the crystal is produced as follows. did.
Lu 2 O 3 and V 2 O 5 are mixed in a 1: 1 ratio, filled into a rubber tube, hydrostatic pressure is applied, molded into a rod shape with a diameter of 8 mm and a length of 50 mm, and then fired at 1200 ° C. 4 Create a raw material bar. The LuVO 4 raw material rod was not attached with an activator, and Eu 2 O 3 and Dy 2 O 3 powders dissolved in water were each applied to the brush to provide spots, and three zones were provided.
That is, about 1% of the weight of the LuVO 4 raw material fired body was used as an activator, and Eu 2 O 3 was prepared as a powder that emitted red light and Dy 2 O 3 emitted yellow light, and dissolved in water to prepare a solution. It is applied to the porous surface in a spot shape with a brush or an insulator to produce a raw material fired body. When this raw material fired body is melted in a crystal furnace and crystal growth is performed by the floating zone method in which this melting zone is scanned in the direction of the raw material fired body at 5 to 10 mm / h, a colorless and transparent single crystal can be produced. It was.
When this single crystal is irradiated with black light with a wavelength of 254 nm or 365 nm, the pure LuVO 4 part not coated with the activator emits blue light, the part coated with Eu 2 O 3 emits red light, and Dy 2 O 3 The applied part emitted yellow light. That is, a single LuVO 4 single crystal emitting three colors of light could be produced.

(発色テスト)
図2〜4は、LuVO4単結晶の温度を室温(絶対温度=295K)に維持し、それにHe-Cdレーザーの光(波長=325 nm)を照射した時に得られた発光を、スペクトルに分解した結果である。横軸は光の波長を表し(単位はnm)、縦軸はその波長の光の発光強度を表している。
まず図2は、純粋なLuVO4単結晶の発光スペクトルを表している。このスペクトルの特徴は、波長=500nmの付近を中心とした幅の広い発光バンドが観察される事である。この試料の発光を肉眼で観察すると青色に見える原因は、このバンドの存在にある。また、この幅の広い発光バンドの発光機構は、VO4 3−という酸基からの発光であると考えられる。なお図2を見ると、その幅広い発光バンドの他に、何本かの鋭い発光線が観察される。それらはどれも、試料中に微量に存在している不純物元素からの発光であると考えられる。例えば、最も強い発光線は、波長=620nmの付近に観察されるが、その不純物の種類はEuであると考えられる。
(Color development test)
Figures 2-4 show the Luo 4 single crystal temperature maintained at room temperature (absolute temperature = 295K) and the emission obtained when it is irradiated with He-Cd laser light (wavelength = 325 nm). It is the result. The horizontal axis represents the wavelength of light (unit: nm), and the vertical axis represents the emission intensity of light of that wavelength.
First, FIG. 2 shows an emission spectrum of a pure LuVO 4 single crystal. A feature of this spectrum is that a wide emission band centered around the wavelength = 500 nm is observed. The presence of this band is the reason why the sample emits blue light when observed with the naked eye. The light emission mechanism of this wide light emission band is considered to be light emission from an acid group called VO 4 3− . As shown in FIG. 2, in addition to the wide emission band, some sharp emission lines are observed. All of them are considered to emit light from impurity elements present in a minute amount in the sample. For example, the strongest emission line is observed in the vicinity of the wavelength = 620 nm, but the impurity type is considered to be Eu.

図3はEuをドープしたLuVO4単結晶の発光スペクトルを表している。このスペクトルの特徴は、何本かの鋭い発光線が観察される事である。これらの発光線は、どれも試料中に存在するEuからの発光であると考えられる。特に、最も強い発光線が、波長=620nmの付近に観察されるが、この試料の発光を肉眼で観察すると赤色に見える原因は、この発光線の存在にある。
図4はDyをドープしたLuVO4単結晶の発光スペクトルを表している。このスペクトルの特徴は、何本かの鋭い発光線が観察される事である。これらの発光線は、どれも試料中に存在するDyからの発光であると考えられる。特に、最も強い発光線が、波長=575nmの付近に観察されるが、この試料の発光を肉眼で観察すると 黄色に見える原因は、この発光線の存在にある。
FIG. 3 shows an emission spectrum of a LuVO 4 single crystal doped with Eu. A characteristic of this spectrum is that several sharp emission lines are observed. All of these emission lines are considered to be emission from Eu present in the sample. In particular, the strongest emission line is observed in the vicinity of the wavelength = 620 nm. The reason why the emission of this sample looks red when observed with the naked eye is the presence of this emission line.
FIG. 4 shows an emission spectrum of a LuVO 4 single crystal doped with Dy. A characteristic of this spectrum is that several sharp emission lines are observed. All of these emission lines are considered to be emission from Dy present in the sample. In particular, the strongest emission line is observed in the vicinity of the wavelength = 575 nm, but the cause of the yellow color when the emission of this sample is observed with the naked eye is the presence of this emission line.

