JP2005045127A - Electromagnetic field sensitive material - Google Patents

Electromagnetic field sensitive material Download PDF

Info

Publication number
JP2005045127A
JP2005045127A JP2003279405A JP2003279405A JP2005045127A JP 2005045127 A JP2005045127 A JP 2005045127A JP 2003279405 A JP2003279405 A JP 2003279405A JP 2003279405 A JP2003279405 A JP 2003279405A JP 2005045127 A JP2005045127 A JP 2005045127A
Authority
JP
Japan
Prior art keywords
electromagnetic field
unit cell
field sensitive
functional material
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003279405A
Other languages
Japanese (ja)
Other versions
JP4581105B2 (en
Inventor
Yoji Kozuka
洋司 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2003279405A priority Critical patent/JP4581105B2/en
Publication of JP2005045127A publication Critical patent/JP2005045127A/en
Application granted granted Critical
Publication of JP4581105B2 publication Critical patent/JP4581105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic field sensitive material capable of controlling various properties such as an anisotropy, a frequency property, a reflective property or a damping property with respect to an electromagnetic wave. <P>SOLUTION: In the electromagnetic field sensitive material, a unit cell (1) of a three-dimensional structure formed by connecting a diode (6) by a conductor (5) or a resistor so as to respond to the electromagnetic waves arriving from the outside is disposed at each lattice point on the front surface of a conductive plate (9) so that various spacial lattices are formed in a crystal body. The operation of the diode is controlled by a bias voltage, and an anisotropy, a matching property, a reflective property or a damping property can be controlled with respect to the arriving electromagnetic waves by changing the crystallographic spacial layout of the unit cell. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、受動回路素子及び能動回路素子を導体や抵抗体で結線した構造の単位セルと称するものの回路素子の動作を制御することとと、単位セルの空間配置を変更することにより、静電界や静磁界、電磁波に感応する所望の特性を実現するようにした電磁界感応機能材料に関する。 The present invention provides an electrostatic field by controlling the operation of a circuit element of a passive cell element and a unit cell having a structure in which the active circuit element is connected by a conductor or a resistor, and by changing the spatial arrangement of the unit cell. The present invention relates to an electromagnetic field sensitive functional material that achieves desired characteristics sensitive to static magnetic fields and electromagnetic waves.

従来、一般に材料は、いわゆる材料の原子、分子レベルや化学組成の研究を基礎として開発されている。例えば、 EMC対策や高周波回路や電波吸収材に用いられる損失性物質として、カーボングラファイトやフェライト、強誘電体などがある(後記特許文献1参照)。また、高周波回路素子であるフィルターやサーキュレータなどを構成する材料として異方性を付与したフェライトなどがある。 Conventionally, materials are generally developed on the basis of so-called atomic, molecular level and chemical composition research. Examples of lossy substances used for EMC countermeasures, high-frequency circuits, and radio wave absorbers include carbon graphite, ferrite, and ferroelectrics (see Patent Document 1 below). Further, as a material constituting a filter, a circulator, or the like that is a high-frequency circuit element, there is a ferrite having anisotropy.

これらの材料を用いた上記EMC対策部品や高周波回路素子では誘電率や透磁率が通常周波数分散性を有しており、動作周波数は一義的に決まり、これら従来の材料で構成する限り、動作特性が特定の周波数域に限定されるという自由度のないという問題があった。   In the above EMC countermeasure parts and high frequency circuit elements using these materials, the dielectric constant and the magnetic permeability usually have frequency dispersibility, and the operating frequency is uniquely determined. There is a problem that there is no degree of freedom that is limited to a specific frequency range.

また、従来の電波吸収体は、電波吸収体近傍に放射源があるいわゆる近傍波源の電波を十分吸収することができないという問題があった。   Further, the conventional radio wave absorber has a problem that it cannot sufficiently absorb radio waves of a so-called near wave source having a radiation source in the vicinity of the radio wave absorber.

本発明は、前記問題点に鑑みてなされたものであって、到来電磁波や近傍波源の電磁波に対して、異方性、周波数特性、反射特性、減衰特性の諸特性を制御できる新しい電磁界感応機能材料を提供することを課題とする。
実願昭63−164979号(実開平2−84398号)のマイクロフィルム
The present invention has been made in view of the above problems, and is a new electromagnetic field sensitivity capable of controlling various characteristics of anisotropy, frequency characteristics, reflection characteristics, and attenuation characteristics with respect to incoming electromagnetic waves and electromagnetic waves of nearby wave sources. It is an object to provide functional materials.
Microfilm of Japanese Utility Model No. 63-164799 (Japanese Utility Model Application No. 2-84398)

上記の課題を解決するために、請求項1に係る発明は、外部からの到来電磁波に感応するように回路素子を導体又は抵抗体で結線した単位セルを集合させた電磁界感応機能材料であって、前記回路素子の動作を制御することと、前記単位セルの空間配置を変更することにより、到来電磁波に対する特性を制御できるようにしたことを特徴とする。 In order to solve the above problems, the invention according to claim 1 is an electromagnetic field sensitive functional material in which unit cells in which circuit elements are connected with a conductor or a resistor are assembled so as to be sensitive to incoming electromagnetic waves. The characteristics of the incoming electromagnetic wave can be controlled by controlling the operation of the circuit element and changing the spatial arrangement of the unit cells.

(作用)回路素子の動作を制御することにより、単位セルのインダクタンス又はキャパシタンスを変えて、単位セルを共振状態又非共振状態に制御したり、回路素子の抵抗による損失を制御したりすることができる。これにより、到来電磁波に対して、異方性、整合特性、反射特性又は減衰特性等の諸特性を制御できる。また、単位セルの配置によっては、いっそう異方性を大きくすることができる。   (Operation) By controlling the operation of the circuit element, the unit cell can be changed to a resonance state or a non-resonance state by changing the inductance or capacitance of the unit cell, or the loss due to the resistance of the circuit element can be controlled. it can. Thereby, various characteristics such as anisotropy, matching characteristics, reflection characteristics, or attenuation characteristics can be controlled with respect to the incoming electromagnetic waves. Further, the anisotropy can be further increased depending on the arrangement of the unit cells.

