JP2005044946A - Ferrite core and its manufacturing method, and common mode noise filter using the same - Google Patents

Ferrite core and its manufacturing method, and common mode noise filter using the same Download PDF

Info

Publication number
JP2005044946A
JP2005044946A JP2003202033A JP2003202033A JP2005044946A JP 2005044946 A JP2005044946 A JP 2005044946A JP 2003202033 A JP2003202033 A JP 2003202033A JP 2003202033 A JP2003202033 A JP 2003202033A JP 2005044946 A JP2005044946 A JP 2005044946A
Authority
JP
Japan
Prior art keywords
leg
ferrite core
electrode
plating
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202033A
Other languages
Japanese (ja)
Other versions
JP4409225B2 (en
Inventor
Masamichi Mamiya
正道 真宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003202033A priority Critical patent/JP4409225B2/en
Priority to US10/897,966 priority patent/US7212093B2/en
Priority to CNB2004100589031A priority patent/CN100336141C/en
Publication of JP2005044946A publication Critical patent/JP2005044946A/en
Application granted granted Critical
Publication of JP4409225B2 publication Critical patent/JP4409225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when forming electrodes, plating grows, resulting in a decline in insulation resistance between the electrodes and in an increase in frequent defects of short circuits between the electrodes. <P>SOLUTION: A ferrite core 6 has such a structure that sword guard-like portions 1 are formed on both ends of a winding core 4, with a plurality of legs 2 formed continuously with each sword guard-like portion 1, and an electrode 3 is formed in an end on the bottom side of each leg 2. In the ferrite core 6, each leg 2 is tapered toward the bottom face thereof, and a ridgeline on the side face of each leg 2 is formed into a curved surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高周波信号を扱う各種電子機器のコモンモードノイズ対策に適合するフェライトコアとその製造方法、および差動伝送回路等に用いるコモンモードノイズフィルターに関する。
【0002】
【従来の技術】
従来、電源ラインの不要輻射対策、高周波信号のコモンモードノイズ対策にコモンモードノイズフィルターが利用されている。
【0003】
このコモンモードノイズフィルターは、図3に示すように巻芯部4の両端に鍔部1と、該鍔部1に連続する複数の脚部2とを備えてなるフェライト磁器の脚部2の底面側の端部に電極部3を形成してフェライトコア6を得、該フェライトコア6の巻芯部4にバイファイラ巻等により複数の導線を数ターンから数十ターン巻回して、さらに導線の巻き始めの先端と巻終わりの端末を脚部2の底面側の電極部3に各々半田付けや熱圧着等により導電接続した構造となっている。
【0004】
上記コモンモードノイズフィルターに用いられるフェライト磁器に電極3を形成する場合には、ディッピングやスクリーン印刷、転写などの方法を用いてAgやAgPdなどの厚膜を印刷して焼成を行い、次にその厚膜上にNiやCu、Sn、SnPb、Auなどを用途、要求に合わせて幾層かメッキ処理にて作製する。このメッキ処理は、厚膜印刷を行ったフェライト磁器を作製したい層の成分の溶けたメッキ液に浸して電流を流すことによりフェライト磁器に形成された厚膜上に所定のメッキ層が形成され、その際、フェライト磁器に付着したメッキ液を洗浄することで形成される。
【0005】
例えば、このようなコモンモードノイズフィルターは、2本の導線に同相電流が流れる場合は、磁束は足し合わされインピーダンスが大きくなる。逆に、2本の導線に逆相電流が流れる場合は、磁束は打ち消されインピーダンスはほとんど発生しない。このように、コモンモードノイズフィルターは、同相電流が流れにくく、逆相電流は流れやすいというフィルター機能を持つ電子部品である。
【0006】
また、このコモンモードノイズフィルターが使われる情報通信機器分野では、部品に対する小型、軽量化の要求がある。その要求にしたがい、コモンモードノイズフィルターのサイズも、実装時の面積である略四角形のサイズが、縦3.2mm、横1.6mmである3216、縦2.5mm、横2.0mmである2520、同様に2012、1608、1210と小型化にシフトしてきている。
【0007】
そこで、特許文献1では、図3に示すように、フェライトコアにおける各脚部2のすべての稜線部に曲面体を形成することが提案されている。
【0008】
また、各脚部2の曲面体の曲率半径は、0.2〜0.3mmであり、4個の脚部2の巻芯部4側には、いずれも直立方向に対して30〜70°の傾斜面8を備えていることも特徴とされている。
【0009】
上記の提案によれば、脚部2の全ての稜線部に曲率半径0.2mm程度の曲面体を形成したことにより、稜線部による導線の断線や短絡といった問題を防止できるとされている。また、脚部2の巻芯部4側に、傾斜面8を形成することにより、巻芯部4に巻回されたバイファイラ巻きの導線の電極3への接続をより緩やかな角度で行うことが可能となり、これにより、より信頼性の高いコモンモードノイズフィルターとすることが示されている。
【0010】
【特許文献1】
特開2002−329618号公報
【0011】
【発明が解決しようとする課題】
しかしながら、このようなコモンモードノイズフィルターが使われる情報通信機器分野では、機器の小型化に伴い、部品の小型、軽量化の要求があり、巻線型コモンモードノイズフィルターでも、実装時の略四角形のサイズが、縦3.2mm横1.6mmのサイズから、同様に縦2.5mm横2.0mm、縦2.0mm横1.2mm、縦1.6mm横0.8mm、もしくは、縦1.2mm横1.0mmと小型化にシフトしてきている。
【0012】
ここで、上記特許文献1に示すようなフェライトコアを用いたコモンモードノイズフィルターでは、各脚部2の稜線部を曲面状としているものの、その曲率半径が大きく、また脚部2は巻芯部4側から底面に向かって同じ大きさであるため、脚部2に電極3を作成する際に発生するメッキの伸びを効率的に抑えることはできない。これは電荷が稜線部に集中しやすい性質を有しているためである。さらに、メッキ層を電界メッキにて形成する際、電極部3の厚膜に効率よく電荷が集中しない。そのため、メッキが電極部3の厚膜上に成形されにくく、その分、分散した電荷は曲面を有する稜線部に集中し易くなり、メッキの伸びを誘発している。
【0013】
このメッキの伸びは、小型化に伴って各脚部2の電極部3間の距離が狭くなると、絶縁性を確保できないという問題を招くこととなる。即ち、各脚部2の底面側に電極部3を形成すると、図4に示す通り、電極部3を形成する際に作成するメッキ層が伸びやすく、特に、この電極部3のメッキ層の伸びは図5に示すように脚部2の稜線部で大きくなり絶縁性を確保できないことに起因するものである。
【0014】
従来のサイズのコモンモードノイズフィルター(例えば、縦3.2mm横1.6mmの場合)用のフェライトコア6では、前述のような電極部3のメッキの伸びが発生しても、それぞれの脚部2の電極部3間に0.6mm程度の距離を保てたため絶縁性を保つことができていた。
【0015】
特に、コモンモードノイズフィルター用のフェライトコア6は、同等サイズのチップインダクター用のフェライトコアなどと比較すると、鍔部1に連続する複数の脚部2が多く、必然的に電極部3の底面面積が小さくなる。電極部3の底面面積が小さくなると、加熱と加圧でつぶされた導線が電極部3を覆ってしまうため、実装時に半田ぬれ性が低下し、実装不良を起こしやすくなる。
【0016】
そこで、この実装不良を改善するために、電極部3となるメッキ厚みを厚くする必要があったが、メッキの伸びはメッキの厚みに比例し成長する傾向にあり、そのメッキ伸びのために、各脚部2および電極部3間の間隔が狭くなり、電流が流れ電極部3間の絶縁性が保持できないという問題があった。
【0017】
また、これらのフェライトコアに導線を巻回し、コモンモードノイズフィルターとした際、電極部3aの近くを図6のように隣接する電極部3bに厚着された導線が横切る。このとき、メッキが伸びることにより電極部3の寸法が長くなるため隣接する電極部3に圧着したワイヤーがこのメッキの伸びに接触しショートを起こすという問題があった。
【0018】
また、メッキの伸びにより電極部3の寸法がばらつくため、フェライトコア6に発生する磁束のロスにばらつきが生じ、Q値(ロス特性)がばらつきやすいという問題があった。
【0019】
本発明は、上記問題を解決するものであり、メッキの伸びを改善し、電極部3間の絶縁抵抗を確保することであり、導線と電極のショートを回避することであり、製品のQ値(ロス特性)を安定させることを目的としている。
【0020】
【課題を解決するための手段】
本発明のフェライトコアは、巻芯部の両端に鍔部と該鍔部に連続する複数の脚部とを備え、脚部の底面側の端部に電極が形成されてなるフェライトコアであって、上記各脚部が底面に向かって先細り状であるとともに、上記各脚部の側面の稜線部が曲面状であることを特徴とする。
【0021】
また、上記各脚部の稜線部の曲率半径が0.02〜0.2mmであることを特徴とする。
【0022】
さらに、上記各脚部の稜線部の曲率半径が、鍔部側で0.02〜0.15mm、底面側で0.05〜0.2mmであり、且つ底面に向かって漸増することを特徴とする。
【0023】
また、本発明のフェライトコアの製造方法は、フェライトコアとなる焼結体をバレル加工することによって、各脚部の稜線部に曲面体を形成することを特徴とする。
【0024】
さらに、上記バレル研磨の研磨材として高抵抗の研磨剤を使用するか、または水を使用することを特徴とする。
【0025】
また、本発明のコモンモードノイズフィルターは、上記フェライトコアに巻線を巻回してなることを特徴する。
【0026】
【発明の実施の形態】
以下、本発明のフェライトコアの実施形態を図面に基いて説明する。
【0027】
図1(a)、(b)は本発明のフェライトコアの一実施形態の底面側を上方にした状態を示す斜視図である。
【0028】
このフェライトコア6を構成するフェライト磁器は、Ni−Zn系フェライト、Mn−Zn系フェライトなどの磁性材料等から成り、巻芯部4の両端に鍔部1A、1Bを有し、該鍔部1Aには脚部2a、2bが、鍔部1Bには脚部2c、2dが形成されている。また、該脚部2a、2b、2c、2dの底面側の端部には電極部3a、3b、3c、3dが形成されている。
【0029】
例えば、2012サイズと言われるフェライトコアは、短辺寸法Eが1.2mmとなるため、1つの鍔部1に形成された2つの脚部2の間隔は足部の破壊強度と厚膜印刷時に使用する高粘度のペーストの短絡防止を考慮し約0.4mmと非常に小さくなっている。
【0030】
ここで、本発明のフェライトコア6は、図1(a)に示すように各脚部2が底面に向かって先細り状であるとともに、各脚部2の側面における稜線部が曲面状であることが重要である。
【0031】
これにより、上記のような各脚部2の間隔の小さい小型のフェライトコア6においても、各脚部2の稜線部を曲面状にすることにより、脚部2に電極部3を形成する際に行う電界メッキによって発生するメッキの伸びを防ぐことができる。また各脚部2が底面に向かって先細り状であることから、脚部2の底面の面積を小さくすることができ、電界メッキを行う際、脚部2の底面に形成した厚膜に効率よく電荷が集中し、メッキの伸びをより確実に防ぐことができる。
【0032】
従来、このメッキの伸びは、フェライト磁器の成分自体が作用し誘発するものと考えられていた。しかし、メッキの伸びは脚部2の側面より稜線部において伸びが大きくなることから、電界メッキ時の電荷が稜線部へ集中するために起こると考えられる。そこで、稜線部への電荷の集中を緩和するため、脚部を先細り状にしその底面部に形成した厚膜に電荷を集中させ、且つ稜線部を曲面状とすることで稜線部への電荷の集中を緩和させ、メッキの伸びを有効に抑制できるものである。これによって、隣接する電極部3aと3bの間、電極部3cと3dの間の絶縁抵抗を確保することができ、また導線と電極部3のショートを回避することができた。