本発明のLuVO4系化合物による発光材料は、すべて三原色を作ることが出来、これを表示装置に組み込めば、カラー表示することが出来る。
また、本発明の発光素子は、固体であることから、振動に対して強く、故障が少ない表示装置として用いることが出来る。
All the light emitting materials of the LuVO 4 compound of the present invention can produce three primary colors, and if this is incorporated into a display device, color display can be achieved.
Further, since the light-emitting element of the present invention is solid, it can be used as a display device that is strong against vibration and has few failures.

赤外線加熱方式の結晶成長炉の略図Schematic diagram of an infrared heating crystal growth furnace 純粋なLuVO4の発光スペクトル(青色発光)Luminescence spectrum of pure LuVO 4 (blue emission) EuをドープしたLuVO4のPLスペクトル(赤色発光)PL spectrum of LuVO 4 doped with Eu (red light emission) DyをドープしたLuVO4のPLスペクトル(黄色発光)PL spectrum of LuVO 4 doped with Dy (yellow emission)

符号の説明Explanation of symbols

1 石英管
2 集光用の回転楕円ミラー
3 熱源
4 監視窓
5 レンズ
6 スクリーン
DESCRIPTION OF SYMBOLS 1 Quartz tube 2 Condensing spheroid mirror 3 Heat source 4 Monitoring window 5 Lens 6 Screen

Claims (6)

化学式LuVO4に付活材を添加したLuVO4系発光材料。 LuVO 4 light-emitting material with an activator added to the chemical formula LuVO 4 LuVO4系発光材料が、単結晶又は多結晶のいずれかであることを特徴とする請求項1記載のLuVO4系発光材料。 The LuVO 4 light emitting material according to claim 1, wherein the LuVO 4 light emitting material is either single crystal or polycrystalline. 付活材としてDy, Eu,を用いる請求項1又は請求項2記載のLuVO4系発光材料。 The LuVO 4 light emitting material according to claim 1 or 2, wherein Dy, Eu, is used as an activator. Lu2O3とV2O5を1 : 1に混合して、成型し、1000〜1300℃で焼成してLuVO4原料棒を作成し、LuVO4原料棒に付活剤をつけない部分または、溶剤に溶いたEuO及び/又はDy2O3粉末をスポット状に付着させた原料焼成体を作製し、この原料焼成体を用いて結晶炉において溶融させ、この溶融帯を原料焼成体方向に5〜10mm/hで走査させてゆくフローティングゾーン法による結晶育成を行う発光材料の製造方法。 The lu 2 O 3 and V 2 O 5 1: were mixed in a 1, molded to create a LuVO 4 feed rod and fired at 1000 to 1300 ° C., portions without the activator to LuVO 4 feed rod or A raw material fired body in which Eu 2 O 3 and / or Dy 2 O 3 powder dissolved in a solvent is attached in a spot shape is prepared, and this raw material fired body is melted in a crystal furnace, and this molten zone is fired as a raw material. A method for producing a light-emitting material in which crystal growth is performed by a floating zone method in which the body is scanned at 5 to 10 mm / h in the body direction. LuVO4結晶、LuVO4とDyからなる結晶、LuVO4とEuからなる結晶がひとつの結晶体に含まれる発光素子。 A light emitting device in which a single crystal includes a LuVO 4 crystal, a crystal composed of LuVO 4 and Dy, and a crystal composed of LuVO 4 and Eu. Lu2O3とV2O5を1 : 1に混合して、成型し、1000〜1300℃で焼成してLuVO4原料棒を作成し、LuVO4原料棒に付活剤をつけない部分と溶剤に溶いたEuO、Dy2O3粉末をスポット状に付着させて、3つのゾーンを設けた原料焼成体を作製し、この原料焼成体を用いて結晶炉において溶融させ、この溶融帯を原料焼成体方向に5〜10mm/hで走査させてゆくフローティングゾーン法による結晶育成を行う発光素子の製造方法。 The lu 2 O 3 and V 2 O 5 1: were mixed in a 1, molded to create a LuVO 4 feed rod and fired at 1000 to 1300 ° C., and a portion without a activator to LuVO 4 feed rod The Eu 2 O 3 and Dy 2 O 3 powders dissolved in the solvent are attached in a spot shape to produce a raw material fired body having three zones, which is melted in a crystal furnace using this raw material fired body. A method for manufacturing a light-emitting element in which crystal growth is performed by a floating zone method in which a band is scanned in the direction of a raw material fired body at 5 to 10 mm / h.
JP2003282720A 2003-07-30 2003-07-30 Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same Pending JP2005048092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282720A JP2005048092A (en) 2003-07-30 2003-07-30 Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282720A JP2005048092A (en) 2003-07-30 2003-07-30 Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same