請求項2に係る発明は、外部からの到来電磁波に感応するように回路素子を導体又は抵抗体で結線した3次元構造の単位セルを、結晶体における各種空間格子を形成するように各格子点に配置した電磁界感応機能材料であって、前記回路素子の動作を制御することと、単位セルの結晶学的な空間配置を変更して、到来電磁波に対する特性を制御できるようにしたことを特徴とする。   According to the second aspect of the present invention, a unit cell having a three-dimensional structure in which circuit elements are connected by conductors or resistors so as to be sensitive to incoming electromagnetic waves from outside, each lattice point is formed so as to form various spatial lattices in the crystal. The electromagnetic field sensitive functional material arranged in the above, wherein the operation of the circuit element is controlled, and the crystallographic spatial arrangement of the unit cell is changed to control the characteristics with respect to the incoming electromagnetic wave. And

(作用)回路素子の動作を制御することにより、単位セルのインダクタンス又はキャパシタンスを変えて、単位セルを共振状態又非共振状態に制御したり、回路素子の抵抗による損失を制御したりすることができる。これにより、到来電磁波に対して、異方性、整合特性、反射特性又は減衰特性等の諸特性を制御できる。また、単位セルの配置を結晶体に類似させたため、結晶の光学的性質から電磁波に対する諸特性を類推できるという利点がある。   (Operation) By controlling the operation of the circuit element, the unit cell can be changed to a resonance state or a non-resonance state by changing the inductance or capacitance of the unit cell, or the loss due to the resistance of the circuit element can be controlled. it can. Thereby, various characteristics such as anisotropy, matching characteristics, reflection characteristics, or attenuation characteristics can be controlled with respect to the incoming electromagnetic waves. Further, since the arrangement of the unit cells is similar to that of the crystal, there is an advantage that various characteristics against electromagnetic waves can be inferred from the optical properties of the crystal.

請求項3は、請求項1又は2に係る発明において、前記単位セルが2次元構造であることを特徴とする。   A third aspect of the present invention is the invention according to the first or second aspect, wherein the unit cell has a two-dimensional structure.

(作用)単位セルが2次元構造であるから、薄い電磁界感応機能材料を得ることができる。   (Operation) Since the unit cell has a two-dimensional structure, a thin electromagnetic field sensitive functional material can be obtained.

請求項4は、請求項1、2又は3に係る発明において、複数の異なった特性を有する単位セルを配置することを特徴とする。   A fourth aspect is characterized in that, in the invention according to the first, second, or third aspect, a plurality of unit cells having different characteristics are arranged.

(作用)複数の異なった特性を有する単位セルによって、各種の特性を持つ電磁界感応機能材料を構成できる。
請求項5は、請求項1、2、3又は4に係る発明において、前記単位セルは他の材料の中に組み込まれて、前記他の材料が本来有している電気的な材料定数を変更出来るようにしたことを特徴とする。
(Operation) An electromagnetic field sensitive functional material having various characteristics can be constituted by a plurality of unit cells having different characteristics.
According to a fifth aspect of the present invention, in the invention according to the first, second, third, or fourth aspect, the unit cell is incorporated in another material to change an electrical material constant inherent in the other material. It is made possible to do it.

(作用)単位セルを組み込むことにより、その材料のみでは実現できない特性を得ることが可能となる。   (Operation) By incorporating the unit cell, it becomes possible to obtain characteristics that cannot be realized only by the material.

請求項6に係る発明は、請求項1、2、3、4、又は5に係る発明おいて、前記回路素子を駆動するために、電磁波、交番磁界又光を用いてワイヤレス方式で電力を供給することを特徴とする。   According to a sixth aspect of the present invention, in the invention according to the first, second, third, fourth, or fifth aspect, in order to drive the circuit element, power is supplied in a wireless manner using an electromagnetic wave, an alternating magnetic field, or light. It is characterized by doing.

(作用)制御ケーブル等を曳くことなく外部から回路素子を駆動して、電磁界感応機能材料の特性を制御できる。   (Operation) The characteristics of the electromagnetic field sensitive functional material can be controlled by driving the circuit element from the outside without using a control cable or the like.

請求項7に係る発明は、請求項1、2、3、4、5又は6に係る発明において、前記回路素子をコンピュータでプログラム制御することを特徴とする
(作用)異方性を実現したり、特定の周波数の電磁波を吸収させて、他の周波数の電磁波を反射させたりして、電磁界感応機能材料の特性を迅速容易に変更できる。
The invention according to claim 7 is the invention according to claim 1, 2, 3, 4, 5 or 6, wherein the circuit element is program-controlled by a computer. The characteristics of the electromagnetic field sensitive functional material can be changed quickly and easily by absorbing electromagnetic waves of a specific frequency and reflecting electromagnetic waves of other frequencies.

請求項8に係る発明は、請求項1、2、3、4、5、6又は7記載の電磁界感応機能材料用いて構成した電波吸収特性可変型電波吸収体に関する。   The invention according to claim 8 relates to a radio wave absorber having a variable radio wave absorption characteristic configured using the electromagnetic field sensitive functional material according to claim 1, 2, 3, 4, 5, 6 or 7.

(作用)回路素子を制御することによって、整合中心周波数を一定に保って電波吸収特性、つまり整合特性を変更したり、整合周波数を変更することが出来る。   (Operation) By controlling the circuit elements, it is possible to change the radio wave absorption characteristic, that is, the matching characteristic, or change the matching frequency while keeping the matching center frequency constant.

請求項9は、前記請求項8に記載の電波吸収特性可変型電波吸収体に対して、無変調の特定周波数の連続電磁波を照射するとともに、前記回路素子の動作を所定周波数で制御しすることにより、特定周波数の電波を吸収させたり反射させたりして、前記所定の周波数に変調された電波を再放射させる通信装置に関する。   In a ninth aspect of the invention, the radio wave absorber having variable frequency absorption characteristics according to the eighth aspect is irradiated with a non-modulated continuous electromagnetic wave having a specific frequency and the operation of the circuit element is controlled at a predetermined frequency. The present invention relates to a communication device that absorbs or reflects a radio wave of a specific frequency and re-radiates the radio wave modulated to the predetermined frequency.

(作用)。前記回路素子の動作を所定周波数で制御例えばオンオフすると、特定周波数の電磁波の反射係数を変更できる。特定周波数の電磁波をこの電波吸収体で反射させると、所定周波数で変調されることになる。   (Function). When the operation of the circuit element is controlled, for example, on / off at a predetermined frequency, the reflection coefficient of an electromagnetic wave having a specific frequency can be changed. When an electromagnetic wave having a specific frequency is reflected by this radio wave absorber, it is modulated at a predetermined frequency.