【0033】
さらに、電極部3は導体であるために高抵抗であるフェライト磁器に比べロスが大きい、このロスが大きい電極部3の面積が伸びによりばらつき製品のQ値(ロス特性)をばらつかせていた。しかし、各脚部2を先細り状で、且つ稜線部を曲面状とすることで、メッキの伸びの発生を抑制でき、製品のQ値を安定させることができる。
【0034】
またさらに、上記各脚部2の先細り状の形状については、効率よく底面に形成した厚膜に電荷を集中させるため、例えば脚部2の巻芯部との境界の断面の面積に対し底面の面積を50〜85%とすることが望ましい。この面積比が50%未満の場合、電極部3が小さくなり実装強度が低下する。一方、85%を越える場合、各脚部2の底面に形成した厚膜に電荷が集中しにくくなりメッキの伸びを抑制できなくなる。
【0035】
また、各脚部2の稜線部の曲率半径は0.02〜0.2mmであることが好ましい。これによって、稜線部への電荷の集中を抑え、電極部3の厚膜に電荷を集中させることができるためメッキの伸びを抑えることができる。各脚部2の曲率半径が0.02mmより小さいと、稜線部における電荷の集中を緩和しきれず伸びを抑制できない。また、稜線部にチッピングが発生しやすくなる。一方、0.2mmより大きいと脚部2が細くなるために強度が劣化する。さらに好ましい曲率半径は、0.05〜0.15mmである。
【0036】
さらに、図1(b)に示すように、各脚部2の稜線部の曲率半径が、鍔部1側で0.02〜0.15mm、底面側で0.05〜0.2mmであり、且つ底面に向かって漸増することがより好ましい。
【0037】
このように、各脚部2の底面側の曲率半径を鍔部1側の曲率半径より大きくすることで、電極部3を形成する際のメッキの伸びをより効果的に防ぐことができる。また、鍔部1側は曲率半径を小さくする事により脚部2の強度を保つことが出来る。
【0038】
即ち、電極部3を形成するためのメッキの伸びは、厚膜の上端から脚部2の稜線部に沿って成長していくため稜線部の曲率半径は厚膜側である底面側は大きくすることが好ましい。それに対し、メッキの伸に影響が少なくなる鍔部1側は、できるだけ強度を保つために脚部2の断面積を広く確保する必要があるため曲率半径を小さくすることが好ましい。
【0039】
ここで、各脚部2の鍔部1側の曲率半径が0.02mmより小さいと、稜線部にチッピングが発生しやすくなり、一方、0.2mmより大きいと脚部2が細くなるために、強度が劣化する。また、底面側の曲率半径が0.05mmより小さいと、メッキの伸びを抑制するのが困難となり、絶縁性が保持できなくなる。一方、0.2mmより大きいと脚部2が細くなるために、強度が劣化するとともに電極部3が小さくなるため実装強度が低下する。
【0040】
また、この様に各脚部2の稜線部の曲率半径が、鍔部1側で0.02〜0.15mm、底面側で0.05〜0.2mmであり、且つ底面に向かって漸増させることにより脚部2は先細り形状となるため電界メッキにて電極部3に形成した厚膜部にメッキ層を形成する際、厚膜上に電荷が集中しやすくなる、その為、効率的にメッキが行われ厚膜以外への電荷の拡散が緩和されメッキの伸びが抑制される。
【0041】
例えば2012サイズのコモンモードフィルター用のフェライトコアの場合、脚部2は約0.4mm角になるため鍔部1側で曲率半径0.02〜0.07mm、底面側で曲率半径0.05〜0.1mmとすることが好ましい。
【0042】
次に、本発明のフェライトコア6の製造方法を説明する。
【0043】
まず、フェライト磁器の原料となる、Ni−Zn系フェライト、Mn−Zn系フェライトなどの粉末に所定のバインダーを加えスプレードライなどにより粉末成形に適した顆粒に造粒して原料粉末を得る。特に、使用周波数や表面抵抗値の問題からNi−Zn系フェライトから成ることが好ましい。
【0044】
次いで、この原料粉末を所望の形状の金型に充填し、所定の圧力で加圧してフェライト磁器となる成形体を得る。
【0045】
その後、得られた成形体を電気炉やガス炉などの焼成炉にて所定の焼成温度で焼成し焼結することにより、フェライト磁器となる焼結体を得る。この焼結体の各脚部2の稜線部はこの時点では曲面を有しておらず、鍔部側から底面側の断面形状は一定である。
【0046】
次いで、得られた焼結体の脚部2を先細り状で、且つ稜線部を曲面状に加工する。
この方法としては、機械加工、ブラスト及びバレルなどの加工方法が挙げられるが、この中でも特にバレル加工を施すことが好ましい。
【0047】
特に、本発明のフェライトコア6のように、各脚部2が底面に向かって先細り状であるとともに、脚部2の側面における稜線部が曲面状である形状の形成において、機械加工は個別加工になるためにコストが掛かりすぎる。また、ブラスト加工は全面に研磨剤が当たり、研磨力が強過ぎるため必要以上に面が荒れ、強度が低下しやすい。これらの加工方法に対し、バレル加工は、例えば磁器製のポット状容器の中に焼結体、水および研磨剤等を入れ、回転させることにより加工を行うため、バッチ処理が可能であり加工費用を安くすることができる。また、バレル加工として研磨剤によって加工する際も、水のみで焼結体同士の摩擦力だけで加工する際も、その研磨加工は水中にて行うため必要以上に面の荒れが発生せず、バレル加工後も強度を維持できるといった特徴を有する。また、バレル加工は、製品と研磨剤または、焼結体同士のぶつかり合いによって加工が進むため、最もぶつかりが起こりやすい稜線部、突起部、突起の先端部がその他部分よりバレル加工が掛かりやすいという特徴があるため、脚部2の稜線部の底面に向かい漸増する曲率半径を有する加工には特に適している。
【0048】
このバレル加工において使用する研磨材として、高抵抗の研磨材または研磨材を使用せず水のみで焼結体同士の接触によって加工することが好ましい。
【0049】
上記高抵抗の研磨剤とは、研磨剤の抵抗値が10Ω・cm以上である研磨剤のことであり、アルミナ、シリカ等を用いることができ、バレル加工後に、研磨剤の微少粒子がフェライト磁器となる焼結体に付着したとしても、その後の工程で電極部3を形成する電界メッキの際に表面に付着した微小粒子の研磨剤と厚膜との間で電流が流れにくいためメッキは伸びにくい。
【0050】
また、上記抵抗値は1011Ω・cm以上であることがより好ましく、これは主にフェライト磁器として使用されるNi−Zn系フェライト材の抵抗と同じであるためである。一方、研磨材の抵抗値が10Ω・cmより低い研磨剤を使用した場合、バレル加工後に、研磨剤の微少粒子がフェライト磁器となる焼結体に付着すると、その後の工程で電極部3を形成する電界メッキの際に表面に付着した微小粒子の研磨剤と厚膜との間で電流が流れるため、メッキが伸びやすく、絶縁性を確保することができない。
【0051】
なお、上記研磨剤の抵抗値は、研磨剤を絶縁性の型に充填し加圧し押し固めた物をHP社製の高抵抗測定器用いDC50Vを印可し測定されるものである。
【0052】
また、研磨剤の粒径は、400μm以下であることが好ましく、脚部2間に研磨剤が十分に入り込んで、脚部2の稜線部を曲面状に加工することができる。一方、400μmを越えると、脚部2間の間に入らなくなるため脚部2の内側の側面の稜線部に曲面状に加工できない。
【0053】
バレル加工での稜線部の曲率半径の調整は磁器製のポット状容器に入れる焼結体の数量や研磨剤の量、加工時間で調整する。焼結体の数量が多ければ研磨力が大きくなるため大きな曲率半径を得やすく、特に稜線部、突起部、突起の先端部の曲率半径はその他部位に比べ大きくなりやすい。研磨剤を多く入れれば、焼結体同士のぶつかり合いが減り、研磨剤による研磨が多くなるため曲率半径は均一になりやすい。加工時間が増えればどちらの場合も曲率半径は大きくなる。
【0054】
このようなバレル加工の条件としては、例えばバレル容量13リットルに対し焼結体を1〜6リットル、水を4〜9リットル、メディアの粒径と使用量は製品の大きさと欲しい曲面の形状により調整する。
【0055】
また、研磨剤を使用せずに水のみを用いて焼結体同士の接触によって加工すると、焼結体の数量の調整と処理時間の調整によって所定の曲面状に加工することができる。
【0056】
また、脚部2に電極部3を形成するフェライト磁器の焼結体の表面粗さは、Ra0.2〜0.6μmであることが望ましい。表面粗さがRa0.2μmより小さいと脚部2に印刷した厚膜が剥がれやすく、製品として実装した場合の密着強度が低下する。0.6μmより大きいと表面が荒れた状態となり強度が低下する。ここで、表面粗さの測定方法は、フェライト磁器を脚部2側を上にして平板上に固定し厚膜を印刷する脚部2の底面部に表面粗さ計の触針を当て測定されるものである。Raの調整はバレル加工時の磁器製などのポットの回転数によって調整する。ポットの回転が速いと焼結体同士や焼結体と研磨剤が強くぶつかるためRaは大きくなる。ポットの回転数を下げれば焼結体同士や焼結体と研磨剤のぶつかりが弱くなるためRaは小さくなる。
【0057】
上述のようなフェライトコア6は、コモンモードノイズフィルターとして好適に用いられる。
【0058】
図2は、本発明のフェライトコアを用いたコモンモードノイズフィルターの一実施形態を示す底面側を上方にした状態の斜視図である。
【0059】
巻芯部4の両端に鍔部1と、該鍔部に連続する複数の脚部2とを備え、脚部2の底面側の端部に電極部3が形成されてなるフェライトコア6の巻芯部4にバイファイラ巻等により複数の導線を数ターンから数十ターン巻回して、さらに、導線の巻き始めの先端と巻終わりの端末を脚部2の底面側の電極部3に各々半田付けや熱圧着等により導電接続した構造となっている。
【0060】
この様に各脚部2を先細り状で、各稜線部を曲面状にすることにより、電極部3のメッキの伸びが抑制され隣接する脚部2及び電極部3の距離が保てコモンモードノイズフィルターの各電極部3間の絶縁抵抗が保たれる。また、伸びが抑制されることにより隣接する電極部3に厚着した導線が電極部3のそばを通ったとしても伸びの部分がないためショートすることが無くなった。また、伸びが抑制され電極の体積が減り寸法も安定化したため製品のQ値(ロス特性)が改善されかつ安定化した。
【0061】
【実施例】
(実施例1)
先ず、図1(a)、(b)示すような本発明のフェライトコア6を得るため、磁性材料としてNi−Zn系フェライト材とバインダーを混練後、スプレードライヤーにて原料粉末を作製した。次いで、この原料粉末を用い粉末プレス成形によって成形した後、900〜1300℃で焼成して4つの脚部2を持つフェライト磁器となる焼結体を30個作製した。
【0062】
そして、この焼結体を磁器からなるポット状容器を有するバレル装置に入れ、研磨剤として抵抗値1011Ω・cm、粒径が80μmのアルミナと水を加えたもの、抵抗値10Ω・cm、粒径が80μmの炭化珪素と水を加えたものをそれぞれ準備し、バレル加工によって脚部2を表1に示す如く曲面体を持ち先細り状となるよう加工してフェライト磁器を作製した。
【0063】
なお、脚部2は研磨剤の量と加工する焼結体の数量、加工時間をそれぞれ調整し形状を調整した。各研磨材の抵抗値は研磨剤を絶縁性の容器に入れ圧力を加え固めたものをHP社製の高抵抗測定器を用いDC50Vを印可して測定した。
【0064】
各フェライト磁器は、実装時の略四角形のサイズが縦2.0mm、横1.2mmの2012サイズ(各脚部2の底面は0.4×0.4mm、脚部2a、2bの底面間、脚部2c、2dの底面間の距離をそれぞれ0.4mm、脚部2の底面と巻き芯部4までの長さは0.25mm)とし、各脚部2の形状が先細り状としたものは鍔部1との境界の断面積に対して底面の面積が70%となるようにした。
【0065】
また、比較例としてバレル加工を行わないもの、脚部2の形状を鍔部側から底面側まで同じ断面を有するものを用意した。
次いで、全てのフェライト磁器に電極3を形成し各30個のフェライトコア試料を得た。電極3部は、フェライト磁器の各脚部2にディッピングによりAgの厚膜を印刷して焼成を行い、フェライト磁器に厚膜を焼き付け、その厚膜上にNi、Snを電界メッキにて作製した。
【0066】
それぞれの電極部3の厚みはAgが20μm、Niが2μm、Snが7μmとし、Ag厚膜の脚部2の底面側から巻芯部4に向けての寸法は0.1mmとした。なお、各フェライトコア試料の脚部2の形状は測定顕微鏡によって測定した。
【0067】
次いで、得られた各フェライトコア試料を下記の方法にて評価する。
(1)各メッキの伸びを評価した。伸びの計測は図5に示したメッキの伸び5をAg厚膜の脚部2底面側から巻き芯部に向けての寸法の上端からメッキの最先端部とし測定顕微鏡を用い測定した後、4つの脚部2のメッキの伸びの平均を算出した。
(2)各フェラトコア試料の電極部3a、3bにそれぞれのプローブを当てDC50Vを印可した時の電極部3a、3b間の絶縁抵抗を評価した。ここで用いた測定器はHP社製の高抵抗測定器であり、測定電圧は一般的にインダクターで導線間や導線とフェライトコア等の絶縁抵抗の評価で用いられる電圧値である。
(3)各フェライトコア試料を脚部2の底面の電極部3を用い実装基板上に半田付けし、そのフェライトコア試料を実装した実装基板をAIKOH社製のテストスタンドに両面テープを用い固定しAIKOH社製のCPU GAGEを用いフェライトコア6の実装時の略四角形のサイズのうち、縦2.0mmの辺の巻芯部4を実装基板と平行な方向に圧子で5mm/分の速度で加圧する。このように加圧した場合に脚部2が全て破壊し実装基板からフェライトコア試料が外れる時の強度を評価した。
(4)各フェライトコア試料を各30個ずつ用意し、それに、直径0.1mmの導線を7ターン巻回し導線をねじり止め、導線の先端を半田槽に付け導通をとり、HP社のLCRメーターにて測定周波数1MHz、測定電圧50mVでそれぞれのQ値(ロス特性)を測定し、30個のQ値のばらつきである標準偏差を算出した。
【0068】
結果を表1に示す。
【0069】
【表1】

Figure 2005044946
【0070】
表1から明らかなように、各脚部2が底面に向かって先細り状であるとともに、各脚部2の側面における稜線部が曲面状である試料(No.1〜15)は、メッキの伸びが0.15mm以下と小さく、脚部2間の絶縁抵抗も10Ω・cm以上に確保されており、強度も10N以上とすることができた。また、フェライトコイル試料における平均のQ値を10.4以上と高いものとすることができ、そのバラツキも1.8以下とすることができた。
【0071】
特に、アルミナを研磨剤としてバレル加工し、各脚部2の稜線部の曲率半径を0.02〜0.2mmとした試料(No.2〜6)、各脚部2の稜線部の曲率半径を鍔部側で0.02〜0.15mm、底面側で0.05〜0.2mmである試料(No.10〜13)は、メッキの伸びを0.1mm以下により小さくでき、脚部2間の絶縁抵抗も10Ω・cm以上と十分に確保することができ、さらにQ値も11以上として、そのバラツキも1.71以下とすることができた。これは、各稜線部を先細り状として曲面体を形成することにより、メッキの伸びが抑制されQ値の低い電極部3の面積が少なくなりフェライトコア6としてのQ値が高くなったと考えられる。また、メッキの伸びが抑制されることで電極部3の寸法が安定するためQ値のばらつきが少なくなったと考えられる。
【0072】
これに対し、比較例である試料のうち、バレル加工を行わず、脚部2の各稜線部に角が残っている試料(No.16、17)は、メッキの伸びが0.23mm以上と長くなり、脚部間の絶縁抵抗が10Ω・cmと小さく、さらにQ値も9.7以下、そのバラツキが2以上と大きくなっていることが判った。
【0073】
また、脚部2の各稜線部を曲面体としても、先細り状になっていない試料(No.18)は、同寸法の曲率半径を有し、先細り状の試料(No.4)に比べメッキの伸びは大きくなり、脚部2間の絶縁抵抗も10Ω・cm、Q値も10.2、そのバラツキが2.3と大きくなっている。これは、各脚部2の稜線部を先細り状、且つ曲面体とすることにより、脚部2の稜線部への電荷の集中が緩和されメッキの伸びが抑制されるためである。
【0074】
(実施例2)
次いで、上記実施例1と同様に、フェライト磁器となる焼結体を磁器からなるポット状バレル装置に入れ研磨剤として水のみを用いて種々の条件でバレル加工を行い、脚部2を表1に示す如く形状となるよう作製し、底面に同様に電極部3を形成した。
【0075】
なお、各フェライトコア試料の脚部2の形状は測定顕微鏡によって測定した。
【0076】
次いで、得られた各フェライトコア試料に実施例1と同様に(1)〜(3)の評価を行った。
【0077】
また、各フェライトコア試料をそれぞれ30個ずつ用意し、直径0.1mmの導線を7ターン巻回し、実施例1と同様に上記(4)の評価を行った。
【0078】
結果を表2に示す。
【0079】
【表2】
Figure 2005044946
【0080】
表2から明らかなように、各脚部2が底面に向かって先細り状であるとともに、各脚部2の側面における稜線部が曲面状である試料(No.19〜31)は、メッキの伸びが0.16mm以下と小さく、脚部2間の絶縁抵抗も10Ω・cm以上に確保されており、強度も8N以上とすることができた。また、フェライトコイル試料における平均のQ値を10.2以上と高いものとすることができ、そのバラツキも1.9以下とすることができた。
【0081】
特に、各脚部2の稜線部の曲率半径を0.02〜0.2mmとした試料(No.20〜24)、各脚部2の稜線部の曲率半径を鍔部側で0.02〜0.15mm、底面側で0.05〜0.2mmである試料(No.27〜30)は、メッキの伸びを0.09mm以下により小さくでき、脚部2間の絶縁抵抗も10Ω・cm以上と十分に確保することができ、強度も11N以上とすることが出来た。さらにQ値も11以上として、そのバラツキも1.75以下とすることができた。これは、各稜線部を先細り状として曲面体を形成することにより、メッキの伸びが抑制されQ値の低い電極部3の面積が少なくなりフェライトコアとしてのQ値が高くなったと考えられる。また、メッキの伸びが抑制されることで電極部3の寸法が安定するためQ値のばらつきが少なくなったと考えられる。
【0082】
これに対し、比較例である試料の稜線部の曲率半径を0.22mmとした試料(No.25)、各脚部2の稜線部の曲率半径を鍔部側で0.2mm、底面側で0.22mmである試料(No.31)は、メッキの伸びが0.02mm以下となり、脚部2間の絶縁抵抗が1011Ω・cmと大きく、さらにQ値も13以上、そのバラツキが1.27以下となったが強度が9N以下と小さくなっていることが判った。
【0083】
これは、各脚部2の稜線部の曲面体を大きくすることにより、脚部2の断面積が減少し脚部2の強度が低下したためである。
【0084】
【発明の効果】
本発明のフェライトコアによれば、各脚部2が底面に向かって先細りであると共に各脚部2が曲面状であることから、電極部3形成時のメッキの伸びを抑制することができ、電極部3間の絶縁性を高く維持でき、コモンモードノイズフィルターが小型化して隣接する電極部3の間隔が近くなっても電極部3間の絶縁の信頼性を高く保つことができる。また、電極部3の脚部2の底面側から巻き芯部に向けての寸法を調整出来るため隣接する電極部3への導線のショートも防げる。また、製品のQ値を高く取れ、そのばらつきを抑えることはできる。
【0085】
さらに、上記各脚部2の各稜線部の曲率半径が鍔部1側で0.02〜0.15mm、底面側で0.05〜0.2mmであり、且つ底面に向かって漸増することから、メッキの伸びを確実に抑制できるとともに、脚部2の強度を高く保つことができ、実装時の強度を確保することができる。
【0086】
またさらに、本発明のフェライトコア6を作製するにあたり、バレル加工を行うことによって、小型のフェライトコア6においても、脚部2の曲面形状や曲面寸法、表面粗さを容易に、自由に調整することができる。
【0087】
さらにまた、バレル加工時に高抵抗の研磨剤を使用するか、または水のみの使用にすることによって、研磨剤の微少粒子がフェライト磁器となる焼結体に付着したとしても、その後の工程で電極部3を形成する電界メッキを行う際に表面に付着した微小粒子の研磨剤と電極部3となる厚膜との間で電流が流れにくいため、メッキの伸びを防止することができる。
【0088】
また、本発明のフェライトコア6を用いてコモンモードノイズフィルターとした場合、コモンモードノイズフィルターが小型化して隣接する電極部3の間隔が近くなっても、各電極部3間の絶縁抵抗の信頼性を高く保つことができ、電極部3と導線のショートを防止し、さらにQ値が高く、ばらつきの少ないものとすることができる。
【図面の簡単な説明】
【図1】(a)、(b)は本発明のフェライトコアの一実施形態を示す斜視図である。
【図2】本発明のフェライトコアを用いたコモンモードノイズフィルターの一実施形態を示す斜視図である。
【図3】(a)〜(c)は従来のフェライトコアを用いたコモンモードノイズフィルターの一実施形態を示す図であり、(a)は正面図、(b)は側面図、(c)は脚部の底面側からみた平面図である。
【図4】従来のフェライトコアの問題点を説明するための斜視図である。
【図5】従来のフェライトコアの問題点を説明するための斜視図および断面図である。
【図6】従来のフェライトコアを用いたコモンモードノイズフィルターの問題点を説明するための部分斜視図である。
【符号の説明】
1:鍔部
2:脚部
3:電極部
4:巻芯部
5:メッキの伸び部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferrite core suitable for countermeasures against common mode noise of various electronic devices that handle high-frequency signals, a manufacturing method thereof, and a common mode noise filter used for a differential transmission circuit and the like.
[0002]
[Prior art]
Conventionally, a common mode noise filter has been used as a countermeasure against unnecessary radiation of power supply lines and as a countermeasure against common mode noise of high frequency signals.
[0003]
As shown in FIG. 3, the common mode noise filter includes a bottom surface of a leg portion 2 of a ferrite porcelain including a flange portion 1 at both ends of a core portion 4 and a plurality of leg portions 2 continuous to the flange portion 1. The ferrite core 6 is obtained by forming the electrode portion 3 at the end on the side, and a plurality of conducting wires are wound around the core portion 4 of the ferrite core 6 by several turns to several tens of turns by bifilar winding or the like. The first tip and the end of winding are electrically connected to the electrode part 3 on the bottom side of the leg part 2 by soldering, thermocompression bonding, or the like.
[0004]
When the electrode 3 is formed on the ferrite porcelain used in the common mode noise filter, a thick film such as Ag or AgPd is printed using a method such as dipping, screen printing, or transfer, and then fired. On the thick film, Ni, Cu, Sn, SnPb, Au, etc. are produced by plating several layers according to the application and requirements. In this plating process, a predetermined plating layer is formed on the thick film formed on the ferrite porcelain by flowing a current by immersing it in a plating solution in which the components of the layer on which thick film printing is to be performed are dissolved, At that time, it is formed by washing the plating solution adhering to the ferrite porcelain.
[0005]
For example, in such a common mode noise filter, when a common-mode current flows through two conductors, the magnetic flux is added and the impedance is increased. On the other hand, when a reverse phase current flows through the two conductors, the magnetic flux is canceled out and almost no impedance is generated. As described above, the common mode noise filter is an electronic component having a filter function that the common-mode current hardly flows and the reverse-phase current easily flows.
[0006]
In the field of information communication equipment in which this common mode noise filter is used, there is a demand for miniaturization and weight reduction of parts. In accordance with the request, the size of the common mode noise filter is approximately 2025, which is an area of approximately square, which is an area at the time of mounting, is 3216 mm, 1.6 mm width, 3216, 2.5 mm length, 2.0 mm width. Similarly, 2012, 1608, and 1210 have been shifted to miniaturization.
[0007]
Therefore, in Patent Document 1, as shown in FIG. 3, it is proposed to form a curved body at all the ridge lines of each leg 2 in the ferrite core.
[0008]
Moreover, the curvature radius of the curved body of each leg part 2 is 0.2-0.3 mm, and all are 30-70 degrees to the core part 4 side of the four leg parts 2 with respect to an upright direction. It is also characterized by having an inclined surface 8.
[0009]
According to the above proposal, the curved body having a radius of curvature of about 0.2 mm is formed on all the ridge lines of the leg 2, thereby preventing problems such as disconnection or short-circuiting of the conductors caused by the ridge lines. Further, by forming the inclined surface 8 on the side of the core part 4 of the leg part 2, the connection of the bifilar winding wire wound around the core part 4 to the electrode 3 can be performed at a gentler angle. This has been shown to be a more reliable common mode noise filter.
[0010]
[Patent Document 1]
JP 2002-329618 A
[0011]
[Problems to be solved by the invention]
However, in the information communication equipment field where such a common mode noise filter is used, there is a demand for smaller and lighter parts as the equipment becomes smaller. From a size of 3.2 mm in length and 1.6 mm in width, similarly, 2.5 mm in length and 2.0 mm in width, 2.0 mm in length and 1.2 mm in width, 1.6 mm in length and 0.8 mm in width, or 1.2 mm in length It is shifting to downsizing with a width of 1.0 mm.
[0012]
Here, in the common mode noise filter using the ferrite core as shown in Patent Document 1, although the ridge line portion of each leg portion 2 has a curved shape, the radius of curvature is large, and the leg portion 2 has a winding core portion. Since it is the same magnitude | size from 4 side toward a bottom face, the elongation of the plating generate | occur | produced when producing the electrode 3 in the leg part 2 cannot be suppressed efficiently. This is because the charge tends to concentrate on the ridge line portion. Furthermore, when the plating layer is formed by electroplating, electric charges are not efficiently concentrated on the thick film of the electrode portion 3. For this reason, the plating is difficult to be formed on the thick film of the electrode portion 3, and accordingly, the dispersed charges are easily concentrated on the ridge line portion having a curved surface, thereby inducing the elongation of the plating.
[0013]
If the distance between the electrode parts 3 of each leg part 2 becomes narrow with the miniaturization, this plating elongation causes a problem that insulation cannot be secured. That is, when the electrode portion 3 is formed on the bottom surface side of each leg portion 2, as shown in FIG. 4, the plating layer formed when the electrode portion 3 is formed easily stretches. As shown in FIG. 5, it becomes large at the ridge line part of the leg part 2, resulting from the fact that insulation cannot be secured.
[0014]
In the ferrite core 6 for the common mode noise filter of the conventional size (for example, in the case of 3.2 mm in length and 1.6 mm in width), even if the extension of the plating of the electrode portion 3 as described above occurs, each leg portion Since the distance of about 0.6 mm could be maintained between the two electrode portions 3, the insulating property could be maintained.
[0015]
In particular, the ferrite core 6 for the common mode noise filter has a plurality of leg portions 2 continuous to the flange portion 1 as compared with a ferrite core for a chip inductor of the same size, and the bottom surface of the electrode portion 3 inevitably. The area becomes smaller. When the bottom surface area of the electrode part 3 is reduced, the conductive wire crushed by heating and pressurization covers the electrode part 3, so that solder wettability is lowered during mounting, and mounting defects are likely to occur.
[0016]
Therefore, in order to improve this mounting defect, it was necessary to increase the plating thickness to be the electrode part 3, but the elongation of the plating tends to grow in proportion to the thickness of the plating. There was a problem that the distance between each leg portion 2 and electrode portion 3 was narrowed, current flowed and insulation between electrode portions 3 could not be maintained.
[0017]
Further, when a conducting wire is wound around these ferrite cores to form a common mode noise filter, the conducting wire thickly attached to the adjacent electrode portion 3b crosses the electrode portion 3a as shown in FIG. At this time, since the dimension of the electrode part 3 becomes longer due to the extension of the plating, there is a problem that the wire crimped to the adjacent electrode part 3 contacts the extension of the plating and causes a short circuit.
[0018]
Further, since the dimensions of the electrode portion 3 vary due to the elongation of plating, there is a problem that the loss of magnetic flux generated in the ferrite core 6 varies, and the Q value (loss characteristic) tends to vary.
[0019]
The present invention solves the above-mentioned problem, improves the elongation of plating, secures an insulation resistance between the electrode portions 3, avoids a short circuit between the conductor and the electrode, and has a Q value of the product. The purpose is to stabilize (loss characteristics).
[0020]
[Means for Solving the Problems]
The ferrite core of the present invention is a ferrite core comprising a flange portion at both ends of a winding core portion and a plurality of leg portions continuous to the flange portion, and an electrode is formed at an end portion on the bottom surface side of the leg portion. The leg portions are tapered toward the bottom surface, and the ridge lines on the side surfaces of the leg portions are curved.
[0021]
Moreover, the curvature radius of the ridgeline part of each said leg part is 0.02-0.2 mm, It is characterized by the above-mentioned.
[0022]
Further, the radius of curvature of the ridge line portion of each leg portion is 0.02 to 0.15 mm on the heel side, 0.05 to 0.2 mm on the bottom surface side, and gradually increases toward the bottom surface. To do.
[0023]
Moreover, the manufacturing method of the ferrite core of this invention forms a curved body in the ridgeline part of each leg part by carrying out barrel processing of the sintered compact used as a ferrite core.
[0024]
Furthermore, a high-resistance abrasive is used as the abrasive for the barrel polishing, or water is used.
[0025]
Moreover, the common mode noise filter of the present invention is characterized in that a winding is wound around the ferrite core.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the ferrite core of the present invention will be described with reference to the drawings.
[0027]
FIGS. 1A and 1B are perspective views showing a state in which the bottom surface side of one embodiment of the ferrite core of the present invention is directed upward.
[0028]
The ferrite porcelain constituting the ferrite core 6 is made of a magnetic material such as Ni—Zn ferrite and Mn—Zn ferrite, and has flange portions 1A and 1B at both ends of the core portion 4, and the flange portion 1A. Are formed with leg portions 2a and 2b, and the flange portion 1B is formed with leg portions 2c and 2d. In addition, electrode portions 3a, 3b, 3c, and 3d are formed at the bottom end portions of the leg portions 2a, 2b, 2c, and 2d.
[0029]
For example, since a ferrite core called 2012 size has a short side dimension E of 1.2 mm, the distance between two leg portions 2 formed on one heel portion 1 depends on the breaking strength of the foot portion and during thick film printing. Considering prevention of short circuit of the high-viscosity paste used, it is very small, about 0.4 mm.
[0030]
Here, in the ferrite core 6 of the present invention, as shown in FIG. 1A, each leg portion 2 is tapered toward the bottom surface, and the ridge line portion on the side surface of each leg portion 2 is curved. is important.
[0031]
Accordingly, even in the small ferrite core 6 having a small interval between the leg portions 2 as described above, the ridge line portion of each leg portion 2 is formed into a curved surface, thereby forming the electrode portion 3 on the leg portion 2. It is possible to prevent the elongation of plating generated by the electroplating performed. Since each leg 2 is tapered toward the bottom surface, the area of the bottom surface of the leg portion 2 can be reduced, and when performing electroplating, the thick film formed on the bottom surface of the leg portion 2 is efficiently formed. Electric charges are concentrated, and plating elongation can be prevented more reliably.
[0032]
Conventionally, it has been considered that the elongation of the plating is induced by the action of the components of the ferrite porcelain itself. However, since the elongation of the plating becomes larger at the ridge line portion than the side surface of the leg portion 2, it is considered that the electric charge during the electroplating is concentrated on the ridge line portion. Therefore, in order to alleviate the concentration of charges on the ridgeline, the legs are tapered, the charge is concentrated on the thick film formed on the bottom surface, and the ridgeline is curved so that the charge on the ridgeline is reduced. Concentration can be relaxed and plating elongation can be effectively suppressed. As a result, insulation resistance between the adjacent electrode portions 3a and 3b and between the electrode portions 3c and 3d can be secured, and a short circuit between the conductive wire and the electrode portion 3 can be avoided.
[0033]
Furthermore, since the electrode part 3 is a conductor, the loss is larger than that of a high-resistance ferrite porcelain, and the area of the electrode part 3 having a large loss varies depending on the elongation, thereby varying the Q value (loss characteristic) of the product. . However, by forming each leg portion 2 in a tapered shape and a ridge line portion in a curved shape, it is possible to suppress the occurrence of plating elongation and to stabilize the Q value of the product.
[0034]
Still further, with respect to the tapered shape of each leg 2, for example, in order to concentrate electric charges on the thick film formed on the bottom surface, The area is desirably 50 to 85%. When this area ratio is less than 50%, the electrode part 3 becomes small and the mounting strength decreases. On the other hand, if it exceeds 85%, the charges are less likely to concentrate on the thick film formed on the bottom surface of each leg portion 2 and the plating elongation cannot be suppressed.
[0035]
Moreover, it is preferable that the curvature radius of the ridgeline part of each leg part 2 is 0.02-0.2 mm. Accordingly, the concentration of electric charges on the ridge line portion can be suppressed, and the electric charges can be concentrated on the thick film of the electrode portion 3, so that the elongation of plating can be suppressed. If the curvature radius of each leg part 2 is smaller than 0.02 mm, the concentration of electric charges in the ridge line part cannot be alleviated and the extension cannot be suppressed. Further, chipping is likely to occur at the ridge line portion. On the other hand, if it is larger than 0.2 mm, the leg portion 2 becomes thin and the strength deteriorates. A more preferable radius of curvature is 0.05 to 0.15 mm.
[0036]
Furthermore, as shown in FIG.1 (b), the curvature radius of the ridgeline part of each leg part 2 is 0.02-0.15mm in the collar part 1 side, and 0.05-0.2mm in the bottom face side, And it is more preferable that it gradually increases toward the bottom surface.
[0037]
Thus, by making the curvature radius on the bottom surface side of each leg portion 2 larger than the curvature radius on the flange portion 1 side, it is possible to more effectively prevent the elongation of plating when the electrode portion 3 is formed. Moreover, the strength of the leg 2 can be maintained by reducing the radius of curvature on the heel 1 side.
[0038]
That is, the elongation of the plating for forming the electrode part 3 grows from the upper end of the thick film along the ridge line part of the leg part 2, so that the radius of curvature of the ridge line part is increased on the bottom side which is the thick film side. It is preferable. On the other hand, it is preferable to make the radius of curvature small on the side of the flange 1 where the influence on the elongation of the plating is small because it is necessary to secure a wide cross-sectional area of the leg 2 in order to keep the strength as much as possible.
[0039]
Here, if the curvature radius on the side of the collar 1 of each leg 2 is smaller than 0.02 mm, chipping is likely to occur in the ridge line portion, whereas if it is larger than 0.2 mm, the leg 2 becomes thin. Strength deteriorates. On the other hand, if the curvature radius on the bottom side is smaller than 0.05 mm, it becomes difficult to suppress the elongation of plating, and the insulation cannot be maintained. On the other hand, if it is larger than 0.2 mm, the leg portion 2 becomes thin, so that the strength deteriorates and the electrode portion 3 becomes small, so that the mounting strength is lowered.
[0040]
In addition, the curvature radius of the ridge line portion of each leg portion 2 is 0.02 to 0.15 mm on the flange portion 1 side, 0.05 to 0.2 mm on the bottom surface side, and gradually increases toward the bottom surface. As a result, the leg portion 2 is tapered, so that when the plating layer is formed on the thick film portion formed on the electrode portion 3 by electroplating, the electric charge tends to concentrate on the thick film, so that the plating is efficiently performed. Is performed, and the diffusion of charges to other than the thick film is relaxed, and the elongation of the plating is suppressed.
[0041]
For example, in the case of a ferrite core for a 2012 size common mode filter, the leg 2 is approximately 0.4 mm square, so that the radius of curvature is 0.02 to 0.07 mm on the flange 1 side and the radius of curvature is 0.05 to 0.05 on the bottom side. It is preferable to be 0.1 mm.
[0042]
Next, the manufacturing method of the ferrite core 6 of this invention is demonstrated.
[0043]
First, a raw material powder is obtained by adding a predetermined binder to powders such as Ni—Zn ferrite and Mn—Zn ferrite, which are raw materials for ferrite porcelain, and granulating them into granules suitable for powder molding by spray drying. In particular, it is preferably made of Ni—Zn-based ferrite from the problem of operating frequency and surface resistance.
[0044]
Next, this raw material powder is filled into a mold having a desired shape and pressed at a predetermined pressure to obtain a molded body that becomes a ferrite porcelain.
[0045]
Thereafter, the obtained compact is fired and sintered at a predetermined firing temperature in a firing furnace such as an electric furnace or a gas furnace to obtain a sintered body that becomes a ferrite porcelain. The ridge line portion of each leg portion 2 of this sintered body does not have a curved surface at this point, and the cross-sectional shape from the flange portion side to the bottom surface side is constant.
[0046]
Next, the leg part 2 of the obtained sintered body is tapered and the ridge line part is processed into a curved surface.
Examples of this method include machining methods such as machining, blasting, and barreling. Among these, barreling is particularly preferable.
[0047]
In particular, as in the ferrite core 6 of the present invention, each leg portion 2 is tapered toward the bottom surface, and the ridge line portion on the side surface of the leg portion 2 is formed in a curved shape. Too expensive to become. In addition, in the blasting process, the polishing agent hits the entire surface, and the polishing force is too strong, so the surface becomes rougher than necessary and the strength tends to decrease. In contrast to these processing methods, barrel processing is performed by, for example, putting a sintered body, water, abrasives, etc. in a porcelain pot-shaped container and rotating it, so batch processing is possible and processing costs Can be cheaper. Also, when processing with a polishing agent as barrel processing, even when processing only with the frictional force between sintered bodies only with water, the polishing process is performed in water, so there is no surface roughness more than necessary, It has the feature that strength can be maintained even after barrel processing. In addition, since barrel processing is processed by collision between the product and abrasive or sintered bodies, the ridgeline portion, protrusion, and tip of the protrusion that are most likely to collide are easier to barrel than other parts. Due to the characteristics, it is particularly suitable for processing having a radius of curvature that gradually increases toward the bottom surface of the ridge line portion of the leg portion 2.
[0048]
As the abrasive used in this barrel processing, it is preferable to use a high-resistance abrasive or an abrasive to process the sintered bodies by contact with water alone.
[0049]
The above-mentioned high-resistance abrasive has a resistance value of 10 5 It is an abrasive that is Ω · cm or more, and alumina, silica, etc. can be used. Even after barrel processing, even if fine particles of the abrasive adhere to the sintered body that becomes a ferrite porcelain, Since electric current does not flow easily between the fine particle abrasive and the thick film adhered to the surface during electroplating to form the electrode portion 3, the plating is difficult to extend.
[0050]
The resistance value is 10 11 More preferably, it is Ω · cm or more, because this is the same as the resistance of the Ni—Zn based ferrite material mainly used as ferrite porcelain. On the other hand, the resistance value of the abrasive is 10 5 When a polishing agent lower than Ω · cm is used, after barrel processing, if fine particles of the polishing agent adhere to a sintered body that becomes a ferrite porcelain, the surface is subjected to electroplating to form the electrode portion 3 in the subsequent process. Since an electric current flows between the attached fine particle abrasive and the thick film, the plating tends to be stretched and insulation cannot be ensured.
[0051]
The resistance value of the above-mentioned abrasive is measured by applying DC 50 V using a high resistance measuring instrument manufactured by HP, which is obtained by filling the abrasive with an insulating mold, pressurizing and compacting it.
[0052]
Moreover, it is preferable that the particle size of an abrasive | polishing agent is 400 micrometers or less, and an abrasive | polishing agent fully penetrates between the leg parts 2, and can process the ridgeline part of the leg part 2 into a curved surface form. On the other hand, if it exceeds 400 μm, it cannot be inserted between the leg portions 2 and cannot be processed into a curved surface at the ridge line portion on the inner side surface of the leg portion 2.
[0053]
The radius of curvature of the ridgeline in barrel processing is adjusted by the number of sintered bodies, the amount of abrasive, and the processing time to be put in a porcelain pot-shaped container. If the number of the sintered bodies is large, the polishing force increases, so that a large radius of curvature can be easily obtained. In particular, the radius of curvature of the ridge line portion, the protruding portion, and the tip end portion of the protruding portion tends to be larger than other portions. If a large amount of abrasive is added, collision between the sintered bodies is reduced, and polishing by the abrasive is increased, so that the radius of curvature tends to be uniform. In either case, the radius of curvature increases as the machining time increases.
[0054]
The barrel processing conditions include, for example, 1 to 6 liters of sintered body and 4 to 9 liters of water for a barrel capacity of 13 liters. The particle size and amount of media used depend on the size of the product and the shape of the curved surface adjust.
[0055]
Moreover, when it processes by contact of sintered compacts using only water, without using an abrasive | polishing agent, it can process into a predetermined curved surface shape by adjustment of the quantity of sintered compacts, and adjustment of processing time.
[0056]
Further, the surface roughness of the sintered body of the ferrite porcelain forming the electrode portion 3 on the leg portion 2 is desirably Ra 0.2 to 0.6 μm. When the surface roughness is less than Ra 0.2 μm, the thick film printed on the leg 2 is easily peeled off, and the adhesion strength when mounted as a product is lowered. If it is larger than 0.6 μm, the surface becomes rough and the strength is lowered. Here, the surface roughness is measured by applying a surface roughness meter stylus to the bottom surface of the leg 2 where the ferrite porcelain is fixed on a flat plate with the leg 2 side up and the thick film is printed. Is. The Ra is adjusted by the number of revolutions of a pot made of porcelain or the like during barrel processing. When the pot rotates quickly, Ra is increased because the sintered bodies and the sintered body and the abrasive strongly collide with each other. If the number of rotations of the pot is lowered, Ra becomes smaller because the collision between the sintered bodies and between the sintered bodies and the abrasive becomes weaker.
[0057]
The ferrite core 6 as described above is preferably used as a common mode noise filter.
[0058]
FIG. 2 is a perspective view showing a common mode noise filter using a ferrite core according to an embodiment of the present invention with the bottom side facing upward.
[0059]
Winding of a ferrite core 6 comprising a flange portion 1 at both ends of the winding core portion 4 and a plurality of leg portions 2 continuous to the flange portion, and an electrode portion 3 formed at the bottom end of the leg portion 2. A plurality of conducting wires are wound around the core portion 4 by bifilar winding or the like, and the leading end and the end of the winding end of the conducting wire are respectively soldered to the electrode portion 3 on the bottom surface side of the leg portion 2. It has a structure in which conductive connection is made by thermocompression bonding.
[0060]
In this way, each leg portion 2 is tapered and each ridge line portion is curved, so that the extension of plating of the electrode portion 3 is suppressed, and the distance between the adjacent leg portion 2 and the electrode portion 3 is maintained, so that common mode noise is maintained. The insulation resistance between the electrode portions 3 of the filter is maintained. In addition, since the elongation is suppressed, even if the conductive wire thickly attached to the adjacent electrode portion 3 passes by the electrode portion 3, there is no elongation portion, and therefore, there is no short circuit. Further, since the elongation was suppressed, the volume of the electrode was reduced and the dimensions were stabilized, the Q value (loss characteristic) of the product was improved and stabilized.
[0061]
【Example】
(Example 1)
First, in order to obtain the ferrite core 6 of the present invention as shown in FIGS. 1A and 1B, a Ni—Zn ferrite material and a binder were kneaded as a magnetic material, and a raw material powder was prepared with a spray dryer. Next, the raw material powder was molded by powder press molding, and then fired at 900 to 1300 ° C. to produce 30 sintered bodies to be ferrite ceramics having four legs 2.
[0062]
And this sintered compact is put into the barrel apparatus which has the pot-shaped container which consists of porcelain, and resistance value 10 is used as an abrasive | polishing agent. 11 Ω · cm, 80μm particle diameter alumina and water added, resistance 10 4 Prepare Ω · cm and 80 μm particle size silicon carbide and water, and make a ferrite porcelain by processing the barrel 2 into a tapered shape with a curved body as shown in Table 1. did.
[0063]
The shape of the leg 2 was adjusted by adjusting the amount of abrasive, the number of sintered bodies to be processed, and the processing time. The resistance value of each abrasive was measured by applying a voltage of 50 V DC using a high resistance measuring instrument manufactured by HP, which was obtained by putting an abrasive in an insulating container and solidifying it by applying pressure.
[0064]
Each ferrite porcelain has a substantially rectangular size of 2.0 mm in length when mounted and a 2012 size of 1.2 mm in width (the bottom of each leg 2 is 0.4 × 0.4 mm, between the bottoms of the legs 2a and 2b, The distance between the bottom surfaces of the leg portions 2c and 2d is 0.4 mm, the length between the bottom surface of the leg portion 2 and the winding core portion 4 is 0.25 mm), and the shape of each leg portion 2 is tapered. The area of the bottom surface was set to 70% with respect to the cross-sectional area of the boundary with the flange 1.
[0065]
Moreover, the thing which does not perform a barrel process as a comparative example, and the shape which has the same cross section from the heel part side to the bottom face side were prepared for the shape of the leg part 2.
Next, electrodes 3 were formed on all ferrite porcelains to obtain 30 ferrite core samples. The electrode 3 parts were printed by firing a thick film of Ag by dipping on each leg 2 of the ferrite porcelain, baking the thick film on the ferrite porcelain, and Ni and Sn were produced by electroplating on the thick film. .
[0066]
The thickness of each electrode part 3 was 20 μm for Ag, 2 μm for Ni, and 7 μm for Sn, and the dimension from the bottom surface side of the leg part 2 of the Ag thick film toward the core part 4 was 0.1 mm. In addition, the shape of the leg part 2 of each ferrite core sample was measured with the measurement microscope.
[0067]
Subsequently, each obtained ferrite core sample is evaluated by the following method.
(1) The elongation of each plating was evaluated. Elongation is measured by measuring the plating elongation 5 shown in FIG. 5 from the upper end of the dimension from the bottom surface side of the leg portion 2 of the Ag thick film toward the winding core portion using the measuring microscope. The average of the plating elongation of the two legs 2 was calculated.
(2) The insulation resistance between the electrode portions 3a and 3b when the respective probes were applied to the electrode portions 3a and 3b of each ferrito core sample and DC 50V was applied was evaluated. The measuring instrument used here is a high resistance measuring instrument manufactured by HP, and the measurement voltage is generally a voltage value used for evaluation of insulation resistance between conductors or between conductors and a ferrite core with an inductor.
(3) Each ferrite core sample is soldered onto the mounting board using the electrode part 3 on the bottom surface of the leg 2 and the mounting board on which the ferrite core sample is mounted is fixed to a test stand manufactured by AIKOH using double-sided tape. Of the substantially square size when the ferrite core 6 is mounted using the CPU GAGE manufactured by AIKOH, the core part 4 having a side of 2.0 mm in length is applied in a direction parallel to the mounting substrate at a speed of 5 mm / min with an indenter. Press. When the pressure was applied in this manner, the strength was evaluated when all the leg portions 2 were broken and the ferrite core sample was detached from the mounting substrate.
(4) Prepare 30 each ferrite core sample, wind the lead wire with 0.1mm diameter for 7 turns, twist the lead wire, attach the tip of the lead wire to the solder bath, and conduct electricity, HP LCR meter Each Q value (loss characteristic) was measured at a measurement frequency of 1 MHz and a measurement voltage of 50 mV, and a standard deviation which is a variation of 30 Q values was calculated.
[0068]
The results are shown in Table 1.
[0069]
[Table 1]
Figure 2005044946
[0070]
As is clear from Table 1, the samples (Nos. 1 to 15) in which each leg portion 2 is tapered toward the bottom surface and the ridge line portion on the side surface of each leg portion 2 is a curved shape (No. 1 to 15) Is as small as 0.15 mm or less, and the insulation resistance between the legs 2 is also 10 7 Ω · cm or more was ensured, and the strength could be 10 N or more. Further, the average Q value in the ferrite coil sample could be as high as 10.4 or more, and the variation could be 1.8 or less.
[0071]
In particular, a sample (No. 2-6) in which the radius of curvature of the ridge line portion of each leg 2 is 0.02 to 0.2 mm, barrel-processed using alumina as an abrasive, and the radius of curvature of the ridge line of each leg 2 In the sample (No. 10 to 13) having a thickness of 0.02 to 0.15 mm on the heel side and 0.05 to 0.2 mm on the bottom side, the plating elongation can be reduced by 0.1 mm or less, and the leg 2 Insulation resistance between 10 8 It was possible to sufficiently secure Ω · cm or more, and further, the Q value was 11 or more, and the variation was 1.71 or less. This is thought to be due to the fact that by forming the curved surface with each ridge portion tapered, the elongation of the plating is suppressed, the area of the electrode portion 3 having a low Q value is reduced, and the Q value as the ferrite core 6 is increased. In addition, it is considered that variation in the Q value is reduced because the dimension of the electrode portion 3 is stabilized by suppressing the elongation of plating.
[0072]
On the other hand, among the samples which are comparative examples, the barrel processing is not performed, and the samples (Nos. 16 and 17) in which the corners are left in the ridge line portions of the leg portion 2 have a plating elongation of 0.23 mm or more. The insulation resistance between the legs becomes 10 longer. 5 It was found that the resistance was as small as Ω · cm, the Q value was 9.7 or less, and the variation was as large as 2 or more.
[0073]
Moreover, even if each ridge line part of the leg part 2 is made into a curved body, the sample (No. 18) which is not tapered has the same radius of curvature and is plated compared to the tapered sample (No. 4). And the insulation resistance between the legs 2 is 10 6 Ω · cm, Q value is 10.2, and the variation is as large as 2.3. This is because by making the ridge line portion of each leg portion 2 tapered and curved, the concentration of charges on the ridge line portion of the leg portion 2 is alleviated and plating elongation is suppressed.
[0074]
(Example 2)
Next, as in Example 1 above, a sintered body that becomes a ferrite porcelain is placed in a pot-shaped barrel device made of porcelain, and barrel processing is performed under various conditions using only water as an abrasive. The electrode part 3 was similarly formed on the bottom surface.
[0075]
In addition, the shape of the leg part 2 of each ferrite core sample was measured with the measurement microscope.
[0076]
Subsequently, the obtained ferrite core samples were evaluated in the same manner as in Example 1 (1) to (3).
[0077]
In addition, 30 ferrite core samples were prepared, and a conductive wire having a diameter of 0.1 mm was wound for 7 turns, and the evaluation (4) was performed in the same manner as in Example 1.
[0078]
The results are shown in Table 2.
[0079]
[Table 2]
Figure 2005044946
[0080]
As is apparent from Table 2, the samples (No. 19 to 31) in which each leg portion 2 is tapered toward the bottom surface and the ridge line portion on the side surface of each leg portion 2 is a curved shape are not stretched by plating. Is as small as 0.16 mm or less, and the insulation resistance between the legs 2 is also 10 7 Ω · cm or more was ensured, and the strength could be 8N or more. Moreover, the average Q value in the ferrite coil sample could be as high as 10.2 or more, and the variation could be 1.9 or less.
[0081]
In particular, a sample (No. 20 to 24) in which the radius of curvature of the ridge line portion of each leg 2 is 0.02 to 0.2 mm, and the radius of curvature of the ridge line portion of each leg 2 is 0.02 on the heel side. A sample (No. 27 to 30) of 0.15 mm and 0.05 to 0.2 mm on the bottom side can reduce the plating elongation to 0.09 mm or less, and the insulation resistance between the legs 2 is 10 8 Ω · cm or more could be sufficiently secured, and the strength could be 11 N or more. Furthermore, the Q value was 11 or more, and the variation was 1.75 or less. This is thought to be due to the fact that by forming the curved surface with each ridge portion tapered, the elongation of the plating is suppressed, the area of the electrode portion 3 having a low Q value is reduced, and the Q value as a ferrite core is increased. In addition, it is considered that variation in the Q value is reduced because the dimension of the electrode portion 3 is stabilized by suppressing the elongation of plating.
[0082]
On the other hand, the sample (No. 25) in which the curvature radius of the ridge line portion of the sample as a comparative example is 0.22 mm, the curvature radius of the ridge line portion of each leg 2 is 0.2 mm on the heel side, and on the bottom side. In the sample (No. 31) which is 0.22 mm, the elongation of plating is 0.02 mm or less, and the insulation resistance between the legs 2 is 10 11 It was found to be as large as Ω · cm, Q value was 13 or more, and the variation was 1.27 or less, but the strength was as small as 9N or less.
[0083]
This is because the cross-sectional area of the leg part 2 is reduced and the strength of the leg part 2 is reduced by increasing the curved surface of the ridge line part of each leg part 2.
[0084]
【The invention's effect】
According to the ferrite core of the present invention, since each leg 2 is tapered toward the bottom and each leg 2 is curved, it is possible to suppress the elongation of plating when the electrode part 3 is formed. The insulation between the electrode parts 3 can be maintained high, and the reliability of insulation between the electrode parts 3 can be kept high even when the common mode noise filter is downsized and the distance between the adjacent electrode parts 3 is reduced. Moreover, since the dimension from the bottom surface side of the leg portion 2 of the electrode portion 3 toward the winding core portion can be adjusted, short-circuiting of the conductive wire to the adjacent electrode portion 3 can be prevented. Moreover, the Q value of the product can be taken high and the variation can be suppressed.
[0085]
Further, the radius of curvature of each ridge line portion of each leg 2 is 0.02 to 0.15 mm on the flange 1 side, 0.05 to 0.2 mm on the bottom surface side, and gradually increases toward the bottom surface. Further, the elongation of plating can be reliably suppressed, the strength of the leg portion 2 can be kept high, and the strength at the time of mounting can be ensured.
[0086]
Furthermore, in producing the ferrite core 6 of the present invention, by performing barrel processing, the curved surface shape, curved surface dimension, and surface roughness of the leg portion 2 can be easily and freely adjusted even in the small ferrite core 6. be able to.
[0087]
Furthermore, even if fine particles of the abrasive adhere to the sintered body that becomes a ferrite porcelain by using a high-resistance abrasive during barrel processing or by using only water, an electrode is used in the subsequent process. Since the current hardly flows between the fine particle abrasive adhered to the surface and the thick film to be the electrode part 3 when the electroplating for forming the part 3 is performed, the elongation of the plating can be prevented.
[0088]
Further, when a common mode noise filter is formed using the ferrite core 6 of the present invention, the reliability of the insulation resistance between the electrode portions 3 is reduced even if the common mode noise filter is downsized and the interval between the adjacent electrode portions 3 is reduced. Therefore, it is possible to prevent a short circuit between the electrode portion 3 and the conductive wire, to further increase the Q value, and to reduce variation.
[Brief description of the drawings]
FIGS. 1A and 1B are perspective views showing an embodiment of a ferrite core of the present invention.
FIG. 2 is a perspective view showing an embodiment of a common mode noise filter using the ferrite core of the present invention.
FIGS. 3A to 3C are diagrams showing an embodiment of a common mode noise filter using a conventional ferrite core, wherein FIG. 3A is a front view, FIG. 3B is a side view, and FIG. FIG. 3 is a plan view seen from the bottom side of the leg portion.
FIG. 4 is a perspective view for explaining a problem of a conventional ferrite core.
FIGS. 5A and 5B are a perspective view and a cross-sectional view for explaining problems of a conventional ferrite core. FIGS.
FIG. 6 is a partial perspective view for explaining a problem of a common mode noise filter using a conventional ferrite core.
[Explanation of symbols]
1: Buttocks
2: Leg
3: Electrode part
4: Core part
5: Elongation of plating

Claims (6)

巻芯部の両端に鍔部と該鍔部に連続する複数の脚部とを備え、脚部の底面側の端部に電極が形成されてなるフェライトコアであって、上記各脚部が底面に向かって先細り状であるとともに、各脚部の側面における稜線部が曲面状であることを特徴とするフェライトコア。A ferrite core comprising a flange part at both ends of the core part and a plurality of leg parts continuous to the flange part, and an electrode is formed at an end part on the bottom surface side of the leg part, wherein each leg part is a bottom surface And a ridge line portion on the side surface of each leg portion is a curved surface. 上記各脚部の稜線部の曲率半径が0.02〜0.2mmであることを特徴とする請求項1に記載のフェライトコア。2. The ferrite core according to claim 1, wherein a radius of curvature of a ridge line portion of each leg portion is 0.02 to 0.2 mm. 上記各脚部の稜線部の曲率半径が、鍔部側で0.02〜0.15mm、底面側で0.05〜0.2mmであり、且つ底面に向かって漸増することを特徴とする請求項1または2に記載のフェライトコア。The radius of curvature of the ridge portion of each leg is 0.02 to 0.15 mm on the heel side, 0.05 to 0.2 mm on the bottom side, and gradually increases toward the bottom. Item 3. The ferrite core according to Item 1 or 2. 請求項1乃至3の何れかに記載のフェライトコアの製造方法であって、上記フェライトコアとなる焼結体をバレル加工することによって、各脚部の稜線部を曲面状に加工することを特徴とするフェライトコアの製造方法。The method for manufacturing a ferrite core according to any one of claims 1 to 3, wherein the ridge line portion of each leg portion is processed into a curved surface by barrel processing the sintered body that becomes the ferrite core. A method for manufacturing a ferrite core. 上記バレル加工の研磨材として、高抵抗の研磨剤、または水を使用することを特徴とする請求項4に記載のフェライトコアの製造方法。The method for producing a ferrite core according to claim 4, wherein a high-resistance abrasive or water is used as the abrasive for barrel processing. 上記請求項1乃至3の何れかに記載のフェライトコアに導線を巻回してなるコモンモードノイズフィルター。A common mode noise filter formed by winding a conducting wire around the ferrite core according to any one of claims 1 to 3.
JP2003202033A 2003-07-25 2003-07-25 Ferrite core, manufacturing method thereof, and common mode noise filter using the same Expired - Fee Related JP4409225B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003202033A JP4409225B2 (en) 2003-07-25 2003-07-25 Ferrite core, manufacturing method thereof, and common mode noise filter using the same
US10/897,966 US7212093B2 (en) 2003-07-25 2004-07-22 Ferrite core, method of manufacturing the same, and common-mode noise filter using the same
CNB2004100589031A CN100336141C (en) 2003-07-25 2004-07-26 Ferrite core and producing method thereof and common-mode noise filter using the same ferrite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202033A JP4409225B2 (en) 2003-07-25 2003-07-25 Ferrite core, manufacturing method thereof, and common mode noise filter using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008333984A Division JP4841613B2 (en) 2008-12-26 2008-12-26 Ferrite core, manufacturing method thereof, and common mode noise filter

Publications (2)

Publication Number Publication Date
JP2005044946A true JP2005044946A (en) 2005-02-17
JP4409225B2 JP4409225B2 (en) 2010-02-03

Family

ID=34261922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202033A Expired - Fee Related JP4409225B2 (en) 2003-07-25 2003-07-25 Ferrite core, manufacturing method thereof, and common mode noise filter using the same

Country Status (1)

Country Link
JP (1) JP4409225B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319183A (en) * 2005-05-13 2006-11-24 Murata Mfg Co Ltd Wire-winding coil component
JP2007005769A (en) * 2005-05-27 2007-01-11 Tdk Corp Coil part and electronic apparatus
JP2007103596A (en) * 2005-10-03 2007-04-19 Tokyo Parts Ind Co Ltd Winding-chip common mode choke coil
JP2007184494A (en) * 2006-01-10 2007-07-19 Tdk Corp Ferrite part
JP2009111197A (en) * 2007-10-31 2009-05-21 Toda Kogyo Corp Molded ferrite sheet, sintered ferrite substrate, and antenna module
JP2016143834A (en) * 2015-02-04 2016-08-08 Tdk株式会社 Magnetic core and coil device
CN109494051A (en) * 2017-09-12 2019-03-19 株式会社村田制作所 Drum type core and coil component
CN112147426A (en) * 2019-06-11 2020-12-29 美磊电子科技(昆山)有限公司 Common mode filter insulation resistance test method capable of improving accuracy

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325978A (en) * 1993-05-11 1994-11-25 Taiyo Yuden Co Ltd Composite electronic component and manufacture thereof
JPH0714743A (en) * 1993-06-22 1995-01-17 Murata Mfg Co Ltd Production of ceramic electronic component
JPH08107019A (en) * 1994-10-03 1996-04-23 Tdk Corp Coil element and its manufacture
JPH08181029A (en) * 1994-12-26 1996-07-12 Taiyo Yuden Co Ltd Manufacture of electronic component
JPH1092624A (en) * 1996-07-26 1998-04-10 Tdk Corp Sintered body of hexagonal z-type magnetic oxide, its manufacture, and impedance element
JPH10189343A (en) * 1996-12-26 1998-07-21 Kyocera Corp Chip inductor
JPH10270254A (en) * 1997-03-28 1998-10-09 Murata Mfg Co Ltd Chip coil
JPH11251179A (en) * 1998-03-03 1999-09-17 Tdk Corp Multilayer chip capacitor and its manufacture
JP2000173835A (en) * 1998-12-05 2000-06-23 Tdk Corp Laminated electronic component and manufacture thereof
JP2001319830A (en) * 2000-05-10 2001-11-16 Murata Mfg Co Ltd Composite electronic part and its manufacturing method
JP2002329618A (en) * 2001-05-01 2002-11-15 Koa Corp Chip type coil
JP2003068549A (en) * 2001-08-28 2003-03-07 Sumitomo Special Metals Co Ltd Manufacturing method of ferrite core

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325978A (en) * 1993-05-11 1994-11-25 Taiyo Yuden Co Ltd Composite electronic component and manufacture thereof
JPH0714743A (en) * 1993-06-22 1995-01-17 Murata Mfg Co Ltd Production of ceramic electronic component
JPH08107019A (en) * 1994-10-03 1996-04-23 Tdk Corp Coil element and its manufacture
JPH08181029A (en) * 1994-12-26 1996-07-12 Taiyo Yuden Co Ltd Manufacture of electronic component
JPH1092624A (en) * 1996-07-26 1998-04-10 Tdk Corp Sintered body of hexagonal z-type magnetic oxide, its manufacture, and impedance element
JPH10189343A (en) * 1996-12-26 1998-07-21 Kyocera Corp Chip inductor
JPH10270254A (en) * 1997-03-28 1998-10-09 Murata Mfg Co Ltd Chip coil
JPH11251179A (en) * 1998-03-03 1999-09-17 Tdk Corp Multilayer chip capacitor and its manufacture
JP2000173835A (en) * 1998-12-05 2000-06-23 Tdk Corp Laminated electronic component and manufacture thereof
JP2001319830A (en) * 2000-05-10 2001-11-16 Murata Mfg Co Ltd Composite electronic part and its manufacturing method
JP2002329618A (en) * 2001-05-01 2002-11-15 Koa Corp Chip type coil
JP2003068549A (en) * 2001-08-28 2003-03-07 Sumitomo Special Metals Co Ltd Manufacturing method of ferrite core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319183A (en) * 2005-05-13 2006-11-24 Murata Mfg Co Ltd Wire-winding coil component
JP2007005769A (en) * 2005-05-27 2007-01-11 Tdk Corp Coil part and electronic apparatus
JP2007103596A (en) * 2005-10-03 2007-04-19 Tokyo Parts Ind Co Ltd Winding-chip common mode choke coil
JP2007184494A (en) * 2006-01-10 2007-07-19 Tdk Corp Ferrite part
JP4529906B2 (en) * 2006-01-10 2010-08-25 Tdk株式会社 Ferrite parts
JP2009111197A (en) * 2007-10-31 2009-05-21 Toda Kogyo Corp Molded ferrite sheet, sintered ferrite substrate, and antenna module
JP2016143834A (en) * 2015-02-04 2016-08-08 Tdk株式会社 Magnetic core and coil device
CN109494051A (en) * 2017-09-12 2019-03-19 株式会社村田制作所 Drum type core and coil component
JP2019050318A (en) * 2017-09-12 2019-03-28 株式会社村田製作所 Drum-shaped core and coil component
US10867737B2 (en) 2017-09-12 2020-12-15 Murata Manufacturing Co., Ltd. Drum core and coil component
CN109494051B (en) * 2017-09-12 2021-05-25 株式会社村田制作所 Drum-shaped core and coil component
CN112147426A (en) * 2019-06-11 2020-12-29 美磊电子科技(昆山)有限公司 Common mode filter insulation resistance test method capable of improving accuracy

Also Published As

Publication number Publication date
JP4409225B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US9583251B2 (en) Chip electronic component and board having the same
US7212093B2 (en) Ferrite core, method of manufacturing the same, and common-mode noise filter using the same
JP5065603B2 (en) Coil-embedded substrate and electronic device
US9779867B2 (en) Electronic component and board having the same
US20160126004A1 (en) Chip electronic component
JP5821535B2 (en) Multilayer inductor
US20160055955A1 (en) Chip electronic component
JP4409225B2 (en) Ferrite core, manufacturing method thereof, and common mode noise filter using the same
CN105702417A (en) Electronic component and method of manufacturing the same
KR20130042651A (en) Laminated coil component
JP3628579B2 (en) Planar magnetic element and switching power supply
JP7031574B2 (en) Electronic components and their manufacturing methods
JP4841613B2 (en) Ferrite core, manufacturing method thereof, and common mode noise filter
JP4111340B2 (en) Chip-type electronic components
JP4583017B2 (en) Ferrite core and common mode noise filter using the same
JP6777065B2 (en) Laminated electronic components
JP3456106B2 (en) Chip type impedance element
JP5197772B2 (en) Ferrite core and common mode noise filter using the same
JP2004111841A (en) Ferrite core and common mode noise filter using it
JP2005277205A (en) Ceramic body for ferrite core, ferrite core employing the same, and common mode noise filter
JP5197771B2 (en) Ferrite core and common mode noise filter using the same
JPH08181029A (en) Manufacture of electronic component
US11694839B2 (en) Base configured as an electronic component or a circuit board
JP4712106B2 (en) Ferrite core and common node noise filter using the same
JP2005159064A (en) Ceramic electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Ref document number: 4409225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees