JP2005045306A - High frequency amplifier circuit - Google Patents

High frequency amplifier circuit Download PDF

Info

Publication number
JP2005045306A
JP2005045306A JP2003199724A JP2003199724A JP2005045306A JP 2005045306 A JP2005045306 A JP 2005045306A JP 2003199724 A JP2003199724 A JP 2003199724A JP 2003199724 A JP2003199724 A JP 2003199724A JP 2005045306 A JP2005045306 A JP 2005045306A
Authority
JP
Japan
Prior art keywords
reference signal
amplifier circuit
frequency amplifier
temperature
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003199724A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nakano
義明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003199724A priority Critical patent/JP2005045306A/en
Publication of JP2005045306A publication Critical patent/JP2005045306A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency amplifier circuit capable of properly monitoring its gain variations even when ambient temperature is greatly varied. <P>SOLUTION: In the high frequency amplifier circuit wherein a reference signal PS being an output of a reference signal oscillator 20 is given to the high frequency amplifier circuit 13 provided with a temperature variable attenuator 14 to amplify the reference signal together with an input main signal RFin, and a reference signal level extracted from its amplified output RFout is monitored to monitor gain variations due to the ambient temperature of the high frequency amplifier circuit 13, a DC voltage V<SB>DC</SB>is applied to one terminal of the temperature variable attenuator 14 and a DC voltage outputted from the other terminal via the attenuator is fed back to a gain control terminal (and / or a frequency control terminal) of the reference signal oscillator 20 to enhance the gain stability (and / or oscillated frequency stability) of the reference signal oscillator 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高周波増幅回路に関し、更に詳しくは、基準信号発振器の出力である基準信号を温度可変型減衰器を備える高周波増幅回路に注入して入力の主信号と共に増幅し、その増幅出力から抽出した基準信号レベルをモニタして前記高周波増幅回路の温度による利得変動を監視する高周波増幅回路に関する。
【0002】
【従来の技術】
この種の高周波増幅回路は移動通信システムにおける基地局の受信回路に使用されるが、基地局が設置されるような屋外では環境温度が広範囲に変化するため、増幅回路に温度可変型減衰器を挿入して温度による利得の変動を抑制している。図4に従来の典型的な高周波増幅回路の構成を示す。
【0003】
図において、56は高周波増幅回路、Aは3段に設けられたアンプ、57は温度に応じて減衰量が変化する温度可変型減衰器(THP)、51a,51bは増幅回路56のインピーダンス特性を改善するためのアイソレータ(ISO)、53は増幅回路56の利得変動を環視するための基準信号PSを発生する基準信号発生部、54は所定周波数の高周波信号を発生する発振器、55は発振器54の出力信号を所定の振幅に増幅して基準信号PSとなす増幅器、52は受信信号RFinに基準信号PSを注入するための方向性結合器(CUP)、58は高周波増幅器56の出力から基準信号成分を抽出する帯域通過フィルタ(BPF)、59は基準信号成分の電力を検出する検出回路(DET)である。なお、挿入図(a)に受信信号RFと基準信号PSの一例の周波数帯域を示す。
【0004】
受信信号RFinと基準信号PSとは共通の高周波増幅回路56で増幅されると共に、アンプAの利得−温度特性を温度可変型減衰器57で相殺することにより、環境温度の変動によらず、利得一定制御を実現している。
【0005】
なお、上記以外にも、基地局ではフィードフォワード増幅器が使用されておれ、該増幅器では、主信号にパイロット信号を注入して増幅すると共に、主増幅器で生じる非線形歪成分を抽出し、これを主増幅器の出力に再注入して該歪成分を除去することにより、広帯域に渡る良好な線形性を実現している(例えば特許文献1)。
【0006】
以上において、従来は、高周波増幅回路56そのものの温度依存性は補償するように考慮されているが、基準信号発生部53の温度依存性については別段の考慮がされていなかった。
【0007】
【特許文献1】
特開平6−350345号公報(要約,図)。
【0008】
【発明が解決しようとする課題】
しかし、実際上、屋外の環境温度は極めて広範囲(−10〜80°C等)に変化するため、基準信号発生部53の温度依存性を無視できない。即ち、温度変動によりもし発信器54の発振周波数が変化すると、BPF58で抽出される基準信号成分が変化するため、高周波増幅回路56の利得変動と区別がつかなくなり、正しく監視できない。また、温度変動により増幅器55の利得が変化すると、CUP52に注入される基準信号PSのパワーが変化するため、高周波増幅回路56の利得変動と区別がつかなくなり、正しく監視できない。
【0009】
本発明は上記従来技術の問題点に鑑みなされたもので、その目的とする所は、環境温度が大きく変動しても、利得の変動を適正に監視できる高周波増幅回路を提供することにある。
【0010】
【課題を解決するための手段】
上記の課題は例えば図1の構成により解決される。即ち、本発明(1)の高周波増幅回路は、基準信号発振器20の出力である基準信号PSを温度可変型減衰器14を備える高周波増幅回路13に注入して入力の主信号RFinと共に増幅し、その増幅出力RFoutから抽出した基準信号レベルをモニタして前記高周波増幅回路13の温度による利得変動を監視する高周波増幅回路において、前記温度可変型減衰器14の一方の端子に直流電圧VDCを印加し、該減衰器を経由したもう一方の端子から出力される直流電圧を前記基準信号発振器20の利得制御端子にフィードバックしたものである。
【0011】
本発明(1)によれば、高周波増幅回路13の環境温度が大幅に変化しても、基準信号発振器20の利得を一定に維持できるため、高周波増幅回路13の温度による利得変動を適正に監視できる。また、既存の温度可変型減衰器14を有効利用することにより、利得変動補償用のフィードバック回路を廉価に構成できる。
【0012】
また、本発明(2)の高周波増幅回路は、基準信号発振器20の出力である基準信号PSを温度可変型減衰器14を備える高周波増幅回路13に注入して入力の主信号RFinと共に増幅し、その増幅出力RFoutから抽出した基準信号レベルをモニタして前記高周波増幅回路13の温度による利得変動を監視する高周波増幅回路において、前記温度可変型減衰器14の一方の端子に直流電圧VDCを印加し、該減衰器14を経由したもう一方の端子から出力される直流電圧を前記基準信号発振器20の周波数制御端子にフィードバックしたものである。
【0013】
本発明(2)によれば、高周波増幅回路13の環境温度が大幅に変化しても、基準信号発振器20の発振周波数を一定に維持できるため、高周波増幅回路13の温度による利得変動を適正に監視できる。また、既存の温度可変型減衰器14を有効利用することにより、周波数変動補償用のフィードバック回路を廉価に構成できる。
【0014】
本発明(3)では、上記本発明(1)又は(2)において、基準信号発振器の後段にPLL回路を備え、基準信号の周波数を可変に構成したものである。
【0015】
【発明の実施の形態】
以下、添付図面に従って本発明に好適なる実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。
【0016】
図2は第1の実施の形態による高周波受信回路の構成を示す図で、本発明の移動通信システムにおける基地局受信回路への適用例を示している。図において、13は高周波増幅回路、Aは例えば3段に設けられたアンプ、14は温度に応じて減衰量が変化する温度可変型減衰器(THP)、THはその感温素子(サーミスタ等)、11a,11bは増幅回路13のインピーダンス特性を改善するためのアイソレータ(ISO)、20aは高周波増幅回路13の利得変動を環視するための基準信号PSを発生する基準信号発生部、21は所定周波数(例えば2GHz)の高周波信号を発生する周波数可変な発振器、24は発振器21の出力信号を所定の振幅に増幅して基準信号PSとなす利得可変な増幅器、Aは2段に設けられたアンプ、ATTは可変減衰器、12は主信号である受信信号RFin(例えば1940〜1960MHz)に基準信号PSを注入する方向性結合器(CUP)である。なお、図示しないが、高周波増幅器13の出力から基準信号成分を抽出して該基準信号成分の電力(レベル)を検出するための検出回路(DET)を備える。
【0017】
係る構成により、入力の主信号RFinに基準信号PSを注入して共通の高周波増幅回路13により増幅すると共に、アンプAの利得温度特性をTHP14の減衰温度特性で相殺することにより、環境温度によらず所要の増幅特性を維持可能としている。但し、そのためには基準信号PSの周波数や利得の温度による変動を十分に抑制する必要がある。
【0018】
挿入図(a)に発信器21の典型的な温度−発振周波数特性を点線で示す。この発信器21の発振周波数fPSは、環境温度が上がると低くなり、環境温度が下がると高くなる傾向にある。これは、発信器の一般的な特性でもある。挿入図(b)に増幅器24を構成するアンプAの典型的な温度−利得特性を点線で示す。このアンプAの利得PWPSは、環境温度が上がると低くなり、環境温度が下がると高くなる傾向にある。これは、アンプの一般的な特性でもある。
【0019】
本実施の形態では、基準信号PSの温度による変動を抑制するためにTHP14の感温特性を有効に利用する。即ち、THP14の一方の端子に一定の直流電圧VDCを印加し、もう一方の端子からは感温度素THを経由した直流電圧DCoutを抽出する。ここで、L,Cは高周波信号を阻止するために設けられる。
【0020】
挿入図(c)にDCoutの温度特性を示す。このDCoutは、環境温度が上がると高くなり、環境温度が下がると低くなる傾向にある。このDCoutをオフセット調整及び増幅して基準信号発生部20aにフィードバックすることにより、基準信号PSを温度によらず一定に維持する。
【0021】
即ち、利得補償回路30では、DCoutをオフセット調整回路31でオフセット調整し、その出力を利得調整回路32で利得調整すると共に、得られた利得制御用信号PWcontで減衰器ATTの減衰量を制御することにより、広範囲な温度環境下でも増幅器24の温度−利得特性がフラットになるように補償する。これを挿入図(b)の実線で示す。
【0022】
一方、周波数補償回路40では、DCoutをオフセット調整回路41でオフセット調整し、その出力を利得調整回路42で利得調整すると共に、得られた周波数制御用信号fcontで発振器21の発振周波数fPSを制御することにより、広範囲な温度環境下でも発振器21の温度−周波数特性がフラットになるように補償する。これを挿入図(a)の実線で示す。以上により、屋外環境においても基準信号発生部20aの発振周波数及び出力電力の温度補償が可能となる。
【0023】
図3は第2の実施の形態による高周波受信回路の構成を示す図で、基準信号発生部20の発振周波数を所望に変更可能な場合を示している。図において、20bは第2の実施の形態による基準信号発生部、22は位相同期ループ(PLL)、23は電圧制御発振器(VCO)である。その他の構成については、上記図2で述べたものと同様でよい。本第2の実施の形態では、PLL回路の併用により外部からの周波数選択制御に従って各種周波数の基準信号PSが極めて高安定に得られる。
【0024】
なお、上記実施の形態では本発明の基地局における高周波受信回路への適用例を示したが、これに限らない。本発明はフィードフォワード増幅器に注入するパイロット信号の温度安定化にも利用できることは言うまでもない。
【0025】
また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組み合わせの様々な変更が行えることは言うまでも無い。
【0026】
【発明の効果】
以上述べた如く本発明によれば、温度変化の激しい屋外環境下でも高周波増幅器の利得変動を監視するための基準信号を、正常に精度よく動作させる事が可能となるため、移動体通信システムの信頼性向上に寄与する所が極めて大きい。
【図面の簡単な説明】
【図1】本発明の原理を説明する図である。
【図2】第1の実施の形態による高周波受信回路の構成を示す図である。
【図3】第2の実施の形態による高周波受信回路の構成を示す図である。
【図4】従来技術を説明する図である。
【符号の説明】
11 アイソレータ(ISO)
12 方向性結合器(CUP)
13 高周波増幅回路
14 温度可変型減衰器(THP)
20 基準信号発生部
21 発振器
24 増幅器
30 利得補償回路
31 オフセット調整回路
32 利得調整回路
40 周波数補償回路
41 オフセット調整回路
42 利得調整回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency amplifier circuit, and more specifically, a reference signal that is an output of a reference signal oscillator is injected into a high-frequency amplifier circuit equipped with a variable temperature attenuator, amplified together with an input main signal, and extracted from the amplified output. The present invention relates to a high frequency amplifier circuit that monitors a gain variation due to temperature of the high frequency amplifier circuit by monitoring a reference signal level.
[0002]
[Prior art]
This type of high-frequency amplifier circuit is used in a receiver circuit of a base station in a mobile communication system. However, since the ambient temperature changes over a wide range outdoors where the base station is installed, a variable temperature attenuator is installed in the amplifier circuit. Insertion suppresses fluctuations in gain due to temperature. FIG. 4 shows a configuration of a conventional typical high-frequency amplifier circuit.
[0003]
In the figure, 56 is a high-frequency amplifier circuit, A is an amplifier provided in three stages, 57 is a temperature variable attenuator (THP) whose attenuation changes according to temperature, and 51a and 51b are impedance characteristics of the amplifier circuit 56. An isolator (ISO) for improvement, 53 is a reference signal generator for generating a reference signal PS for monitoring the gain fluctuation of the amplifier circuit 56, 54 is an oscillator for generating a high-frequency signal of a predetermined frequency, and 55 is an oscillator 54 An amplifier that amplifies the output signal to a predetermined amplitude to become a reference signal PS, 52 is a directional coupler (CUP) for injecting the reference signal PS into the received signal RFin, and 58 is a reference signal component from the output of the high-frequency amplifier 56 Reference numeral 59 denotes a band-pass filter (BPF) for extracting the reference signal component, and 59 is a detection circuit (DET) for detecting the power of the reference signal component. Note that inset (a) shows an example frequency band of the received signal RF and the reference signal PS.