以上に述べたことから明らかなように、請求項1に係る発明は、外部からの到来電磁波に感応するように回路素子を導体又は抵抗体で結線した単位セルを集合させた電磁界感応機能材料であって、前記回路素子の動作を制御することと、前記単位セルの空間配置を変更することにより、到来電磁波に対する特性を制御できるようにしてある。このため、回路素子の動作を制御することにより、単位セルのインダクタンス又はキャパシタンスを変えて、単位セルを共振状態又非共振状態に制御したり、回路素子の抵抗による損失を制御したりすることができる。これにより、到来電磁波に対して、異方性、周波数特性、反射特性又は減衰特性等の諸特性を制御できる。また、単位セルの配置によっては、いっそう異方性を大きくすることができる。   As is clear from the above description, the invention according to claim 1 is an electromagnetic field sensitive functional material in which unit cells in which circuit elements are connected by conductors or resistors are assembled so as to be sensitive to incoming electromagnetic waves. The characteristics of incoming electromagnetic waves can be controlled by controlling the operation of the circuit elements and changing the spatial arrangement of the unit cells. Therefore, by controlling the operation of the circuit element, it is possible to change the inductance or capacitance of the unit cell to control the unit cell to the resonance state or the non-resonance state, or to control the loss due to the resistance of the circuit element. it can. Thereby, various characteristics such as anisotropy, frequency characteristics, reflection characteristics, and attenuation characteristics can be controlled with respect to the incoming electromagnetic waves. Further, the anisotropy can be further increased depending on the arrangement of the unit cells.

請求項2に係る発明は、外部からの到来電磁波に感応するように回路素子を導体又は抵抗体で結線した3次元構造の単位セルを、結晶体における各種空間格子を形成するように各格子点に配置した電磁界感応機能材料であって、前記回路素子の動作を制御することと、単位セルの結晶学的な空間配置を変更して、到来電磁波に対する特性を制御できるようにしてある。このため、回路素子の動作を制御することにより、単位セルのインダクタンス又はキャパシタンスを変えて、単位セルを共振状態又非共振状態に制御したり、回路素子の抵抗による損失を制御したりすることができる。これにより、到来電磁波に対して、異方性、周波数特性、反射特性又は減衰特性等の諸特性を制御できる。   According to the second aspect of the present invention, a unit cell having a three-dimensional structure in which circuit elements are connected by conductors or resistors so as to be sensitive to incoming electromagnetic waves from outside, each lattice point is formed so as to form various spatial lattices in the crystal. The electromagnetic field sensitive functional material arranged in the above is configured to control the operation of the circuit element and to change the crystallographic spatial arrangement of the unit cell to control the characteristics with respect to the incoming electromagnetic wave. Therefore, by controlling the operation of the circuit element, it is possible to change the inductance or capacitance of the unit cell to control the unit cell to the resonance state or the non-resonance state, or to control the loss due to the resistance of the circuit element. it can. Thereby, various characteristics such as anisotropy, frequency characteristics, reflection characteristics, and attenuation characteristics can be controlled with respect to the incoming electromagnetic waves.

また、単位セルの配置を結晶体に類似させたため、結晶の光学的性質から電磁波に対する諸特性を類推でき、この結果、設計時点で電磁界や電磁波に対し、損失の大きな媒質、カイラル状媒質又は異方性媒質を呈する材料の実現が比較的容易に想定でき、従来の材料開発に要求されていた原子、分子構造レベルにおける複雑な物性的な検討をする必要がないという実施上の大きな効果がある。   In addition, since the arrangement of the unit cells is similar to that of the crystal body, various characteristics with respect to the electromagnetic wave can be inferred from the optical properties of the crystal. As a result, the medium, the chiral medium, or the Realization of materials exhibiting anisotropic media can be assumed relatively easily, and there is a large practical effect that there is no need to conduct complicated physical properties at the atomic and molecular structure level, which was required for conventional material development. is there.

請求項3に係る発明では、単位セルが2次元構造であるから、薄い電磁界感応機能材料を得ることができ、既存の材料の表面に貼って使用できる利点がある。   In the invention according to claim 3, since the unit cell has a two-dimensional structure, a thin electromagnetic field sensitive functional material can be obtained, and there is an advantage that it can be used by pasting on the surface of an existing material.

請求項4に係る発明では、複数の異なった特性を有する単位セルを配置したから、種々の特性を持つ電磁界感応機能材料を構成できる。特に、高周波回路やEMC対策等に用いられるフェライトや、誘電体材料等では、透磁率や誘電率の値が周波数によって変わことなく、動作特性が特定の周波数域に限定されない自由度の大きな電磁界感応機能材料を得ることができる。この場合、所望の特性を得るために原子、分子構造レベルの研究から、材料の配合割合、製造過程における温度、圧力等の制御に至るまで、多大の労力を不要とすることができる。   In the invention which concerns on Claim 4, since the unit cell which has several different characteristics is arrange | positioned, the electromagnetic field sensitive functional material with various characteristics can be comprised. In particular, in ferrites and dielectric materials used for high-frequency circuits and EMC countermeasures, the magnetic permeability and dielectric constant do not change depending on the frequency, and the operation characteristics are not limited to a specific frequency range. A sensitive functional material can be obtained. In this case, in order to obtain desired characteristics, a great deal of labor can be eliminated from research on the atomic and molecular structure level to control of the blending ratio of materials, temperature, pressure, etc. in the manufacturing process.

請求項5は、前記単位セルは他の材料の中に組み込まれて、前記他の材料が本来有している電気的な材料定数を変更出来るようにしたから、その材料のみでは実現できない特性を持たせることが可能となる。   According to the fifth aspect of the present invention, the unit cell is incorporated in another material so that the electrical material constant inherent in the other material can be changed. It is possible to have it.

請求項6に係る発明では、回路素子を駆動するために、電磁波、交番磁界又光を用いてワイヤレス方式で電力を供給したから、目障りな制御ケーブル等用いることなく外部から回路素子を駆動して、電磁界感応機能材料の特性を制御でき、便利で見栄えも良い。   In the invention according to claim 6, since electric power is supplied in a wireless manner using electromagnetic waves, alternating magnetic fields or light to drive the circuit elements, the circuit elements are driven from the outside without using an obstructive control cable or the like. It can control the characteristics of electromagnetic field sensitive functional materials and is convenient and attractive.

請求項7に係る発明は、回路素子をコンピュータでプログラム制御したから、異方性を実現したり、特定の周波数の電磁波を吸収させる等の電磁界感応機能材料の特性を迅速容易に変更できる。これにより、本発明の用途が大きく拡大でき、マイクロ波、ミリ波のフィルターやサーキュレータ等、各種高周波デバイス、センサやロボット、各種通信機器など電磁環境に関連した機器のみならず、広く産業界一般における電磁界感応機能材料として利用可能である。   In the invention according to claim 7, since the circuit element is program-controlled by the computer, the characteristics of the electromagnetic field sensitive functional material such as realizing anisotropy and absorbing electromagnetic waves of a specific frequency can be changed quickly and easily. As a result, the application of the present invention can be greatly expanded, not only in devices related to the electromagnetic environment, such as various high-frequency devices, sensors, robots, various communication devices, such as microwave and millimeter wave filters and circulators, but also widely used in the general industry. It can be used as an electromagnetic field sensitive functional material.

請求項8に係る発明では、電磁界感応機能材料用いて構成した電波吸収特性可変型電波吸収体であるから、回路素子を制御することによって、電波吸収特性を変更したり、整合周波数を変更することが出来る。   Since the invention according to claim 8 is a radio wave absorber having a variable radio wave absorption characteristic configured using an electromagnetic field sensitive functional material, the radio wave absorption characteristic is changed or the matching frequency is changed by controlling a circuit element. I can do it.

請求項9は、電波吸収特性可変型電波吸収体に対して、無変調の特定周波数の連続電磁波を照射するとともに、前記回路素子の動作を所定周波数で制御することにより、特定周波数の電波の反射係数を変化させ、前記所定の周波数に変調された電波を再放射させることができる。   According to a ninth aspect of the present invention, a radio wave absorber having a variable frequency absorption characteristic is irradiated with a continuous electromagnetic wave having a specific frequency without modulation, and the operation of the circuit element is controlled at a predetermined frequency, thereby reflecting the radio wave of the specific frequency. By changing the coefficient, the radio wave modulated to the predetermined frequency can be re-radiated.

図1−図3は、本発明の基本概念を説明するためのもので、3次元構造の単位セル(1)を例示している。この単位セル(1)は、抵抗やコンデンサ、コイル、各種ダイオード、などの受動回路素子及びトランジスタ等の能動回路素子(3、4)を導体や抵抗体から成る線(2)に結線して、立方体構造に構成された3次元構造を有する。   1 to 3 illustrate a basic concept of the present invention and illustrate a unit cell (1) having a three-dimensional structure. This unit cell (1) connects a passive circuit element such as a resistor, a capacitor, a coil, various diodes, and an active circuit element (3, 4) such as a transistor to a line (2) made of a conductor or a resistor, It has a three-dimensional structure configured in a cubic structure.

図1は、立方体の各頂点に受動または能動型の3端子の回路素子(3)が配置された単位セル(1)を表している。この回路素子としてはダイオード等がある。図2は、受動または能動型の2端子素子(4)から成る単位セル(1)の例である。図3は、3端子素子(3)とを2端子素子(4)と組み合わせて、図1と図2の単位セル(1)を組み合わせた単位セルの例である。   FIG. 1 shows a unit cell (1) in which a passive or active three-terminal circuit element (3) is arranged at each vertex of a cube. Examples of the circuit element include a diode. FIG. 2 shows an example of a unit cell (1) composed of a passive or active two-terminal element (4). FIG. 3 is an example of a unit cell obtained by combining the three-terminal element (3) with the two-terminal element (4) and combining the unit cell (1) of FIGS.

ここで、単位セル(1)とは、立方体に限るものではなく、直方体、球形等の適宜形状の3次元構造ばかりでなく、2次元構造も可能である。勿論、2次元構造の単位セルと3次元構造の単位セルを組み合わせて使用することも可能である。また、回路素子(3、4)の動作、すなわち単位セル(1)の動作は、コンピュータと連結し、プログラム制御して本機能材料の機能性を高めるようにしている。   Here, the unit cell (1) is not limited to a cube, but can be a two-dimensional structure as well as a three-dimensional structure having an appropriate shape such as a rectangular parallelepiped or a sphere. Of course, a unit cell having a two-dimensional structure and a unit cell having a three-dimensional structure can be used in combination. In addition, the operation of the circuit elements (3, 4), that is, the operation of the unit cell (1) is connected to a computer and controlled by a program to enhance the functionality of the functional material.

図4に、図2の形態に属する単位セルの別の実施例を示す。図4の単位セル1は、電波吸収機能を有する材料を構成することを目的とした一実施例で、立方体形状に導体線(5)を結線し、それぞれの頂点間にダイオード(6)と、マイクロチップ型の抵抗(7)を取り付けた単位セルの構成例である。このように、単位セル(1)を構成する回路素子の配置は必ずしも対称でなくてもよい。また、図4の例においては、回路素子であるダイオード(6)のバイアス電圧を制御することにより、ダイオード(6)の順方向抵抗等の導通状態を変更できるようになっている。ダイオード(6)の導通状態又は遮断状態に制御することにより、単位セル(1)を共振状態又非共振状態に制御したり、ダイオード(6)の抵抗による損失を制御したりすることができる。このバイアス電圧は、図示はしていないが、電源供給線で供給してもよいが、光感受性素子を用いて外部から光で制御したり、交流磁界によって単位セル(1)内に誘導起電力を生じさせるようなワイヤレス方式で供給してもよい。   FIG. 4 shows another embodiment of the unit cell belonging to the form of FIG. The unit cell 1 shown in FIG. 4 is an embodiment intended to constitute a material having a radio wave absorption function. In the unit cell 1, conductor wires (5) are connected in a cubic shape, and a diode (6) is connected between the vertices. It is a structural example of a unit cell to which a microchip type resistor (7) is attached. As described above, the arrangement of the circuit elements constituting the unit cell (1) is not necessarily symmetric. In the example of FIG. 4, the conduction state such as the forward resistance of the diode (6) can be changed by controlling the bias voltage of the diode (6) which is a circuit element. By controlling the diode (6) to be in a conductive state or a cut-off state, the unit cell (1) can be controlled to a resonance state or a non-resonance state, and loss due to the resistance of the diode (6) can be controlled. Although not shown, this bias voltage may be supplied by a power supply line. However, the bias voltage may be controlled by light from the outside using a photosensitive element, or induced electromotive force in the unit cell (1) by an AC magnetic field. You may supply by the wireless system which produces.

本発明は、上記のような単位セル(1)を基本的には通常よく知られているブラベー格子と呼ばれる結晶の空間格子形態に従って、受動回路素子及び能動回路素子(3、4)を配置することにより、機能材料を構成している。図5及び6にブラベー格子の例を示す。図5が単純立方格子、図6が体心立方格子の例であるが、これに対応する単位セル(1)の構成を、それぞれ図7及び図8に示す。すなわち、図7は、ハッチングを施した単位セル(1)群、つまり結晶の基本格子に相当する部分に着目すると、単位セル(1)が単純立方状に配置されており、図8は、体心立方状に配置されて、本発明の電磁界感応機能性材料の構成される。さらに、これらの空間格子配列において、単位セル(1)相互の間隔が零の場合、つまり図9に示すような単位セルが相互に結合してもよく、この場合は、結晶理論と類似させて最密構造体と呼ぶ電磁界感応機能性材料が構成される。   The present invention arranges the passive circuit elements and the active circuit elements (3, 4) in the unit cell (1) as described above according to a spatial lattice form of a crystal called a Bravey lattice which is generally well known. This constitutes a functional material. 5 and 6 show examples of Bravay lattices. FIG. 5 shows an example of a simple cubic lattice, and FIG. 6 shows an example of a body-centered cubic lattice. The configuration of the unit cell (1) corresponding to this is shown in FIGS. 7 and 8, respectively. That is, in FIG. 7, when attention is paid to the hatched unit cell (1) group, that is, the portion corresponding to the basic lattice of the crystal, the unit cells (1) are arranged in a simple cubic shape, and FIG. The electromagnetic field sensitive functional material according to the present invention is arranged in a center cubic shape. Furthermore, in these spatial lattice arrangements, when the interval between unit cells (1) is zero, that is, unit cells as shown in FIG. 9 may be coupled to each other. An electromagnetic field sensitive functional material called a close-packed structure is constructed.

もちろん、単位セル(1)のランダムな配置も許されることは当然である。この場合は、単位セル(1)として球状等適宜形状のものが使用できる。   Of course, the random arrangement of the unit cells (1) is also allowed. In this case, a unit cell (1) having an appropriate shape such as a spherical shape can be used.

図10は、単位セル(1)の配置に関する別の実施例を示したもので、電波吸収体として用いられるものである。単位セル(1)としては、図4に示したものと同様に立方体形状に導体(5)を結線し、それぞれの頂点間にダイオード(6)又はマイクロチップ型の抵抗(7)を取り付けた単位セル(1)の構成を採用している。本実施例では、この構成の単位セル(1)を、図10に示したように、導体板(9)から一定間隔dを保つ図示しないスペーサーの面状に配置するとともに、相互の間隔を一定に保って周期的に配置して、電波吸収体を構成している。これは、導体板(9)に対する鏡像を考えれば、単位セル(1)で構成される基本格子が正方晶単純格子に対応していることになる。もちろん、単位セル(1)は、例えば導体板(9)の表面側に配置するばかりでなく、適宜材料の裏面や内部に配置することも可能である。   FIG. 10 shows another embodiment relating to the arrangement of the unit cells (1), which is used as a radio wave absorber. The unit cell (1) is a unit in which conductors (5) are connected in a cubic shape as shown in FIG. 4, and a diode (6) or a microchip type resistor (7) is attached between the vertices. The configuration of the cell (1) is adopted. In this embodiment, as shown in FIG. 10, the unit cell (1) having this configuration is arranged in the form of a spacer (not shown) that keeps a constant distance d from the conductor plate (9), and the mutual distance is constant. The electromagnetic wave absorber is configured by periodically arranging the electromagnetic wave absorbers. Considering a mirror image of the conductor plate (9), this means that the basic lattice composed of the unit cells (1) corresponds to a tetragonal simple lattice. Of course, the unit cell (1) can be disposed not only on the front surface side of the conductor plate (9), for example, but also on the back surface or inside of the material as appropriate.

この図10の例における電波吸収体の可能性を実証するために、図11に示したような単位セル(1)を製作して、実験した。この実験では、各ダイオード(6)に等電圧の順方向バイアス電圧を与え、このバイアス電圧を変化させたながら反射係数を測定した。以下の実験における、単位セル(1)各部の寸法は、a1=0.7mm、a2=1.2mm、b1=8.3mm、b2=27.9mm、b3=4.0mm、c=1.2mm、導体線(5)の厚さ=1.6mm、抵抗(7)=100Ωである。この結果、図12に示したように、各ダイオード(6)のバイアス電圧を変えることによって、電波反射量と整合中心周波数を変化させることが出来ることが確認できた。   In order to verify the possibility of the radio wave absorber in the example of FIG. 10, a unit cell (1) as shown in FIG. 11 was manufactured and experimented. In this experiment, an equal forward bias voltage was applied to each diode (6), and the reflection coefficient was measured while changing the bias voltage. In the following experiment, the dimensions of each part of the unit cell (1) are as follows: a1 = 0.7 mm, a2 = 1.2 mm, b1 = 8.3 mm, b2 = 27.9 mm, b3 = 4.0 mm, c = 1.2 mm The thickness of the conductor wire (5) = 1.6 mm and the resistance (7) = 100Ω. As a result, as shown in FIG. 12, it was confirmed that the radio wave reflection amount and the matching center frequency can be changed by changing the bias voltage of each diode (6).

本実施例では、3次元構造の単位セル(1)によって、電界に起因する電流、磁界に起因する電流、電磁波の進行方向前後の位相差に起因する電流に対して、ダイオード(6)が抵抗になるため、背面部のマイクロチップ型抵抗(7)と相まって、吸収特性を効果的に制御できる。また、水平偏波にも垂直偏波にも、その他どのような電磁界にも効率良く感応するので、どのような電波でも、又は、近傍波源における電波でも吸収できるという従来にない電波吸収体も実現できる。   In this embodiment, the unit cell (1) having a three-dimensional structure causes the diode (6) to resist the current caused by the electric field, the current caused by the magnetic field, and the current caused by the phase difference before and after the traveling direction of the electromagnetic wave. Therefore, the absorption characteristic can be effectively controlled in combination with the microchip resistor (7) on the back surface. In addition, because it is sensitive to both horizontal and vertical polarizations and any other electromagnetic field, there is also an unprecedented wave absorber that can absorb any radio wave or radio waves from nearby sources. realizable.

図13に示したように、ダイオード(6)を単位セル(1)における表面側にだけ装荷した場合は、図14に示したように、ダイオード(6)の順方向バイアス電圧の変化に対して、電波吸収量と整合中心周波数が変化した。   As shown in FIG. 13, when the diode (6) is loaded only on the surface side of the unit cell (1), the forward bias voltage change of the diode (6) as shown in FIG. The amount of radio wave absorption and the matching center frequency have changed.

図15に示したように、ダイオード(6)を単位セル(1)の奥行き方向だけに装荷した場合は、図16及び図17に示したように、ダイオード(6)の順方向バイアス電圧の変化に対して、整合中心周波数をほぼ一定に保って、電波吸収量だけが変化した。これにより、電波吸収特性可変型の電波吸収体が実現できる。また、単位セル(1)と導体板(9)との間隔dが図16では12mm、図17では3mmであり、この間隔dを変えると、整合中心周波数を変化することが分かる。   As shown in FIG. 15, when the diode (6) is loaded only in the depth direction of the unit cell (1), the forward bias voltage change of the diode (6) is changed as shown in FIGS. On the other hand, only the amount of radio wave absorption changed with the matching center frequency kept substantially constant. Thereby, a radio wave absorber having a variable radio wave absorption characteristic can be realized. Further, the distance d between the unit cell (1) and the conductor plate (9) is 12 mm in FIG. 16 and 3 mm in FIG. 17, and it can be seen that the matching center frequency changes when this distance d is changed.

次に図18は、さらに別の実施例である。同図に示すように、カーボニル鉄(10)中に周期的に単位セル(1)を配置したものである。単位セル(1)は、前後に配置されたI字形の導体線(5)と、前面側の導体線(5)中に挿入されたダイオード(6)と、背面側の導体線(5)中に挿入されたマイクロチップ型の抵抗(7)と、前後の導体線(5)を連結するダイオード(6)とから成っている。この場合も、ダイオード(6)を単位セル(1)における表面側にだけ装荷する場合と奥行き方向だけにダイオード(6)を装荷する場合とがある。   Next, FIG. 18 shows still another embodiment. As shown in the figure, unit cells (1) are periodically arranged in carbonyl iron (10). The unit cell (1) includes an I-shaped conductor wire (5) arranged in front and back, a diode (6) inserted in the conductor wire (5) on the front side, and a conductor wire (5) on the back side. It comprises a microchip type resistor (7) inserted in and a diode (6) connecting the front and rear conductor wires (5). Also in this case, there are a case where the diode (6) is loaded only on the surface side of the unit cell (1) and a case where the diode (6) is loaded only in the depth direction.

ダイオード(6)を表面側にだけ装荷した場合にダイオードの順方向バイアスを変化させたときの電波吸収特性を図19に示す。同図中の黒丸印は、ダイオードにバイアス電圧を印加しない場合である。このバイアス電圧を変化させることによって、同図の黒色三角形で示すように、特に3GHz近傍で反射係数が減少し、電波吸収特性を有することが分かる。このことは、本来このカーボニル鉄が有する材料定数を見掛け上変更したことに相当する。ダイオードのバイアス電圧を制御する手段によって、整合中心周波数を一定に保って電波吸収特性、つまり整合特性を変更したり、整合周波数を変更することが出来る電波吸収体が構成できる。   FIG. 19 shows the radio wave absorption characteristics when the forward bias of the diode is changed when the diode (6) is loaded only on the surface side. The black circles in the figure indicate the case where no bias voltage is applied to the diode. By changing this bias voltage, as shown by the black triangle in the figure, it can be seen that the reflection coefficient decreases particularly in the vicinity of 3 GHz, and it has radio wave absorption characteristics. This corresponds to an apparent change in the material constant inherent to the carbonyl iron. By means of controlling the bias voltage of the diode, it is possible to construct a radio wave absorber that can change the radio wave absorption characteristic, that is, the matching characteristic, or change the matching frequency while keeping the matching center frequency constant.

本発明の電磁界感応機能材料は、種々の形質を発現する生物細胞に見立てた受動回路及び能動回路素子を導体や抵抗体で結線した構造から成る単位セル(1)と、固体構成の基本概念である結晶格子構造という、生物および物質の基本概念を融合するという視点からの発明であって、到来電磁界や近傍電磁界に感応し、異方性を示したり、電磁エネルギーを吸収したり反射したりする作用を有する新しい機能材料とである。   The electromagnetic field sensitive functional material of the present invention includes a unit cell (1) composed of a structure in which a passive circuit and an active circuit element that are regarded as biological cells expressing various traits are connected by a conductor or a resistor, and a basic concept of a solid structure. It is an invention from the viewpoint of merging the basic concept of organisms and substances called crystal lattice structure, which is sensitive to incoming electromagnetic fields and nearby electromagnetic fields, showing anisotropy, absorbing electromagnetic energy and reflecting And a new functional material having a function to act.

ところで、本発明の電磁界感応機能材料は、電波吸収体として用いられるだけではない。   By the way, the electromagnetic field sensitive functional material of the present invention is not only used as a radio wave absorber.

たとえば、電波吸収特性可変型の電波吸収体に対して、無変調の特定周波数の連続電磁波を照射するとともに、前記回路素子の動作を所定周波数で制御することにより、特定周波数の電波の反射係数を変化させて、前記所定の周波数に変調された電波を再放射させる通信装置としても使用できる。   For example, a radio wave absorber having a variable radio wave absorption characteristic is irradiated with a continuous electromagnetic wave having a specific frequency without modulation, and the reflection coefficient of the radio wave with a specific frequency is controlled by controlling the operation of the circuit element at a predetermined frequency. It can also be used as a communication device that changes and re-radiates the radio wave modulated to the predetermined frequency.

また、本発明の電磁界感応機能材料は、カイラル媒質や各種異方性や、所望の周波数特性や反射特性、減衰特性などを実現することが出来るため、これらの特性に基づく手段でマイクロ波やミリ波におけるフィルタやサーキュレータ、アイソレータや可変型アッテネータ、可変整合負荷など多くの電磁波デバイスを構成することが出来る。   Further, the electromagnetic field sensitive functional material of the present invention can realize a chiral medium, various anisotropies, desired frequency characteristics, reflection characteristics, attenuation characteristics, and the like. Many electromagnetic wave devices such as filters, circulators, isolators, variable attenuators, and variable matching loads in millimeter waves can be configured.

さらに、各単位セル(1)の特性をコンピュータでプログラム制御するとともに、電波吸収体にアンテナを設けると、特定周波数の到来電波のみを吸収できるので、その特定周波数の電波が検出可能なセンサとすることができる。   Furthermore, when the characteristics of each unit cell (1) are program-controlled by a computer and an antenna is provided in the radio wave absorber, only incoming radio waves of a specific frequency can be absorbed, so that a sensor capable of detecting radio waves of the specific frequency is obtained. be able to.

本発明の電磁界感応機能材料を構成する単位セルを示す図である。It is a figure which shows the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記単位セルの別の例を示す図である。It is a figure which shows another example of the said unit cell. 前記単位セルのさらに別の例を示す図である。It is a figure which shows another example of the said unit cell. 前記単位セルのさらに別の例を示す図である。It is a figure which shows another example of the said unit cell. 結晶における単純立方格子を示す図である。It is a figure which shows the simple cubic lattice in a crystal | crystallization. 結晶における体心立方格子を示す図である。It is a figure which shows the body center cubic lattice in a crystal | crystallization. 単位セルの集合体の例を示す図である。It is a figure which shows the example of the aggregate | assembly of a unit cell. 単位セルの集合体の別の例を示す図である。It is a figure which shows another example of the aggregate | assembly of a unit cell. 単位セルの集合体のさらに別の例を示す図である。It is a figure which shows another example of the aggregate | assembly of a unit cell. 単位セルの集合体からなる電波吸収体の構成を示す図である。It is a figure which shows the structure of the electromagnetic wave absorber which consists of an aggregate | assembly of a unit cell. 別の単位セルの集合体からなる電波吸収体の構成を示す図である。It is a figure which shows the structure of the electromagnetic wave absorber which consists of an aggregate | assembly of another unit cell. 図11に示した単位セルの集合体からなる電波吸収体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of the electromagnetic wave absorber which consists of an aggregate | assembly of the unit cell shown in FIG. さらに別の単位セルの集合体からなる電波吸収体の構成を示す図である。It is a figure which shows the structure of the electromagnetic wave absorber which consists of an aggregate | assembly of another unit cell. 図13に示した単位セルの集合体からなる電波吸収体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of the electromagnetic wave absorber which consists of an aggregate | assembly of the unit cell shown in FIG. さらに別の単位セルの集合体からなる電波吸収体の構成を示す図である。It is a figure which shows the structure of the electromagnetic wave absorber which consists of an aggregate | assembly of another unit cell. 図15に示した単位セルの集合体からなる電波吸収体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of the electromagnetic wave absorber which consists of an aggregate | assembly of the unit cell shown in FIG. 図15に示した単位セルの位置を変えた集合体からなる電波吸収体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of the electromagnetic wave absorber which consists of an aggregate | assembly which changed the position of the unit cell shown in FIG. さらに別の単位セルの集合体からなる電波吸収体の構成を示す図である。It is a figure which shows the structure of the electromagnetic wave absorber which consists of an aggregate | assembly of another unit cell. 図18に示した単位セルの集合体からなる電波吸収体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of the electromagnetic wave absorber which consists of an aggregate | assembly of the unit cell shown in FIG.

符号の説明Explanation of symbols

1 単位セル
2 導体又は抵抗体
3 3端子回路素子
4 2端子回路素子
5 導体線
6 ダイオード
7 抵抗
8 スペーサー
9 導体板
10 カーボニル鉄
1 unit cell 2 conductor or resistor 3 3 terminal circuit element 4 2 terminal circuit element 5 conductor wire 6 diode 7 resistor 8 spacer 9 conductor plate 10 carbonyl iron

Claims (9)

外部からの到来電磁波に感応するように回路素子を導体又は抵抗体で結線した単位セルを集合させた電磁界感応機能材料であって、前記回路素子の動作を制御することと、前記単位セルの空間配置を変更することにより、到来電磁波に対する特性を制御できるようにしたことを特徴とする電磁界感応機能材料。   An electromagnetic field sensitive functional material in which unit cells in which circuit elements are connected with conductors or resistors so as to be sensitive to incoming electromagnetic waves from outside are assembled, and controls the operation of the circuit elements; An electromagnetic field sensitive functional material characterized in that characteristics of incoming electromagnetic waves can be controlled by changing the spatial arrangement. 外部からの到来電磁波に感応するように回路素子を導体又は抵抗体で結線した3次元構造の単位セルを、結晶体における各種空間格子を形成するように各格子点に配置した電磁界感応機能材料であって、前記回路素子の動作を制御することと、単位セルの結晶学的な空間配置を変更して、到来電磁波に対する特性を制御できるようにしたことを特徴とする電磁界感応機能材料。   An electromagnetic field sensitive functional material in which unit cells of a three-dimensional structure in which circuit elements are connected by conductors or resistors so as to be sensitive to incoming electromagnetic waves from outside are arranged at each lattice point so as to form various spatial lattices in the crystal. An electromagnetic field sensitive functional material characterized by controlling the operation of the circuit element and changing the crystallographic spatial arrangement of the unit cell so as to control the characteristics with respect to the incoming electromagnetic wave. 前記単位セルが2次元構造であることを特徴とする請求項1に記載の電磁界感応機能材料。   The electromagnetic field sensitive functional material according to claim 1, wherein the unit cell has a two-dimensional structure. 複数の異なった特性を有する単位セルを配置することを特徴とする請求項1、2又は3に記載の電磁界感応機能材料。   The electromagnetic field sensitive functional material according to claim 1, 2 or 3, wherein a plurality of unit cells having different characteristics are arranged. 前記単位セルを他の材料の中に組み込んで、前記他の材料が本来有している電気的な材料定数を変更出来るようにしたことを特徴とする請求項1、2、3又は4に記載の電磁界感応機能材料。   5. The unit cell is incorporated in another material so that an electrical material constant inherent to the other material can be changed. Electromagnetic field sensitive functional material. 前記回路素子を駆動するために、電磁波、交番磁界又光を用いてワイヤレス方式で電力を供給することを特徴とする請求項1、2、3、4又は5に記載の電磁界感応機能材料。   6. The electromagnetic field sensitive functional material according to claim 1, wherein power is supplied in a wireless manner using electromagnetic waves, alternating magnetic fields, or light to drive the circuit elements. 前記回路素子をコンピュータでプログラム制御することを特徴とする請求項1、2、3、4、5又は6に記載の電磁界感応機能材料。   The electromagnetic field sensitive functional material according to claim 1, 2, 3, 4, 5, or 6, wherein the circuit element is program-controlled by a computer. 前記請求項1、2、3、4、5、6又は7に記載の電磁界感応機能材料用いて構成した電波吸収特性可変型電波吸収体。   A radio wave absorber having a variable radio wave absorption characteristic configured using the electromagnetic field sensitive functional material according to claim 1, 2, 3, 4, 5, 6 or 7. 前記請求項8に記載の電波吸収特性可変型電波吸収体に対して、無変調の特定周波数の連続電磁波を照射するとともに、前記回路素子の動作を所定周波数で制御しすることにより、特定周波数の電波を吸収させたり反射させたりして、前記所定の周波数に変調された電波を再放射させる通信装置。   The radio wave absorber having variable frequency characteristics according to claim 8 is irradiated with a continuous electromagnetic wave having a specific frequency without modulation, and the operation of the circuit element is controlled at a predetermined frequency. A communication device that absorbs or reflects radio waves and re-radiates the radio waves modulated to the predetermined frequency.
JP2003279405A 2003-07-24 2003-07-24 Electromagnetic field sensitive functional body Expired - Fee Related JP4581105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279405A JP4581105B2 (en) 2003-07-24 2003-07-24 Electromagnetic field sensitive functional body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279405A JP4581105B2 (en) 2003-07-24 2003-07-24 Electromagnetic field sensitive functional body

Publications (2)

Publication Number Publication Date
JP2005045127A true JP2005045127A (en) 2005-02-17
JP4581105B2 JP4581105B2 (en) 2010-11-17

Family

ID=34265516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279405A Expired - Fee Related JP4581105B2 (en) 2003-07-24 2003-07-24 Electromagnetic field sensitive functional body

Country Status (1)

Country Link
JP (1) JP4581105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329422A (en) * 2006-06-09 2007-12-20 Tokai Univ Electromagnetic field sensitive functional material
JP2019128249A (en) * 2018-01-24 2019-08-01 Tdk株式会社 Radio wave reflection box

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207098A (en) * 1985-03-12 1986-09-13 三菱重工業株式会社 Characteristic varying type radio wave absorbing body
JPS63204799A (en) * 1987-02-20 1988-08-24 日本電気株式会社 Wave absorber
JPH0198974A (en) * 1987-10-12 1989-04-17 Sanki Denshi Kogyo Kk Electromagnetic field measuring instrument
JPH08116197A (en) * 1994-10-13 1996-05-07 Nippon Sheet Glass Co Ltd Radio-wave absorptive structure of transparent plate, window member and frame
WO1998015161A1 (en) * 1996-10-04 1998-04-09 Matsushita Electric Industrial Co., Ltd. Electromagnetic field shielding device
JPH11126992A (en) * 1997-10-23 1999-05-11 Shimizu Corp Electromagnetic wave shielded building

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207098A (en) * 1985-03-12 1986-09-13 三菱重工業株式会社 Characteristic varying type radio wave absorbing body
JPS63204799A (en) * 1987-02-20 1988-08-24 日本電気株式会社 Wave absorber
JPH0198974A (en) * 1987-10-12 1989-04-17 Sanki Denshi Kogyo Kk Electromagnetic field measuring instrument
JPH08116197A (en) * 1994-10-13 1996-05-07 Nippon Sheet Glass Co Ltd Radio-wave absorptive structure of transparent plate, window member and frame
WO1998015161A1 (en) * 1996-10-04 1998-04-09 Matsushita Electric Industrial Co., Ltd. Electromagnetic field shielding device
JPH11126992A (en) * 1997-10-23 1999-05-11 Shimizu Corp Electromagnetic wave shielded building

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329422A (en) * 2006-06-09 2007-12-20 Tokai Univ Electromagnetic field sensitive functional material
JP4761246B2 (en) * 2006-06-09 2011-08-31 学校法人東海大学 Electromagnetic field sensitive functional body
JP2019128249A (en) * 2018-01-24 2019-08-01 Tdk株式会社 Radio wave reflection box

Also Published As

Publication number Publication date
JP4581105B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
De Ponti et al. Graded elastic metasurface for enhanced energy harvesting
Oliveri et al. Reconfigurable electromagnetics through metamaterials—A review
RU2524835C2 (en) Surface and waveguide metamaterials
US8299877B2 (en) Resonator for wireless power transmission
Turpin et al. Reconfigurable and tunable metamaterials: a review of the theory and applications
Lindell et al. Realization of the PEMC boundary
KR101589190B1 (en) Linear inductive position sensor
JP5581526B2 (en) 3D metamaterial
CN102130377B (en) Three-frequency medium resonant antenna with function of coaxial feed
CN104064840B (en) Miniaturization band resistance type frequency-selective surfaces
Lindell et al. Losses in the PEMC boundary
Mohammadi et al. Backfire-to-endfire scanning capability of a balanced metamaterial structure based on slotted ferrite-filled waveguide
Phon et al. Dynamically self-reconfigurable multifunctional all-passive metasurface
US7030834B2 (en) Active magnetic radome
WO2015129757A1 (en) Non-reciprocal transmission line device
US7088308B2 (en) Feedback and control system for radomes
CN109859936A (en) Inductor arrangement with lightweight construction
Wongkasem et al. Group theory based design of isotropic negative refractive index metamaterials
JP2005045127A (en) Electromagnetic field sensitive material
Sigalov et al. Manipulation of the radiation characteristics of a patch antenna by small ferrite disks inserted in its cavity domain
CN106953149B (en) Microwave isolator based on ferrite magnetic linkage
JP4542827B2 (en) Electromagnetic field sensitive functional body
JP6082938B2 (en) 3D metamaterial
JP4761246B2 (en) Electromagnetic field sensitive functional body
Glybovski et al. Capacitively-loaded metasurfaces and their application in magnetic resonance imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

R150 Certificate of patent or registration of utility model

Ref document number: 4581105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees