JP2005047770A - Heat exchanger for reformer - Google Patents

Heat exchanger for reformer Download PDF

Info

Publication number
JP2005047770A
JP2005047770A JP2003283563A JP2003283563A JP2005047770A JP 2005047770 A JP2005047770 A JP 2005047770A JP 2003283563 A JP2003283563 A JP 2003283563A JP 2003283563 A JP2003283563 A JP 2003283563A JP 2005047770 A JP2005047770 A JP 2005047770A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
reformed gas
heat exchange
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003283563A
Other languages
Japanese (ja)
Inventor
Katsunori Uchimura
克則 内村
Kokichi Doi
孝吉 土井
Naoto Kagami
直人 各務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003283563A priority Critical patent/JP2005047770A/en
Publication of JP2005047770A publication Critical patent/JP2005047770A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for a reformer that (a) accelerates the endothermic reforming reaction at the proximity of the entrance part of a reforming gas and that (b) prevents the temperature elevation of the reforming gas at the exit part of the reforming gas in a heat exchanger accompanied by the endothermic reaction. <P>SOLUTION: (1) The heat exchanger for the reformer is a heat exchanger 10 for the reformer accompanied by the endothermic reaction, which forms a plurality of heat exchanging parts 13 with high temperature heat mediums at the passage of the reforming gas and supplies the high temperature heat mediums in parallel to each the heat exchanging part. (2) The heat exchanging part is a laminate type heat exchanger. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸熱反応を伴う改質器用熱交換器に関する。   The present invention relates to a heat exchanger for a reformer with an endothermic reaction.

熱交換器において、熱交換する2流体の温度差を高くとって熱交換効率を上げるために、熱交換する2流体を対向する向きに流すことは知られている(たとえば、特開昭59−29992号公報)。
本出願人が従来開発してきた、炭化水素系燃料と改質水を含む改質原料から水素リッチの改質ガスを生成する改質器用熱交換器30においても、図5〜図7に示すように、熱交換効率を高くするために、改質原料、改質ガス(以下、単に「改質ガス」という)の流れ31と高温熱媒体である燃焼ガスの流れ32とを、互いに対向する流れとしていた。図5は、図7の積層型熱交換器におけるC−C断面での改質ガス流路を示しており、図6は、図7のD−D断面における燃焼ガス流路を示しており、改質ガスは高温燃焼ガスからの熱を吸熱しながら、水素生成の改質反応を行う。
CH4 +H2 O → CO+3H2 −Q
ここで、Q:吸熱改質反応の吸熱量
特開昭59−29992号公報
In a heat exchanger, in order to increase the temperature difference between the two fluids that exchange heat and increase the heat exchange efficiency, it is known that the two fluids that exchange heat flow in opposite directions (for example, Japanese Patent Laid-Open No. Sho 59-59). 29992).
As shown in FIGS. 5 to 7, the heat exchanger 30 for reformer that has been conventionally developed by the present applicant and generates a hydrogen-rich reformed gas from a reformed raw material containing a hydrocarbon-based fuel and reformed water is also shown in FIGS. In addition, in order to increase the heat exchange efficiency, a flow 31 of reforming raw material and reformed gas (hereinafter simply referred to as “reformed gas”) and a flow 32 of combustion gas that is a high-temperature heat medium are opposed to each other. I was trying. FIG. 5 shows the reformed gas flow path in the CC cross section in the stacked heat exchanger of FIG. 7, and FIG. 6 shows the combustion gas flow path in the DD cross section of FIG. The reformed gas performs a reforming reaction for hydrogen generation while absorbing heat from the high-temperature combustion gas.
CH 4 + H 2 O → CO + 3H 2 −Q
Where Q: endothermic amount of the endothermic reforming reaction
JP 59-29992 A

しかし、図5〜図7の改質用熱交換器30には、つぎの問題点があった。図8は、図5〜図7の改質用熱交換器30における、改質ガスと燃焼ガスの温度変化を示す。
(イ)図6、図8に示すように、燃焼ガス温度は、燃焼ガス入口部Aから燃焼ガス出口部Bに流れるにしたがい、改質ガスとの熱交換により、大幅に低下する。したがって、改質ガス入口部F近傍(改質原料が触媒活性温度に上昇し吸熱改質反応の一定温度領域に入った直後の領域)では、改質ガスと燃焼ガスの温度差が小で熱交換されにくく、熱伝達律速になっており、改質ガスにもっと熱を与えて改質反応速度を上げてもよいのにかかわらず、改質ガスへの熱の供給が不足して、改質反応が遅くなっている状態にある。
(ロ)改質ガス出口部E近傍においては、反応律速になっているにかわらず、燃焼ガス温度が高く維持されて過剰の熱が改質ガスに与えられるため、本来反応に使われるべき熱が、改質ガスの温度上昇に多く使われてしまい(図8のハッチ領域が、燃焼ガスの熱量が改質ガス温度上昇に用いられた部分)、燃焼ガスの熱の改質反応への利用効率が悪くなり、かつ、吸熱改質反応の一定温度領域が狭くなる(一定温度領域に入った後早くから改質ガスの温度が上がるため)。また、改質ガス出口部Eにおいて改質ガス温度が高くなり過ぎているため、熱交換器の耐久性が低下する。
However, the reforming heat exchanger 30 of FIGS. 5 to 7 has the following problems. FIG. 8 shows temperature changes of the reformed gas and the combustion gas in the reforming heat exchanger 30 of FIGS.
(A) As shown in FIGS. 6 and 8, the combustion gas temperature greatly decreases due to heat exchange with the reformed gas as it flows from the combustion gas inlet A to the combustion gas outlet B. Therefore, in the vicinity of the reformed gas inlet F (region immediately after the reforming raw material rises to the catalyst activation temperature and enters the constant temperature region of the endothermic reforming reaction), the temperature difference between the reformed gas and the combustion gas is small and heat is reduced. It is difficult to exchange and heat transfer rate-limiting, and even though it is possible to increase the reforming reaction rate by giving more heat to the reformed gas, the supply of heat to the reformed gas is insufficient and reforming The reaction is slow.
(B) In the vicinity of the reformed gas outlet E, the combustion gas temperature is maintained high and excessive heat is given to the reformed gas regardless of the reaction rate limiting, so heat that should be originally used for the reaction However, it is often used to raise the temperature of the reformed gas (the hatched area in FIG. 8 is the part where the amount of heat of the combustion gas is used to raise the temperature of the reformed gas), and the heat of the combustion gas is used for the reforming reaction. The efficiency deteriorates, and the constant temperature region of the endothermic reforming reaction becomes narrow (because the temperature of the reformed gas rises soon after entering the constant temperature region). In addition, since the reformed gas temperature is too high at the reformed gas outlet E, the durability of the heat exchanger decreases.

本発明の目的は、吸熱反応を伴う熱交換器において、
(イ)改質ガス入口部近傍(活性化後の吸熱改質反応の一定温度領域における改質ガス入口に近い領域部分)での燃焼ガス温度を上げ改質ガスへの熱伝達量を増やし従来の熱伝達律速を解消して吸熱改質反応を促進させ、
(ロ)吸熱改質反応の一定温度領域を改質ガス出口側に拡げて改質反応領域を増大させるとともに、改質ガス出口部における改質ガスの温度上昇を抑えた、
改質器用熱交換器を提供することにある。
An object of the present invention is to provide a heat exchanger with an endothermic reaction,
(A) Conventionally, the combustion gas temperature near the reformed gas inlet (the region near the reformed gas inlet in the constant temperature region of the endothermic reforming reaction after activation) is increased to increase the amount of heat transfer to the reformed gas. To eliminate the heat transfer rate limiting of
(B) The constant temperature region of the endothermic reforming reaction is expanded to the reformed gas outlet side to increase the reforming reaction region, and the temperature rise of the reformed gas at the reformed gas outlet is suppressed.
The object is to provide a heat exchanger for a reformer.

上記課題を解決する本発明は、また、上記目的を達成する本発明は、つぎのとおりである。
(1)吸熱反応を伴う改質器用熱交換器であって、改質ガスの流路に対して、高温熱媒体との熱交換部を複数箇所形成し、各熱交換部に対して、高温熱媒体が並列に供給される改質器用熱交換器。
(2)前記熱交換部は、積層型熱交換器である(1)記載の改質器用熱交換器。
The present invention for solving the above-mentioned problems and the present invention for achieving the above object are as follows.
(1) A heat exchanger for a reformer with an endothermic reaction, in which a plurality of heat exchange portions with a high-temperature heat medium are formed in the reformed gas flow path, A heat exchanger for a reformer to which a heating medium is supplied in parallel.
(2) The heat exchanger for a reformer according to (1), wherein the heat exchange unit is a stacked heat exchanger.

上記(1)の改質器用熱交換器によれば、改質ガスの流路に対して、高温熱媒体(燃焼ガス)との熱交換部が、複数箇所、互いに直列に形成され、各熱交換部に高温熱媒体が並列に供給されるので、
(イ)各熱交換部で改質ガスと高温熱媒体との熱交換が行われ、改質ガス入口部近傍での改質原料と高温熱媒体との温度差が大きくなり、改質ガス入口部近傍での高温熱媒体から改質原料への伝達熱量が増え、改質ガス入口部近傍での改質ガスへの熱の供給不足および改質ガス入口部近傍の熱伝達律速が解消され、吸熱改質反応が促進される。
(ロ)また、複数の熱交換部の各熱交換部において吸熱改質反応が促進されることにより、吸熱改質反応の一定温度領域が拡大し(改質ガス出口側に拡大し)、その結果、高温熱媒体の熱量の改質反応への利用量が増えるとともに、改質原料の出口部近傍での改質ガスの温度上昇に使われる熱量が低減する。また、改質ガスの出口部近傍での改質ガスの温度の上昇抑制によって、熱交換器の耐久性も向上する。
上記(2)の改質器用熱交換器によれば、熱交換部が積層型熱交換器であるため、熱交換器がコンパクトになる。
According to the heat exchanger for reformer of (1) above, a plurality of heat exchanging portions with the high-temperature heat medium (combustion gas) are formed in series with each other with respect to the reformed gas flow path. Since a high-temperature heat medium is supplied in parallel to the exchange unit,
(A) The heat exchange between the reformed gas and the high-temperature heat medium is performed in each heat exchange section, and the temperature difference between the reforming raw material and the high-temperature heat medium near the reformed gas inlet section increases, and the reformed gas inlet The amount of heat transferred from the high-temperature heat medium in the vicinity of the reformer to the reforming raw material is increased, the shortage of heat supply to the reformed gas in the vicinity of the reformed gas inlet and the heat transfer rate limiting in the vicinity of the reformed gas inlet are eliminated, The endothermic reforming reaction is promoted.
(B) Further, the endothermic reforming reaction is promoted in each heat exchanging section of the plurality of heat exchanging sections, so that the constant temperature region of the endothermic reforming reaction is expanded (expanded to the reformed gas outlet side). As a result, the amount of heat of the high-temperature heat medium used for the reforming reaction increases, and the amount of heat used to raise the temperature of the reformed gas near the outlet of the reforming raw material decreases. In addition, the durability of the heat exchanger is also improved by suppressing the temperature rise of the reformed gas in the vicinity of the reformed gas outlet.
According to the heat exchanger for reformer of (2) above, the heat exchanger is compact because the heat exchanging part is a stacked heat exchanger.

以下に、本発明の改質器用熱交換器を、図1〜図4を参照して説明する。
本発明の改質器用熱交換器10は、吸熱反応を伴う反応型の熱交換器である。
改質器用熱交換器10は、改質原料(炭化水素系燃料、たとえば、メタン、メタノール等と、改質水)を、高温熱媒体(「燃焼ガス」ともいう)との熱交換と、改質触媒により促進された吸熱改質反応を伴って、水素リッチの「改質ガス」を生成する。以下、「改質ガス」という用語には、改質前の「改質原料」も含むものとする。
改質器用熱交換器10は、改質ガス流路11と燃焼ガス流路12を有し、改質ガス流路11の、伝熱フィンを含む内表面に、改質反応のための改質触媒(貴金属、ニッケル等)が担持されている。改質触媒は、流路壁面への担持に換えて、流路にペレットを配置したものでもよい。
改質ガス流路11には改質ガス(改質原料であるを含む)が流れ、燃焼ガス流路12には燃焼ガスが流れる。改質ガスと燃焼ガスは互いに混じり合わない。改質ガス流路11を流れる改質ガスの流れと、燃焼ガス流路12を流れる燃焼ガスの流れとは、互いに対向する流れである。
Below, the heat exchanger for reformers of this invention is demonstrated with reference to FIGS.
The heat exchanger for reformer 10 of the present invention is a reaction type heat exchanger that involves an endothermic reaction.
The heat exchanger 10 for reformer is used for heat exchange between reforming raw materials (hydrocarbon fuels such as methane, methanol, etc. and reforming water) with a high-temperature heat medium (also referred to as “combustion gas”). A hydrogen-rich “reformed gas” is produced with an endothermic reforming reaction promoted by a porous catalyst. Hereinafter, the term “reformed gas” includes “reformed raw material” before reforming.
The reformer heat exchanger 10 has a reformed gas channel 11 and a combustion gas channel 12, and the reformed gas channel 11 is reformed on the inner surface including the heat transfer fins for reforming reaction. A catalyst (noble metal, nickel, etc.) is supported. The reforming catalyst may be one in which pellets are arranged in the flow path instead of being supported on the flow path wall surface.
A reformed gas (including reformed raw material) flows through the reformed gas passage 11, and a combustion gas flows through the combustion gas passage 12. The reformed gas and the combustion gas do not mix with each other. The flow of the reformed gas that flows through the reformed gas passage 11 and the flow of the combustion gas that flows through the combustion gas passage 12 are opposite to each other.

改質器用熱交換器10は、複数の熱交換部13を有する。改質ガスは複数の熱交換部13を直列に流れ、燃焼ガスは複数の熱交換部13を並列に流れる。
図1、図2は、熱交換部13が2段(第1段の熱交換部13A、第2段の熱交換部13B)設けられた場合を示すが、熱交換部13の数は2とは限らず、3以上であってもよい。複数の熱交換部13A、13Bは、単一の積層型熱交換器を複数段に分離壁16で仕切って形成されてもよいし、あるいは、別々の熱交換器から形成されてもよい。
The reformer heat exchanger 10 includes a plurality of heat exchange units 13. The reformed gas flows through the plurality of heat exchange units 13 in series, and the combustion gas flows through the plurality of heat exchange units 13 in parallel.
1 and 2 show a case where the heat exchange section 13 is provided in two stages (a first stage heat exchange section 13A and a second stage heat exchange section 13B). The number of heat exchange sections 13 is two. The number is not limited, and may be 3 or more. The plurality of heat exchange units 13A and 13B may be formed by dividing a single stacked heat exchanger into a plurality of stages by the separation wall 16, or may be formed by separate heat exchangers.

図1は図3のD−D断面を示しており、燃焼ガス流路12を示している。改質ガス流路11は図3のC−C断面にあり、D−D断面とは異なる断面であり、図1の紙面とは異なる面にある。図2は、図1のK−K線に沿った断面を示す。   FIG. 1 shows a DD cross section of FIG. 3 and shows a combustion gas passage 12. The reformed gas flow path 11 is in the CC cross section of FIG. 3, is a cross section different from the DD cross section, and is in a plane different from the paper surface of FIG. FIG. 2 shows a cross section taken along line KK of FIG.

図1の紙面と異なる面内において、改質ガスは、まず第1段の熱交換部13Aに流入し、ついで第1段の熱交換部13Aから流出し、ついで、第2段の熱交換部13Bに流入し、ついで第2段の熱交換部13Bから流出する。   In a plane different from that of FIG. 1, the reformed gas first flows into the first stage heat exchange section 13A, then flows out from the first stage heat exchange section 13A, and then the second stage heat exchange section. It flows into 13B, and then flows out from the second stage heat exchange section 13B.

図1の紙面内において、燃焼ガスは、燃焼ガス入口マニホールド14Aから第1段の熱交換部13Aに流入し、第1段の熱交換部13Aを改質ガスと対向して流れ、ついで第1段の熱交換部13Aから燃焼ガス出口マニホールド15Aに流出する。
燃焼ガスは、第1段の熱交換部13Aを流れるのとは別に、燃焼ガス入口マニホールド14Bから第2段の熱交換部13Bに流入し、第2段の熱交換部13Bを改質ガスと対向して流れ、ついで第2段の熱交換部13Bから燃焼ガス出口マニホールド15Bに流出する。
第1段の熱交換部13Aの燃焼ガスの流れと第2段の熱交換部13Bの燃焼ガスの流れとは、互いに並列である。第1段の熱交換部13Aの燃焼ガスの流れと第2段の熱交換部13Bの燃焼ガスの流れとは、分離壁16によって、互いに隔てられる。
In FIG. 1, the combustion gas flows from the combustion gas inlet manifold 14A into the first stage heat exchange section 13A, flows through the first stage heat exchange section 13A facing the reformed gas, and then the first stage. Outflow from the stage heat exchange section 13A to the combustion gas outlet manifold 15A.
The combustion gas flows from the combustion gas inlet manifold 14B into the second stage heat exchange section 13B separately from flowing through the first stage heat exchange section 13A, and the second stage heat exchange section 13B serves as the reformed gas. It flows oppositely, and then flows out from the second stage heat exchange section 13B to the combustion gas outlet manifold 15B.
The flow of the combustion gas in the first stage heat exchange unit 13A and the flow of the combustion gas in the second stage heat exchange unit 13B are parallel to each other. The flow of the combustion gas in the first stage heat exchange section 13A and the flow of the combustion gas in the second stage heat exchange section 13B are separated from each other by the separation wall 16.

17は燃焼ガスと改質ガスとを分離しシールするシール部であり、18は改質部外壁19と熱交換部13との間をシールして改質ガスが熱交換部13を通過せずに吹き抜けることを防止するシール部である。
各熱交換部13は、伝熱フィンを有する。20は改質ガス側伝熱フィンを示し、21は燃焼ガス側伝熱フィンを示す。
Reference numeral 17 denotes a seal part that separates and seals the combustion gas and the reformed gas. Reference numeral 18 denotes a seal between the reformer outer wall 19 and the heat exchange part 13 so that the reformed gas does not pass through the heat exchange part 13. It is a seal part which prevents blowing through.
Each heat exchange unit 13 has heat transfer fins. Reference numeral 20 denotes a reformed gas side heat transfer fin, and reference numeral 21 denotes a combustion gas side heat transfer fin.

図3に示すように、改質器用熱交換器10は、改質ガス側伝熱フィン20、積層プレート22、燃焼ガス側伝熱フィン21、積層プレート22を順に積層した、積層型熱交換器から構成されてもよい。
改質ガス側伝熱フィン20の表面および積層プレート22の改質ガス側表面には、改質触媒が担持される。
積層プレート22の中央に分離壁16が設けられていて、熱交換部13を複数の熱交換部13A、13Bに分離している。
As shown in FIG. 3, the reformer heat exchanger 10 is a stacked heat exchanger in which a reformed gas side heat transfer fin 20, a stacked plate 22, a combustion gas side heat transfer fin 21, and a stacked plate 22 are stacked in this order. May be configured.
A reforming catalyst is supported on the surface of the reformed gas side heat transfer fin 20 and the reformed gas side surface of the laminated plate 22.
A separation wall 16 is provided at the center of the laminated plate 22 and separates the heat exchange unit 13 into a plurality of heat exchange units 13A and 13B.

つぎに、本発明の改質器用熱交換器10の作用、効果を説明する。   Next, functions and effects of the heat exchanger 10 for reformer of the present invention will be described.

改質ガス流路11に対して、高温熱媒体(燃焼ガス)との熱交換部13が、複数箇所(第1の熱交換部13A、第2の熱交換部13B)、互いに直列に形成され、各熱交換部に燃焼ガスが並列に供給されるので、各熱交換部13A、13Bで改質ガスと燃焼ガスとの熱交換が行われ、改質ガス入口部F近傍(改質ガス温度が触媒活性化温度に上がって、一定温度領域に入った直後の領域)での改質ガスと燃焼ガスとの温度差が大きくなり、改質ガス入口部F近傍での燃焼ガスから改質ガスへの伝達熱量が増える。その結果、改質ガス入口部F近傍での改質ガスへの熱の供給不足が解消され、改質ガス入口部近傍の熱伝達律速が解消され、吸熱改質反応が促進される。   With respect to the reformed gas flow path 11, heat exchange portions 13 with a high-temperature heat medium (combustion gas) are formed in a plurality of locations (first heat exchange portion 13 </ b> A and second heat exchange portion 13 </ b> B) in series with each other. Since the combustion gas is supplied to each heat exchange unit in parallel, the heat exchange between the reformed gas and the combustion gas is performed in each heat exchange unit 13A, 13B, and the vicinity of the reformed gas inlet F (reformed gas temperature). The temperature difference between the reformed gas and the combustion gas in the region immediately after the catalyst reaches the catalyst activation temperature and enters the constant temperature region) increases, and the reformed gas is changed from the combustion gas in the vicinity of the reformed gas inlet F. The amount of heat transferred to the As a result, the shortage of heat supply to the reformed gas in the vicinity of the reformed gas inlet F is eliminated, the heat transfer rate limiting in the vicinity of the reformed gas inlet is eliminated, and the endothermic reforming reaction is promoted.

また、複数の熱交換部13の各熱交換部13A、13Bにおいて吸熱改質反応が促進されることにより、吸熱改質反応が行われている一定温度領域が拡大し(改質ガス出口部E側に拡大し)、その結果、燃焼ガスの熱量の改質反応の吸熱への利用量が増え、広い領域において改質反応が促進される。また、改質ガスの出口部E近傍での改質ガスの温度上昇に使われる熱量が低減し、改質ガスの出口部E近傍の改質ガス温度が従来に比べて低減する。その結果、熱交換器の改質ガス流路の耐久性も向上する。   In addition, the endothermic reforming reaction is promoted in each of the heat exchanging sections 13A and 13B of the plurality of heat exchanging sections 13, thereby expanding a certain temperature region in which the endothermic reforming reaction is performed (reformed gas outlet section E As a result, the amount of heat of the combustion gas used for the heat absorption of the reforming reaction increases, and the reforming reaction is promoted in a wide region. In addition, the amount of heat used to raise the temperature of the reformed gas in the vicinity of the reformed gas outlet E is reduced, and the reformed gas temperature in the vicinity of the reformed gas outlet E is reduced as compared with the prior art. As a result, the durability of the reformed gas flow path of the heat exchanger is also improved.

また、熱交換部13が積層型熱交換器であるため、熱交換部13A、13Bが別体の場合に比べて、熱交換器がコンパクトになる。その結果、コストダウン、車両への搭載性に有利等の種々の利点がある。   In addition, since the heat exchange unit 13 is a stacked heat exchanger, the heat exchanger is more compact than when the heat exchange units 13A and 13B are separate. As a result, there are various advantages such as cost reduction and advantageous mounting on a vehicle.

本発明の改質器用熱交換器の燃焼ガス流路部分の断面図である。It is sectional drawing of the combustion gas flow-path part of the heat exchanger for reformers of this invention. 図1の改質器用熱交換器のK−K線断面図である。It is the KK sectional view taken on the line of the heat exchanger for reformers of FIG. 図2の改質器用熱交換器の積層コア部品の斜視図である。It is a perspective view of the lamination | stacking core component of the heat exchanger for reformers of FIG. 本発明の改質器用熱交換器の、燃焼ガス、改質ガスの温度と燃焼ガス、改質ガスの流れ方向位置との関係を示すグラフである。It is a graph which shows the relationship between the temperature of combustion gas and reformed gas, and the flow direction position of combustion gas and reformed gas of the heat exchanger for reformers of this invention. 本出願人が従来開発してきた改質器用熱交換器の改質ガス流路部分の断面図(図7のC−C断面図)である。It is sectional drawing (CC sectional drawing of FIG. 7) of the reformed gas flow path part of the heat exchanger for reformers conventionally developed by this applicant. 図5の改質器用熱交換器の燃焼ガス流路部分の断面図(図7のC−C断面図)である。It is sectional drawing (CC sectional drawing of FIG. 7) of the combustion gas flow-path part of the heat exchanger for reformers of FIG. 図5の改質器用熱交換器の積層コア部品の斜視図である。It is a perspective view of the lamination | stacking core component of the heat exchanger for reformers of FIG. 図5の改質器用熱交換器の、燃焼ガス、改質ガスの温度と燃焼ガス、改質ガスの流れ方向位置との関係を示すグラフである。It is a graph which shows the relationship between the temperature of combustion gas and reformed gas, and the flow direction position of combustion gas and reformed gas of the heat exchanger for reformers of FIG.

符号の説明Explanation of symbols

10 改質器用熱交換器
11 改質ガス流路
12 燃焼ガス流路
13 熱交換部
13A 第1の熱交換部
13B 第2の熱交換部
14A (第1の熱交換部Aに対する)燃焼ガス入口マニホールド
14B (第2の熱交換部Bに対する)燃焼ガス入口マニホールド
15A (第1の熱交換部Aに対する)燃焼ガス出口マニホールド
15B (第2の熱交換部Bに対する)燃焼ガス出口マニホールド
16 分離壁
17 シール部
18 シール部
19 改質部外壁
20 改質ガス伝熱フィン
21 燃焼ガス伝熱フィン
DESCRIPTION OF SYMBOLS 10 Reformer heat exchanger 11 Reformed gas flow path 12 Combustion gas flow path 13 Heat exchange part 13A 1st heat exchange part 13B 2nd heat exchange part 14A (with respect to 1st heat exchange part A) Combustion gas inlet Manifold 14B Combustion gas inlet manifold 15A (for the second heat exchange section B) Combustion gas outlet manifold 15B (for the first heat exchange section A) Combustion gas outlet manifold 16 (for the second heat exchange section B) Separation wall 17 Seal portion 18 Seal portion 19 Reformer outer wall 20 Reformed gas heat transfer fin 21 Combustion gas heat transfer fin

Claims (2)

吸熱反応を伴う改質器用熱交換器であって、改質ガスの流路に対して、高温熱媒体との熱交換部を複数箇所形成し、各熱交換部に対して、高温熱媒体が並列に供給される改質器用熱交換器。   A heat exchanger for a reformer with an endothermic reaction, wherein a plurality of heat exchange portions with a high-temperature heat medium are formed in the reformed gas flow path, and the high-temperature heat medium is provided for each heat exchange portion. Heat exchanger for reformer supplied in parallel. 前記熱交換部は、積層型熱交換器である請求項1記載の改質器用熱交換器。   The heat exchanger for a reformer according to claim 1, wherein the heat exchange unit is a stacked heat exchanger.
JP2003283563A 2003-07-31 2003-07-31 Heat exchanger for reformer Pending JP2005047770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283563A JP2005047770A (en) 2003-07-31 2003-07-31 Heat exchanger for reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283563A JP2005047770A (en) 2003-07-31 2003-07-31 Heat exchanger for reformer

Publications (1)

Publication Number Publication Date
JP2005047770A true JP2005047770A (en) 2005-02-24

Family

ID=34268421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283563A Pending JP2005047770A (en) 2003-07-31 2003-07-31 Heat exchanger for reformer

Country Status (1)

Country Link
JP (1) JP2005047770A (en)

Similar Documents

Publication Publication Date Title
JP4750542B2 (en) Catalytic reactor / heat exchanger
JP2002313384A (en) Heat exchanger for use in fuel cell
KR102456288B1 (en) Scalable Heat Exchanger Reformer for Syngas Generation
JP6439326B2 (en) Reactor
JP2008505299A (en) Multi-pass heat exchanger
US9991527B2 (en) Heat exchanger, method of producing heat exchanger, and fuel cell system
JP2003287386A (en) Heat exchanger with catalyst
JP5165407B2 (en) Cylindrical steam reformer
US7258081B2 (en) Compact water vaporizer for dynamic steam generation and uniform temperature control
JP2005047770A (en) Heat exchanger for reformer
US20050217834A1 (en) Multi-pass heat exchanger
JP5198091B2 (en) Fuel cell reformer
JP2010524812A (en) Two-stage reformer and method of operating the reformer
JP2014076445A (en) Combined heat exchanging and fluid mixing apparatus
JP4109932B2 (en) Laminate heat exchanger
JP4639472B2 (en) Reactor
JP2005330131A (en) Hydrogen production apparatus
JP2007297238A (en) Heat exchanger type reformer and reforming apparatus
JP2003171101A (en) Reforming reactor
JP5239125B2 (en) Reactor
JP2005053742A (en) Plate fin type reactor
JP2015190723A (en) heat exchanger
JP2005289691A (en) Apparatus for producing hydrogen
JP2005255519A (en) Reactor
JP2005089197A (en) Fuel reformer