JP2005045897A - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
JP2005045897A
JP2005045897A JP2003202192A JP2003202192A JP2005045897A JP 2005045897 A JP2005045897 A JP 2005045897A JP 2003202192 A JP2003202192 A JP 2003202192A JP 2003202192 A JP2003202192 A JP 2003202192A JP 2005045897 A JP2005045897 A JP 2005045897A
Authority
JP
Japan
Prior art keywords
magnet
rotor
divided
axial direction
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003202192A
Other languages
Japanese (ja)
Inventor
Shuji Kosaka
修司 小坂
Katsumi Tomizawa
勝美 富沢
Hidefumi Suzuki
秀文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU DENSO KK
Original Assignee
TOKUSHU DENSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU DENSO KK filed Critical TOKUSHU DENSO KK
Priority to JP2003202192A priority Critical patent/JP2005045897A/en
Publication of JP2005045897A publication Critical patent/JP2005045897A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor which can sufficiently hold a magnet without increasing an air gap between the magnet and a stator even in the case of an increase in size and a high speed rotation of a rotating machine in an inner rotor type rotor. <P>SOLUTION: The rotor 1 of the inner rotor type includes the magnet 5 provided on an outer periphery of a rotor core 3 and covered on at least a part of the outer peripheral surface of the magnet 5 with a magnet cover 6 for preventing the part from being scattered. The magnet 5 is divided into split magnets 5A, 5B in an axial direction of the rotor 1 so that centrifugal forces operating at the split magnets 5A, 5B are reduced and a holding force of the magnet 5 is raised. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内側の回転子と外側の固定子を備えた回転機に用いられるインナロータ型の回転子に関するものである。
【0002】
【従来の技術】
従来のインナロータ型の回転子としては、例えば、図4及び図5に示すようなものがあった。図4に示す回転子101は、回転軸102と、多数枚の円形鋼板を軸線方向に積層して成るロータ鉄心103と、ロータ鉄心103の軸線方向両側の面に設けた二枚の端板104と、ロータ鉄心103の外周に一定間隔で設けた複数の磁石105と、各磁石105の外周面を被覆して同磁石105の飛散を防止するリング状の磁石カバー106を備えている。
【0003】
上記の回転子101は、ロータ鉄心103の外周に磁石105を接着し、磁石105の外周に磁石カバー106を装着すると共に、ボルト107及びナット108によりロータ鉄心103と端板104を互いに固定して、両側の端板104で磁石カバー106の両端部を保持した構造になっており、外周側に位置する固定子110とともに回転機を構成する。
【0004】
また、図5に示す回転子201は、上記回転子と同様に、回転軸102、ロータ鉄心103及び磁石105を備えると共に、ロータ鉄心103の軸線方向両側の面に設けた二枚の端板を磁石カバー206としている。磁石カバー206は、端板に相当する基板部206aと、基板部206aの外周端に形成した鉤状の抑止部206bを備えており、磁石105の外周面の軸線方向両端部分に抑止部206bを係止して磁石105を保持する(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開昭63−110944号公報
【0006】
【発明が解決しようとする課題】
ところで、上記したようなインナロータ型の回転子では、磁石と固定子の間のエアギャップ(図4及び図5の符号G)を極力小さくする方が性能上好ましく、その小さなエアギャップを維持して磁石と固定子の接触が生じないようにするには、磁石の保持状態を確実なものにしておく必要がある。また、回転機の大型化や高回転化が進むと、磁石に作用する遠心力が増大することから、磁石をより強力に保持しておく必要がある。
【0007】
そこで、従来にあっては、磁石をより強力に保持する手段として、厚肉で高強度の磁石カバーを用いることが考えられたが、磁石カバーを厚肉にすると、当然のことながら磁石と固定子の間のエアギャップも増大し、これにより回転機の性能が低下するという不具合があることから、このような不具合を解決することが要望されていた。
【0008】
【発明の目的】
本発明は、上記従来の課題に着目して成されたもので、インナロータ型の回転子において、回転機の大型化や高回転化に対しても、磁石と固定子の間のエアギャップを増大させることなく磁石を充分に保持することができる回転子を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の回転子は、請求項1として、ロータ鉄心の外周に磁石を備えると共に、磁石の外周面の少なくとも一部を飛散防止用の磁石カバーで被覆したインナロータ型の回転子であって、磁石を当該回転子の軸線方向に分割した構成とし、請求項2として、分割した磁石に対応してロータ鉄心を当該回転子の軸線方向に分割し、磁石カバーが、各分割鉄心の軸線方向両側の面に対応する基板部と、各分割磁石の外周面の少なくとも軸線方向両端部分に対応する抑止部を備え、各分割鉄心を磁石カバーとともに互いに固定した構成としており、上記構成をもって従来の課題を解決するための手段としている。
【0010】
【発明の効果】
本発明の請求項1の回転子によれば、ロータ鉄心の外周に設けた磁石を軸線方向に分割したことにより、従来の磁石に作用する遠心力に対して、各分割磁石に作用する遠心力が分割数分の一になるので、回転機の大きさや回転速度が従来と同等である場合には、磁石カバーを薄肉化したうえで磁石を充分に保持することができ、磁石カバーの薄肉化に伴って磁石と固定子の間のエアギャップを小さくして、回転機の性能向上を実現することができる。また、回転機の大型化や高回転化を図る場合には、従来と同等の肉厚又はそれ以下の肉厚の磁石カバーを用いて、磁石と固定子の間のエアギャップを増大させることなく、磁石を充分に保持することができ、これにより高回転での信頼性の向上を実現する。さらに、磁石の保持力の向上により、ロータ鉄心に対する磁石の接着を不要にすることも可能になり、回転機の組み立て作業性の向上や低コスト化にも貢献し得る。
【0011】
本発明の請求項2の回転子によれば、請求項1と同様の効果を得ることができるうえに、簡単な構造で各分割磁石をより一層強固に保持することができる。
【0012】
【実施例】
図1及び図2に示すインナロータ型の回転子1は、回転軸2と、多数枚の円形鋼板を軸線方向に積層して成るロータ鉄心3と、ロータ鉄心3の軸線方向両側の面に設けた二枚の端板4と、ロータ鉄心3の外周に一定間隔で設けた複数の磁石5と、各磁石5の外周面を被覆して同磁石5の飛散を防止するリング状の磁石カバー6を備えており、各磁石5を当該回転子1の軸線方向に分割したものとなっている。この実施例における磁石5は、同じ大きさの二つの分割磁石5A,5Bに分割してある。
【0013】
上記の回転子1は、ロータ鉄心3の外周に二つの分割磁石5A,5Bから成る磁石5を設け、この際、必要に応じてロータ鉄心3に各分割磁石5A,5Bを接着し、磁石5の外周に磁石カバー6を装着すると共に、ボルト7及びナット8によりロータ鉄心3と端板4を円周上の数箇所で互いに固定して、両側の端板4で磁石カバー6の両端部を保持している。
【0014】
また、回転子1の外周側には、環状を成すステータ鉄心12に複数のコイル13を一定間隔で配置した固定子11が設けてあり、当該回転子1と固定子11とで回転機を構成している。
【0015】
上記の回転子1では、ロータ鉄心3の外周に設けた磁石5を二つの分割磁石5A,5Bに分割しているので、例えば、回転子の大きさや回転速度が図4に示す従来のものと同等である場合、従来の磁石(105)に作用する遠心力に対して、各分割磁石5A,5Bに作用する遠心力が二分の一になる。
【0016】
したがって、当該回転子1では、図4に示す従来の磁石カバー(106)に比べて、磁石カバー6の肉厚が明らかに小さいものとなっていて、このように薄肉化した磁石カバー6であっても、回転時の遠心力に対して充分な保持力を発揮することができる。また、当該回転子1では、磁石カバー6の薄肉化に伴って、磁石5と固定子11の間のエアギャップGも小さく設定してあり、これにより回転機の性能向上を実現し得るものとなる。
【0017】
さらに、上記実施例では、磁石カバー6を薄肉化してエアギャップGを減少させた場合を例示したが、回転機の大型化や高回転化を図る場合には、従来と同等の肉厚又はそれ以下の肉厚の磁石カバー6を用いて、磁石5と固定子11の間のエアギャップGを増大させずに、磁石5を充分に保持することができ、これにより高回転での信頼性の向上を実現し得るものとなる。
【0018】
図3は、本発明の回転子の他の実施例を説明する図である。図示の回転機21は、先の実施例の回転子と同様に、回転軸2、ロータ鉄心3及び二つの分割磁石5A,5Bから成る磁石5を備えると共に、各分割磁石5A,5Bに対応して、ロータ鉄心3を当該回転子1の軸線方向に分割している。つまり、ロータ鉄心3は、二つの分割鉄心3A,3Bに分割してある。
【0019】
また、この実施例では、各分割鉄心3A,3Bの軸線方向両側に、磁石カバー26が設けてある。磁石カバー26は、先の実施例の端板に相当する基板部すなわち各分割鉄心3A,3Bの軸線方向両側の面に対応する基板部26aと、各分割磁石5A,5Bの外周面の軸線方向両端部分に対応する抑止部26bを備えている。このとき、抑止部26bは、基板部26aの外周端をほぼ直角に折り曲げた状態に形成してある。
【0020】
そして、回転子21は、ボルト7及びナット8により、各分割鉄心3A,3Bを四枚の磁石カバー26とともに互いに固定しており、各分割鉄心3A,3Bにおいて、夫々の分割磁石5A,5Bの軸線方向両端部分に両側の磁石カバー26の抑止部26bを係止状態にして、各分割磁石5A,5Bを保持している。
【0021】
上記の回転子21では、先の実施例と同様に、各分割磁石5A,5Bに作用する遠心力が小さくなるので、図5に示す従来の回転子に比べて、磁石カバー6の全体が薄肉化してあり、これにより磁石5と固定子11の間のエアギャップGを小さく設定して、回転機の性能向上を実現し得るものとなり、また、簡単な構造で各分割磁石5A,5Bをより強固に保持し得る。
【0022】
さらに、上記実施例の回転子21にあっても、回転機の大型化や高回転化を図る場合には、従来と同等の肉厚又はそれ以下の肉厚の磁石カバー26を用いて、磁石5と固定子11の間のエアギャップGを増大させずに、磁石5を充分に保持することができる。
【0023】
なお、本発明の回転子は、その構成の細部が上記各実施例のみに限定されるものではなく、磁石及びロータ鉄心の分割数を二つ以外にすることも可能であり、また、例えば図3に示す如くロータ鉄心3を分割した構成においては、隣接する二枚の磁石カバー26を一体化したり、分割鉄心3A,3Bを挟む二枚の磁石カバー26を一体化したりすることができ、全ての磁石カバー26を一体化したものとすることも可能である。
【図面の簡単な説明】
【図1】本発明の回転子の一実施例を説明する片側省略の断面図である。
【図2】図1に示す回転子及び固定子の片側省略の正面図である。
【図3】本発明の回転子の他の実施例を説明する片側省略の断面図である。
【図4】従来の回転子を説明する片側省略の断面図である。
【図5】従来の回転子の他の例を説明する片側省略の断面図である。
【符号の説明】
1,21 回転子
3 ロータ鉄心
3A,3B 分割鉄心
5 磁石
5A,5B 分割磁石
6,26 磁石カバー
26a 基板部
26b 抑止部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inner rotor type rotor used in a rotating machine including an inner rotor and an outer stator.
[0002]
[Prior art]
As a conventional inner rotor type rotor, for example, there are those shown in FIGS. A rotor 101 shown in FIG. 4 includes a rotating shaft 102, a rotor core 103 formed by laminating a large number of circular steel plates in the axial direction, and two end plates 104 provided on both sides of the rotor core 103 in the axial direction. And a plurality of magnets 105 provided on the outer periphery of the rotor core 103 at regular intervals, and a ring-shaped magnet cover 106 that covers the outer peripheral surface of each magnet 105 and prevents the magnet 105 from scattering.
[0003]
In the rotor 101, a magnet 105 is bonded to the outer periphery of the rotor core 103, a magnet cover 106 is attached to the outer periphery of the magnet 105, and the rotor core 103 and the end plate 104 are fixed to each other by bolts 107 and nuts 108. The both ends of the magnet cover 106 are held by the end plates 104 on both sides, and constitute a rotating machine together with the stator 110 located on the outer peripheral side.
[0004]
A rotor 201 shown in FIG. 5 includes a rotating shaft 102, a rotor core 103, and a magnet 105, and two end plates provided on both sides in the axial direction of the rotor core 103, similarly to the rotor. The magnet cover 206 is used. The magnet cover 206 includes a substrate portion 206a corresponding to an end plate, and a hook-shaped suppression portion 206b formed at the outer peripheral end of the substrate portion 206a. The suppression portion 206b is provided at both end portions in the axial direction of the outer peripheral surface of the magnet 105. The magnet 105 is held by locking (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 63-110944 [0006]
[Problems to be solved by the invention]
By the way, in the inner rotor type rotor described above, it is preferable in terms of performance to make the air gap between the magnet and the stator (reference numeral G in FIGS. 4 and 5) as small as possible, and the small air gap is maintained. In order to prevent contact between the magnet and the stator, it is necessary to secure the magnet holding state. Further, when the rotating machine is increased in size and rotation, the centrifugal force acting on the magnet is increased, so that the magnet needs to be held more strongly.
[0007]
Therefore, in the past, it was considered to use a thick and high-strength magnet cover as a means to hold the magnet more powerfully. However, if the magnet cover is thick, it is naturally fixed to the magnet. Since there is a problem that the air gap between the children also increases, thereby reducing the performance of the rotating machine, it has been desired to solve such a problem.
[0008]
OBJECT OF THE INVENTION
The present invention has been made by paying attention to the above-mentioned conventional problems, and in an inner rotor type rotor, the air gap between the magnet and the stator is increased even when the rotating machine is increased in size and speed. It aims at providing the rotor which can fully hold | maintain a magnet, without making it.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a rotor of an inner rotor type in which a magnet is provided on the outer periphery of the rotor core and at least a part of the outer peripheral surface of the magnet is covered with a magnet cover for preventing scattering. The rotor iron core is divided in the axial direction of the rotor corresponding to the divided magnets, and the magnet covers are arranged on both sides in the axial direction of the divided iron cores. A board part corresponding to the surface and a restraining part corresponding to at least both axial ends of the outer peripheral surface of each divided magnet are provided, and the divided iron cores are fixed to each other together with the magnet cover. As a means to do.
[0010]
【The invention's effect】
According to the rotor of claim 1 of the present invention, the centrifugal force acting on each divided magnet is separated from the centrifugal force acting on the conventional magnet by dividing the magnet provided on the outer periphery of the rotor core in the axial direction. Therefore, if the size and speed of the rotating machine is the same as the conventional machine, the magnet cover can be thinned and the magnet can be held sufficiently. As a result, the air gap between the magnet and the stator can be reduced to achieve improved performance of the rotating machine. In addition, when increasing the size of the rotating machine or increasing the rotation speed, a magnet cover with a wall thickness equal to or less than that of the conventional one can be used without increasing the air gap between the magnet and the stator. The magnet can be sufficiently held, thereby improving the reliability at high rotation. Furthermore, by improving the holding power of the magnet, it becomes possible to eliminate the need for adhesion of the magnet to the rotor iron core, which can contribute to improvement in assembly workability and cost reduction of the rotating machine.
[0011]
According to the rotor of claim 2 of the present invention, the same effect as that of claim 1 can be obtained, and each divided magnet can be held more firmly with a simple structure.
[0012]
【Example】
An inner rotor type rotor 1 shown in FIGS. 1 and 2 is provided on a rotary shaft 2, a rotor core 3 formed by laminating a large number of circular steel plates in the axial direction, and surfaces on both sides of the rotor core 3 in the axial direction. Two end plates 4, a plurality of magnets 5 provided on the outer periphery of the rotor core 3 at regular intervals, and a ring-shaped magnet cover 6 that covers the outer peripheral surface of each magnet 5 and prevents the magnets 5 from scattering. The magnet 5 is divided in the axial direction of the rotor 1. The magnet 5 in this embodiment is divided into two divided magnets 5A and 5B having the same size.
[0013]
The rotor 1 is provided with a magnet 5 composed of two divided magnets 5A and 5B on the outer periphery of the rotor iron core 3, and at this time, the divided magnets 5A and 5B are bonded to the rotor iron core 3 as necessary. A magnet cover 6 is attached to the outer periphery of the rotor, and the rotor core 3 and the end plate 4 are fixed to each other at several points on the circumference by bolts 7 and nuts 8. keeping.
[0014]
Further, on the outer peripheral side of the rotor 1, a stator 11 in which a plurality of coils 13 are arranged at regular intervals on an annular stator core 12 is provided, and the rotor 1 and the stator 11 constitute a rotating machine. is doing.
[0015]
In the rotor 1 described above, the magnet 5 provided on the outer periphery of the rotor core 3 is divided into two divided magnets 5A and 5B, so that, for example, the size and rotational speed of the rotor are the same as the conventional one shown in FIG. When they are equal, the centrifugal force acting on each of the divided magnets 5A and 5B is halved with respect to the centrifugal force acting on the conventional magnet (105).
[0016]
Therefore, in the rotor 1, the thickness of the magnet cover 6 is clearly smaller than that of the conventional magnet cover (106) shown in FIG. However, a sufficient holding force against the centrifugal force during rotation can be exhibited. Moreover, in the said rotor 1, the air gap G between the magnet 5 and the stator 11 is also set small with the thinning of the magnet cover 6, Thereby, the performance improvement of a rotary machine can be implement | achieved. Become.
[0017]
Further, in the above embodiment, the case where the magnet cover 6 is thinned to reduce the air gap G is exemplified. However, when the rotating machine is to be increased in size or increased in rotation, the wall thickness equivalent to the conventional one or The magnet cover 6 having the following thickness can be used to sufficiently hold the magnet 5 without increasing the air gap G between the magnet 5 and the stator 11, thereby ensuring reliability at high rotation. Improvements can be realized.
[0018]
FIG. 3 is a diagram for explaining another embodiment of the rotor of the present invention. The illustrated rotating machine 21 includes a magnet 5 including a rotating shaft 2, a rotor core 3, and two divided magnets 5A and 5B, and corresponds to each of the divided magnets 5A and 5B, as in the rotor of the previous embodiment. Thus, the rotor core 3 is divided in the axial direction of the rotor 1. That is, the rotor core 3 is divided into two divided cores 3A and 3B.
[0019]
In this embodiment, magnet covers 26 are provided on both sides in the axial direction of the divided cores 3A and 3B. The magnet cover 26 includes a substrate portion corresponding to the end plate of the previous embodiment, that is, the substrate portions 26a corresponding to the surfaces on both sides in the axial direction of the divided cores 3A and 3B, and the axial direction of the outer peripheral surfaces of the divided magnets 5A and 5B. Suppressing portions 26b corresponding to both end portions are provided. At this time, the restraining portion 26b is formed in a state where the outer peripheral end of the substrate portion 26a is bent substantially at a right angle.
[0020]
The rotor 21 fixes the divided iron cores 3A and 3B together with the four magnet covers 26 with bolts 7 and nuts 8. In each divided iron core 3A and 3B, each of the divided magnets 5A and 5B is fixed. The divided magnets 5A and 5B are held by holding the restraining portions 26b of the magnet covers 26 on both sides in the axial direction both ends.
[0021]
In the rotor 21, the centrifugal force acting on each of the divided magnets 5A and 5B is reduced as in the previous embodiment, so that the entire magnet cover 6 is thinner than the conventional rotor shown in FIG. As a result, the air gap G between the magnet 5 and the stator 11 can be set small to improve the performance of the rotating machine, and the divided magnets 5A and 5B can be made more simple with a simple structure. It can hold firmly.
[0022]
Further, even in the rotor 21 of the above embodiment, when the rotating machine is to be increased in size or increased in rotation, a magnet cover 26 having a wall thickness equivalent to or smaller than that of the conventional magnet cover 26 is used. The magnet 5 can be sufficiently held without increasing the air gap G between the stator 5 and the stator 11.
[0023]
The details of the structure of the rotor of the present invention are not limited to the above embodiments, and the number of divisions of the magnet and the rotor core can be other than two. 3, the rotor core 3 is divided, so that two adjacent magnet covers 26 can be integrated, or two magnet covers 26 sandwiching the divided cores 3A and 3B can be integrated. It is also possible to integrate the magnet cover 26.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view with one side omitted for explaining an embodiment of a rotor of the present invention.
FIG. 2 is a front view of the rotor and stator shown in FIG. 1 with one side omitted.
FIG. 3 is a cross-sectional view with one side omitted for explaining another embodiment of the rotor of the present invention.
FIG. 4 is a cross-sectional view with one side omitted illustrating a conventional rotor.
FIG. 5 is a cross-sectional view with one side omitted to explain another example of a conventional rotor.
[Explanation of symbols]
1,21 Rotor 3 Rotor cores 3A, 3B Split core 5 Magnets 5A, 5B Split magnets 6, 26 Magnet cover 26a Substrate part 26b Suppressing part

Claims (2)

ロータ鉄心の外周に磁石を備えると共に、磁石の外周面の少なくとも一部を飛散防止用の磁石カバーで被覆したインナロータ型の回転子であって、磁石を当該回転子の軸線方向に分割したことを特徴とする回転子。A rotor of an inner rotor type in which a magnet is provided on the outer periphery of the rotor core and at least a part of the outer peripheral surface of the magnet is covered with a magnet cover for preventing scattering, and the magnet is divided in the axial direction of the rotor. Features a rotor. 分割した磁石に対応してロータ鉄心を当該回転子の軸線方向に分割し、磁石カバーが、各分割鉄心の軸線方向両側の面に対応する基板部と、各分割磁石の外周面の少なくとも軸線方向両端部分に対応する抑止部を備え、各分割鉄心を磁石カバーとともに互いに固定したことを特徴とする請求項1に記載の回転子。The rotor iron core is divided in the axial direction of the rotor corresponding to the divided magnets, and the magnet cover has at least the axial direction of the substrate portions corresponding to the surfaces on both sides in the axial direction of the divided iron cores and the outer peripheral surface of each divided magnet. 2. The rotor according to claim 1, further comprising a restraining portion corresponding to each end portion, wherein each of the divided iron cores is fixed to each other together with the magnet cover.
JP2003202192A 2003-07-28 2003-07-28 Rotor Pending JP2005045897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202192A JP2005045897A (en) 2003-07-28 2003-07-28 Rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202192A JP2005045897A (en) 2003-07-28 2003-07-28 Rotor

Publications (1)

Publication Number Publication Date
JP2005045897A true JP2005045897A (en) 2005-02-17

Family

ID=34261982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202192A Pending JP2005045897A (en) 2003-07-28 2003-07-28 Rotor

Country Status (1)

Country Link
JP (1) JP2005045897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965728B1 (en) * 2011-09-16 2012-07-04 網矢 貞幸 Anti-vibration of gapless motor
JP2014090628A (en) * 2012-10-31 2014-05-15 Toshiba Industrial Products Manufacturing Corp Rotor of magnet surface stuck type rotary electric machine and method of manufacturing the same
CN114450869A (en) * 2019-09-19 2022-05-06 株式会社明电舍 End plate structure of rotary machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965728B1 (en) * 2011-09-16 2012-07-04 網矢 貞幸 Anti-vibration of gapless motor
JP2014090628A (en) * 2012-10-31 2014-05-15 Toshiba Industrial Products Manufacturing Corp Rotor of magnet surface stuck type rotary electric machine and method of manufacturing the same
CN114450869A (en) * 2019-09-19 2022-05-06 株式会社明电舍 End plate structure of rotary machine
CN114450869B (en) * 2019-09-19 2022-09-06 株式会社明电舍 End plate structure of rotary machine

Similar Documents

Publication Publication Date Title
JP4432616B2 (en) Axial gap type rotating electrical machine
US7417348B2 (en) Rotor of permanent magnet rotating electric machine
EP1309067A2 (en) Permanent magnet retaining arrangement for high speed rotors
JP6700596B2 (en) Rotor for axial gap motor and axial gap motor
EP2527098B1 (en) Electric power tool
JP2007159394A (en) Rotary electric machine for reducing torque ripple
JP2008029078A (en) Permanent magnet type synchronous motor
US11303172B2 (en) Rotor for rotating electrical machine and rotor core support structure for rotating electrical machine
US11462962B2 (en) Rotor for dynamo-electric machine, and dynamo-electric machine
JP2527067Y2 (en) Motor rotor
JP4605480B2 (en) Axial gap type motor
JP2002218683A (en) Rotor of rotating machine
JP2010187427A (en) Rotor of synchronous rotating machine
JP2005045897A (en) Rotor
JP2019113370A (en) Resolver rotor and electric rotating machine including the same
JP2004201407A (en) Magnet-saving type rotor of synchronous motor
JP2004201406A (en) Magnet-saving type rotor of synchronous motor
JP2005051826A (en) Fixed structure of permanent magnet in rotor of rotating electric machine
JP2006014565A (en) Disc type rotary electric machine
CN113098166A (en) Rotor punching sheet and rotor iron core
CN217427807U (en) Rotor core of efficient magnetic-gathering motor
JP5363054B2 (en) motor
US20220103035A1 (en) Rotor and rotating electric machine
JP2004297902A (en) Axial gap type motor
JPH01274653A (en) Inrevolvable rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609