Publications (1)

Publication Number Publication Date
JP2005048092A true JP2005048092A (en) 2005-02-24

Family

ID=34267846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282720A Pending JP2005048092A (en) 2003-07-30 2003-07-30 Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same

Country Status (1)

Country Link
JP (1) JP2005048092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560668A (en) * 2012-01-19 2012-07-11 山东大学 Preparation method of vanadate composite laser crystal having zirconite structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560668A (en) * 2012-01-19 2012-07-11 山东大学 Preparation method of vanadate composite laser crystal having zirconite structure

Similar Documents

Publication Publication Date Title
Yuan et al. CsPbBr 3: x Eu 3+ perovskite QD borosilicate glass: a new member of the luminescent material family
KR100261972B1 (en) Phosphor and method for producing same
KR101913459B1 (en) Process for preparing red-emitting phosphors
Stand et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5
JP2005187791A (en) Phosphor and light-emitting diode
JPWO2006025259A1 (en) Phosphor, method for producing the same, and light emitting device using the same
Yang et al. Lead oxide enables lead volatilization pollution inhibition and phase purity modulation in perovskite quantum dots embedded borosilicate glass
KR20170035807A (en) Metal fluoride-based red phosphors and light emitting device containing the same
Liu et al. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering
CN108603113B (en) Phosphor and method for producing same, phosphor-containing member, and light-emitting device or projector
Vaněček et al. Advanced halide scintillators: From the bulk to nano
CN111270310A (en) Pure inorganic narrow-spectrum blue-violet light emitting two-dimensional perovskite single crystal material and growth method
KR20190055396A (en) Conversion method of light-emitting wavelength of lead halide perovskite quantum dot
JP5946036B2 (en) Light emitting device
CN114507522A (en) Rare earth doped perovskite red light luminescent material and preparation method and application thereof
Shu et al. Highly efficient and blue-emitting CsPbBr3 quantum dots synthesized by two-step supersaturated recrystallization
JP4788875B2 (en) Boron nitride crystal having fluorescent emission characteristics to which an activator such as rare earth is added, its production method, and boron nitride phosphor
JP2005048092A (en) Light-emitting material emitting in three primary colors, its manufacturing method and light emitting-device using the same
JP2005054083A (en) Light emitting material for emitting three primary colors, method for manufacturing the same, and light emitting element using the material
JP4961443B2 (en) Light emitting diode
CN108587627A (en) Eu3+Ion-activated fluorine chlorine telluric acid bismuth and its preparation method and application
Kumari et al. Defects in rare-earth-doped inorganic materials
JP2007031668A (en) TRANSITION METAL DOPED SPINEL TYPE MgGa2O4 PHOSPHOR AND MANUFACTURING METHOD THEREOF
WO2007004366A9 (en) Phosphorescent material, process for producing the same, and phosphorescent display element
CN116023938B (en) Lanthanide ion doped double perovskite nanocrystalline and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805