[0004]
The reception signal RFin and the reference signal PS are amplified by a common high-frequency amplifier circuit 56, and the gain-temperature characteristic of the amplifier A is canceled by the temperature variable attenuator 57, so that the gain can be obtained regardless of the environmental temperature fluctuation. Achieves constant control.
[0005]
In addition to the above, a feed-forward amplifier is used in the base station. The amplifier injects a pilot signal into the main signal and amplifies it, and extracts a nonlinear distortion component generated in the main amplifier. Good linearity over a wide band is realized by reinjecting the output of the amplifier to remove the distortion component (for example, Patent Document 1).
[0006]
In the above description, conventionally, consideration has been given to compensate for the temperature dependence of the high-frequency amplifier circuit 56 itself, but no special consideration has been given to the temperature dependence of the reference signal generator 53.
[0007]
[Patent Document 1]
JP-A-6-350345 (summary, figure).
[0008]
[Problems to be solved by the invention]
However, in practice, since the outdoor environmental temperature changes in a very wide range (−10 to 80 ° C. or the like), the temperature dependence of the reference signal generator 53 cannot be ignored. That is, if the oscillation frequency of the transmitter 54 changes due to a temperature change, the reference signal component extracted by the BPF 58 changes, so that it cannot be distinguished from the gain change of the high-frequency amplifier circuit 56 and cannot be monitored correctly. Further, when the gain of the amplifier 55 changes due to temperature fluctuation, the power of the reference signal PS injected into the CUP 52 changes, so that it cannot be distinguished from the gain fluctuation of the high-frequency amplifier circuit 56 and cannot be monitored correctly.
[0009]
The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a high-frequency amplifier circuit capable of appropriately monitoring the gain variation even when the environmental temperature varies greatly.
[0010]
[Means for Solving the Problems]
The above problem is solved by the configuration of FIG. That is, the high frequency amplifier circuit of the present invention (1) injects the reference signal PS, which is the output of the reference signal oscillator 20, into the high frequency amplifier circuit 13 including the temperature variable attenuator 14, and amplifies it together with the input main signal RFin. In the high-frequency amplifier circuit that monitors the gain fluctuation due to the temperature of the high-frequency amplifier circuit 13 by monitoring the reference signal level extracted from the amplified output RFout, the DC voltage VDC is applied to one terminal of the temperature variable attenuator 14. The DC voltage output from the other terminal via the attenuator is fed back to the gain control terminal of the reference signal oscillator 20.
[0011]
According to the present invention (1), the gain of the reference signal oscillator 20 can be kept constant even when the environmental temperature of the high-frequency amplifier circuit 13 changes significantly. it can. Further, by effectively utilizing the existing temperature variable attenuator 14, a feedback circuit for gain fluctuation compensation can be constructed at low cost.
[0012]
The high frequency amplifier circuit according to the present invention (2) injects the reference signal PS, which is the output of the reference signal oscillator 20, into the high frequency amplifier circuit 13 having the temperature variable attenuator 14, and amplifies it together with the input main signal RFin. In the high-frequency amplifier circuit that monitors the gain fluctuation due to the temperature of the high-frequency amplifier circuit 13 by monitoring the reference signal level extracted from the amplified output RFout, the DC voltage VDC is applied to one terminal of the temperature variable attenuator 14. The DC voltage output from the other terminal via the attenuator 14 is fed back to the frequency control terminal of the reference signal oscillator 20.
[0013]
According to the present invention (2), since the oscillation frequency of the reference signal oscillator 20 can be kept constant even if the environmental temperature of the high frequency amplifier circuit 13 changes significantly, the gain fluctuation due to the temperature of the high frequency amplifier circuit 13 can be appropriately controlled. Can be monitored. Further, by effectively using the existing variable temperature attenuator 14, a feedback circuit for compensating for frequency fluctuation can be constructed at a low cost.
[0014]
In the present invention (3), in the present invention (1) or (2), a PLL circuit is provided in the subsequent stage of the reference signal oscillator, and the frequency of the reference signal is configured to be variable.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.
[0016]
FIG. 2 is a diagram showing the configuration of the high-frequency receiving circuit according to the first embodiment, and shows an application example to the base station receiving circuit in the mobile communication system of the present invention. In the figure, 13 is a high-frequency amplifier circuit, A is an amplifier provided in, for example, three stages, 14 is a temperature variable attenuator (THP) whose attenuation changes according to temperature, and TH is a temperature-sensitive element (thermistor, etc.). , 11a and 11b are isolators (ISO) for improving the impedance characteristics of the amplifier circuit 13, 20a is a reference signal generator for generating a reference signal PS for monitoring the gain fluctuation of the high frequency amplifier circuit 13, and 21 is a predetermined frequency. A variable-frequency oscillator that generates a high-frequency signal (for example, 2 GHz), 24 is a variable-gain amplifier that amplifies the output signal of the oscillator 21 to a predetermined amplitude and becomes a reference signal PS, A is an amplifier provided in two stages, ATT is a variable attenuator, and 12 is a directional coupler (CUP) that injects a reference signal PS into a received signal RFin (for example, 1940 to 1960 MHz) as a main signal. A. Although not shown, a detection circuit (DET) for extracting a reference signal component from the output of the high-frequency amplifier 13 and detecting the power (level) of the reference signal component is provided.
[0017]
With such a configuration, the reference signal PS is injected into the input main signal RFin and amplified by the common high-frequency amplifier circuit 13, and the gain temperature characteristic of the amplifier A is canceled by the attenuation temperature characteristic of the THP 14. Therefore, the required amplification characteristics can be maintained. However, for that purpose, it is necessary to sufficiently suppress the variation of the frequency of the reference signal PS and the gain due to the temperature.
[0018]
Inset (a) shows a typical temperature-oscillation frequency characteristic of the transmitter 21 with a dotted line. The oscillation frequency f PS of the transmitter 21 tends to decrease as the environmental temperature increases and increase as the environmental temperature decreases. This is also a general characteristic of the transmitter. Inset (b) shows a typical temperature-gain characteristic of the amplifier A constituting the amplifier 24 by a dotted line. The gain PW PS of the amplifier A tends to decrease as the environmental temperature increases and increase as the environmental temperature decreases. This is also a general characteristic of an amplifier.
[0019]
In the present embodiment, the temperature sensitive characteristic of THP14 is effectively used in order to suppress the variation of the reference signal PS due to the temperature. That is, a constant DC voltage V DC is applied to one terminal of the THP 14, and a DC voltage DC out via the temperature sensitive element TH is extracted from the other terminal. Here, L and C are provided to block high frequency signals.
[0020]
Inset (c) shows the temperature characteristics of DC out . This DC out tends to increase as the environmental temperature increases and decrease as the environmental temperature decreases. This DC out is offset-adjusted and amplified and fed back to the reference signal generator 20a, thereby maintaining the reference signal PS constant regardless of the temperature.
[0021]
That is, in the gain compensation circuit 30, the DC out is offset adjusted by the offset adjustment circuit 31, the output is adjusted by the gain adjustment circuit 32, and the attenuation amount of the attenuator ATT is adjusted by the gain control signal PW cont obtained. By controlling, compensation is made so that the temperature-gain characteristic of the amplifier 24 becomes flat even under a wide range of temperature environments. This is indicated by the solid line in the inset (b).
[0022]
On the other hand, in the frequency compensation circuit 40, DC out is offset-adjusted by the offset adjustment circuit 41, the output is gain-adjusted by the gain adjustment circuit 42, and the oscillation frequency f PS of the oscillator 21 is obtained using the obtained frequency control signal f cont. Is controlled so that the temperature-frequency characteristic of the oscillator 21 becomes flat even under a wide range of temperature environments. This is indicated by the solid line in the inset (a). As described above, temperature compensation of the oscillation frequency and output power of the reference signal generator 20a is possible even in an outdoor environment.
[0023]
FIG. 3 is a diagram showing the configuration of the high-frequency receiving circuit according to the second embodiment, and shows a case where the oscillation frequency of the reference signal generator 20 can be changed as desired. In the figure, 20b is a reference signal generator according to the second embodiment, 22 is a phase locked loop (PLL), and 23 is a voltage controlled oscillator (VCO). Other configurations may be the same as those described in FIG. In the second embodiment, the reference signal PS of various frequencies can be obtained with extremely high stability in accordance with frequency selection control from the outside by using the PLL circuit together.
[0024]
In the above embodiment, the application example of the present invention to the high frequency receiving circuit in the base station is shown, but the present invention is not limited to this. Needless to say, the present invention can also be used to stabilize the temperature of a pilot signal injected into a feedforward amplifier.
[0025]
Moreover, although several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part, control, a process, and these combination can be variously changed within the range which does not deviate from this invention. .
[0026]
【The invention's effect】
As described above, according to the present invention, the reference signal for monitoring the gain fluctuation of the high-frequency amplifier can be operated normally and accurately even in an outdoor environment where the temperature change is severe. The place that contributes to the improvement of reliability is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention.
FIG. 2 is a diagram showing a configuration of a high-frequency receiving circuit according to the first embodiment.
FIG. 3 is a diagram illustrating a configuration of a high-frequency receiving circuit according to a second embodiment.
FIG. 4 is a diagram illustrating a conventional technique.
[Explanation of symbols]
11 Isolator (ISO)
12 Directional coupler (CUP)
13 High Frequency Amplifier 14 Temperature Variable Attenuator (THP)
20 Reference signal generator 21 Oscillator 24 Amplifier 30 Gain compensation circuit 31 Offset adjustment circuit 32 Gain adjustment circuit 40 Frequency compensation circuit 41 Offset adjustment circuit 42 Gain adjustment circuit

Claims (3)

基準信号発振器の出力である基準信号を温度可変型減衰器を備える高周波増幅回路に注入して入力の主信号と共に増幅し、その増幅出力から抽出した基準信号レベルをモニタして前記高周波増幅回路の温度による利得変動を監視する高周波増幅回路において、
前記温度可変型減衰器の一方の端子に直流電圧を印加し、該減衰器を経由したもう一方の端子から出力される直流電圧を前記基準信号発振器の利得制御端子にフィードバックしたことを特徴とする高周波増幅回路。
A reference signal, which is an output of the reference signal oscillator, is injected into a high frequency amplifier circuit having a temperature variable attenuator and amplified together with an input main signal, and a reference signal level extracted from the amplified output is monitored to monitor the high frequency amplifier circuit. In a high-frequency amplifier circuit that monitors gain fluctuation due to temperature,
A DC voltage is applied to one terminal of the temperature variable attenuator, and a DC voltage output from the other terminal via the attenuator is fed back to the gain control terminal of the reference signal oscillator. High frequency amplifier circuit.
基準信号発振器の出力である基準信号を温度可変型減衰器を備える高周波増幅回路に注入して入力の主信号と共に増幅し、その増幅出力から抽出した基準信号レベルをモニタして前記高周波増幅回路の温度による利得変動を監視する高周波増幅回路において、
前記温度可変型減衰器の一方の端子に直流電圧を印加し、該減衰器を経由したもう一方の端子から出力される直流電圧を前記基準信号発振器の周波数制御端子にフィードバックしたことを特徴とする高周波増幅回路。
A reference signal, which is an output of the reference signal oscillator, is injected into a high frequency amplifier circuit having a temperature variable attenuator and amplified together with an input main signal, and a reference signal level extracted from the amplified output is monitored to monitor the high frequency amplifier circuit. In a high-frequency amplifier circuit that monitors gain fluctuation due to temperature,
A DC voltage is applied to one terminal of the temperature variable attenuator, and a DC voltage output from the other terminal via the attenuator is fed back to the frequency control terminal of the reference signal oscillator. High frequency amplifier circuit.
基準信号発振器の後段にPLL回路を備え、基準信号の周波数を可変に構成したことを特徴とする請求項1又は2記載の高周波増幅回路。3. The high frequency amplifier circuit according to claim 1, wherein a PLL circuit is provided after the reference signal oscillator, and the frequency of the reference signal is variable.
JP2003199724A 2003-07-22 2003-07-22 High frequency amplifier circuit Withdrawn JP2005045306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199724A JP2005045306A (en) 2003-07-22 2003-07-22 High frequency amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199724A JP2005045306A (en) 2003-07-22 2003-07-22 High frequency amplifier circuit

Publications (1)

Publication Number Publication Date
JP2005045306A true JP2005045306A (en) 2005-02-17

Family

ID=34260396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199724A Withdrawn JP2005045306A (en) 2003-07-22 2003-07-22 High frequency amplifier circuit

Country Status (1)

Country Link
JP (1) JP2005045306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224679A (en) * 2019-05-27 2019-09-10 山东航天电子技术研究所 A kind of automatic gain control circuit with temperature-compensating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224679A (en) * 2019-05-27 2019-09-10 山东航天电子技术研究所 A kind of automatic gain control circuit with temperature-compensating

Similar Documents

Publication Publication Date Title
EP2027649B1 (en) System and method for providing a transmitter for polar modulation and power amplifier linearization
US5023937A (en) Transmitter with improved linear amplifier control
US6980786B1 (en) Adaptive receiver system that adjusts to the level of interfering signals
US4933986A (en) Gain/phase compensation for linear amplifier feedback loop
JPH09186614A (en) Transmitter with distortion correcting circuit
US9369094B2 (en) Systems and methods for improved power yield and linerization in radio frequency transmitters
US20120184234A1 (en) Simplified radio frequency receiver
JP2000286652A (en) Controller
US20070264942A1 (en) Rf transceiver and communication device using the same
KR100768684B1 (en) Cartesian loop transmitter and method of adjusting an output level of such transmitter
US7400690B2 (en) Adaptive phase controller, method of controlling a phase and transmitter employing the same
US11031912B2 (en) Self-optimising RF amplifier
JPS60121830A (en) Control method of transmission output
US5063358A (en) Ultra low noise crystal oscillator circuit
JP2005045306A (en) High frequency amplifier circuit
US6904268B2 (en) Low noise linear transmitter using cartesian feedback
KR20070045828A (en) Tuner having compensation circuit of input signal on strong electric field built-in
US5963098A (en) FM canceler loop to reduce shock and vibration effects in crystal oscillators
US6583826B1 (en) Intermediate frequency circuit in television tuner with large attenuation of audio if signal in adjacent channel
US6169447B1 (en) Stabilization of passband active filters
US6300840B1 (en) Microwave/millimeter-wave integrated circuit
JPH03255710A (en) Power amplifier
Hati et al. Low phase noise amplifier and oscillator using feed-forward technique at 10 GHz
US7058360B1 (en) Method and system for stabilizing the performance variation of a radio frequency device
JPS5920284B2 (en) Receiver AFC reference voltage correction circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003