JP2005044704A - Solid electrolyte - Google Patents

Solid electrolyte Download PDF

Info

Publication number
JP2005044704A
JP2005044704A JP2003279593A JP2003279593A JP2005044704A JP 2005044704 A JP2005044704 A JP 2005044704A JP 2003279593 A JP2003279593 A JP 2003279593A JP 2003279593 A JP2003279593 A JP 2003279593A JP 2005044704 A JP2005044704 A JP 2005044704A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
secondary battery
improved
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003279593A
Other languages
Japanese (ja)
Inventor
Soubun Okumura
壮文 奥村
Shin Nishimura
西村  伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2003279593A priority Critical patent/JP2005044704A/en
Publication of JP2005044704A publication Critical patent/JP2005044704A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte with ion conductivity as well as safety improved. <P>SOLUTION: The solid electrolyte is to contain a carbonate group-containing polymer of a branched type and electrolyte salt. With this, its elasticity can be lowered as compared with a conventional one using an organic polymer, and ion is made easier to move. Therefore, the ion conductivity can be improved even without an addition of an inflammable organic solvent. That is, the ion conductivity is improved as the safety is enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、様々な電気化学デバイスに用いる固体電解質に関する。   The present invention relates to solid electrolytes for use in various electrochemical devices.

電池、キャパシター、センサーなどの様々なイオンの動きを利用した電気化学デバイスを構成する電解質として、イオン伝導性の点から、一般的に液状の電解質が用いられている。しかし、液状の電解質では、液漏れによる機器や部品などの損傷の恐れがあるといった問題がある。   A liquid electrolyte is generally used from the viewpoint of ion conductivity as an electrolyte constituting an electrochemical device using various ion movements such as a battery, a capacitor, and a sensor. However, a liquid electrolyte has a problem that there is a risk of damage to equipment or parts due to liquid leakage.

これに対し、最近では、無機結晶性物質、無機ガラス、有機高分子などの固体電解質を用いることが提案されている。このような固体電解質は、液漏れを無くすことができ、また、液状の電解質に比べて電解質への着火性を低くすることが可能になり、電気化学デバイスの信頼性、安全性を向上できるる。さらに、有機高分子を用いた固体電解質では、他の材料を用いた場合に比べて、加工性、成形性を向上できるうえ、得られる固体電解質が柔軟性、曲げ加工性を有している。したがって、有機高分子を用いた固体電解質は、これを適用した電気化学デバイスの設計の自由度を向上できるなどの点から、その開発が期待されている。   On the other hand, recently, it has been proposed to use a solid electrolyte such as an inorganic crystalline material, inorganic glass, or organic polymer. Such a solid electrolyte can eliminate liquid leakage and can lower the ignitability of the electrolyte as compared with a liquid electrolyte, thereby improving the reliability and safety of the electrochemical device. . Furthermore, in the solid electrolyte using the organic polymer, processability and formability can be improved as compared with the case of using other materials, and the obtained solid electrolyte has flexibility and bending workability. Therefore, development of a solid electrolyte using an organic polymer is expected from the viewpoint of improving the degree of freedom in designing an electrochemical device to which the solid electrolyte is applied.

このような有機高分子を用いた固体電解質としては、二次電池用の固体電解質として、ポリエチレンオキシドに特定のアルカリ金属塩を含有させたものが知られている(例えば、特許文献1参照)。また、可燃性有機溶媒を添加し、イオン伝導度を向上させたゲル状の電解質が検討され実用化されている(例えば、特許文献2参照)。さらに、カーボネート基含有ポリマーを用いたゲル状の電解質なども提案されている(例えば、特許文献3参照)。   As a solid electrolyte using such an organic polymer, a solid electrolyte for a secondary battery in which a specific alkali metal salt is contained in polyethylene oxide is known (for example, see Patent Document 1). Further, a gel electrolyte in which a flammable organic solvent is added to improve ionic conductivity has been studied and put into practical use (see, for example, Patent Document 2). Furthermore, a gel electrolyte using a carbonate group-containing polymer has also been proposed (see, for example, Patent Document 3).

特開2002−158039号公報(第2−3頁)JP 2002-158039 A (page 2-3) 特開2000−82328号公報(第2頁)JP 2000-82328 A (2nd page) 特開2000−351843号公報(第2−3頁)JP 2000-351843 A (page 2-3)

しかし、ポリエチレンオキシドに特定のアルカリ金属塩を含有させたような有機高分子を用いた固体電解質では、イオン伝導性の面では他の材質より劣っているのが現状である。例えば、室温におけるイオン伝導度が10−5S/cm程度と低く、室温作動型の電池などに適用することは難しい。そこで、イオン伝導度を向上できるゲル状の電解質が実用化されたり、また、提案されたりしているが、このような電解質では可燃性溶媒を含有しているため、液状の電解質に比べて電解質への着火性を低くすることが難しく、安全性を向上し難くい。このため、安全性を向上しながら、イオン伝導度も向上できる固体電解質が求められている。 However, a solid electrolyte using an organic polymer in which a specific alkali metal salt is contained in polyethylene oxide is inferior to other materials in terms of ion conductivity. For example, the ionic conductivity at room temperature is as low as about 10 −5 S / cm, and it is difficult to apply it to a battery operating at room temperature. Therefore, gel electrolytes that can improve ionic conductivity have been put to practical use or have been proposed, but such electrolytes contain a flammable solvent, so that the electrolyte is in comparison with liquid electrolytes. It is difficult to lower the ignitability of and to improve safety. Therefore, there is a demand for a solid electrolyte that can improve ion conductivity while improving safety.

本発明の課題は、安全性を向上しながら、イオン伝導度も向上することにある。   An object of the present invention is to improve ion conductivity while improving safety.

本発明の固体電解質は、一般式(1)で示される分岐型のカーボネート基含有ポリマーと、電解質塩とを含む構成とすることにより上記課題を解決する。
The solid electrolyte of the present invention solves the above-mentioned problems by adopting a constitution containing a branched carbonate group-containing polymer represented by the general formula (1) and an electrolyte salt.

Figure 2005044704
(ただし、R及びXは炭化水素基、mは付加モル数、nは分岐数である)
このような構成とすることにより、従来の有機高分子を用いた固体電解質よりも弾性率を低下させることができ、イオンが移動し易くできる。このため、可燃性有機溶媒を添加しなくても、イオン伝導度を向上できる。すなわち、安全性を向上しながら、イオン伝導度も向上できる。
また、一般式(1)の式中、炭化水素基R及びXが炭素数2以上7以下である構成とすれば、確実にイオン伝導度を向上できるので好ましい。さらに、炭化水素基R及びXが炭素数2以上3以下である構成とすれば、一層確実にイオン伝導度を向上できるので好ましい。
Figure 2005044704
(Where R and X are hydrocarbon groups, m is the number of moles added, and n is the number of branches)
By setting it as such a structure, an elasticity modulus can be reduced rather than the solid electrolyte using the conventional organic polymer, and it can become easy to move ion. For this reason, ionic conductivity can be improved without adding a flammable organic solvent. That is, ionic conductivity can be improved while improving safety.
In addition, in the formula of the general formula (1), it is preferable that the hydrocarbon groups R and X have 2 or more and 7 or less carbon atoms because the ion conductivity can be reliably improved. Furthermore, it is preferable that the hydrocarbon groups R and X have 2 to 3 carbon atoms because the ion conductivity can be improved more reliably.

また、一般式(1)の式中、付加モル数mが10以上10000以下である構成とすれば、確実にイオン伝導度を向上できると共に、有機高分子を用いた固体電解質の特性を確実に保持できるのでで好ましい。さらに、付加モル数mが100以上1000以下である構成とすれば、一層確実にイオン伝導度を向上できると共に、有機高分子を用いた固体電解質の特性を一層確実に保持できるので好ましい。   In addition, in the formula of the general formula (1), when the number of added moles m is 10 or more and 10,000 or less, the ionic conductivity can be improved with certainty and the characteristics of the solid electrolyte using the organic polymer can be ensured. Since it can hold | maintain, it is preferable. Furthermore, it is preferable that the number of added moles m is 100 or more and 1000 or less because the ion conductivity can be improved more reliably and the characteristics of the solid electrolyte using the organic polymer can be more reliably maintained.

また、一般式(1)の式中、分岐数nが2以上3以下である構成とすれば、確実にイオン伝導度を向上できる有機高分子を用いた固体電解質を形成できるので好ましい。さらに、分岐数nが3である構成とすれば、一層確実にイオン伝導度を向上できる有機高分子を用いた固体電解質を形成できるので好ましい。   In addition, in the general formula (1), it is preferable that the number of branches n is 2 or more and 3 or less because a solid electrolyte using an organic polymer that can improve the ionic conductivity can be surely formed. Furthermore, it is preferable that the number of branches n is 3 because a solid electrolyte using an organic polymer that can improve the ionic conductivity more reliably can be formed.

また、リチウムを可逆的に吸蔵放出する正極及び負極と、リチウムイオンを含む固体電解質とを有するリチウム二次電池であり、固体電解質として、上記のいずれかの固体電解質を有する構成とする。このような構成とすることにより、液漏を無くせると共に、イオン伝導度を向上できるため、安全性を向上しながら、リチウム二次電池の充放電特性も向上できる。   Further, the lithium secondary battery includes a positive electrode and a negative electrode that reversibly occlude and release lithium, and a solid electrolyte containing lithium ions, and the solid electrolyte includes any one of the above solid electrolytes. By adopting such a configuration, liquid leakage can be eliminated and ion conductivity can be improved. Therefore, the charge / discharge characteristics of the lithium secondary battery can be improved while improving safety.

また、このとき、固体電解質が含む電解質塩は、LiPF6、LiN(CF3SO22、LiBF4、LiN(C25SO22、LiI、LiBrの少なくとも1つである構成とする。さらに、固体電解質が含む電解質塩は、LiN(CF3SO22及びLiN(C25SO22の少なくとも一方である構成とすれば、高分子中の解離度の点で好ましい。 At this time, the electrolyte salt contained in the solid electrolyte is at least one of LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiN (C 2 F 5 SO 2 ) 2 , LiI, and LiBr. To do. Furthermore, the electrolyte salt included in the solid electrolyte is preferably at least one of LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 in view of the degree of dissociation in the polymer.

本発明によれば、安全性を向上しながら、イオン伝導度も向上できる。   According to the present invention, ionic conductivity can be improved while improving safety.

以下、本発明を適用してなる固体電解質、及びこの固体電解質を有するリチウム二次電池の一実施形態について説明する。   Hereinafter, an embodiment of a solid electrolyte to which the present invention is applied and a lithium secondary battery having the solid electrolyte will be described.

本実施形態の固体電解質は、一般式(1)で示される分岐型のカーボネート基含有ポリマーと、電解質塩とを含む構成である。なお、カーボネート基とは、−O−(C=O)−O−構造を指す。
The solid electrolyte of this embodiment has a configuration including a branched carbonate group-containing polymer represented by the general formula (1) and an electrolyte salt. Note that the carbonate group refers to a —O— (C═O) —O— structure.

Figure 2005044704
ただし、R及びXは炭素数が2以上7以下の炭化水素基、mは付加モル数で10以上10000以下、nは分岐数で2以上3以下である。
Figure 2005044704
However, R and X are hydrocarbon groups having 2 to 7 carbon atoms, m is 10 to 10,000 in terms of added moles, and n is 2 to 3 in number of branches.

一般式(1)の炭化水素基Rは、上記のように、炭素数が2以上7以下の炭化水素基であり、例えば、エチレン、プロピレン、ブチレン、ペンチレン、ジメチルトリメチレン、ジメチルテトラメチレン、ジメチルペンタメチレンなどの脂肪族炭化水素基などである。炭化水素基Rの炭素数が7を越えると、一定重量に占めるカーボネート基の割合が低下し、イオン、本実施形態ではリチウムイオンの配位可能サイトが減少してしまう。そして、イオンの配位可能サイトが減少するに連れ、イオン伝導度が低下して行く。このため、炭化水素基Rの炭素数が7を越えると、イオン伝導度を向上できなくなる場合がある。一方、炭化水素基Rの炭素数が2よりも小さくなると、高分子が結晶化し易くなることにより、イオンが動き難くなり、イオン伝導度を向上できなくなる場合がある。   As described above, the hydrocarbon group R in the general formula (1) is a hydrocarbon group having 2 to 7 carbon atoms. For example, ethylene, propylene, butylene, pentylene, dimethyltrimethylene, dimethyltetramethylene, dimethyl And aliphatic hydrocarbon groups such as pentamethylene. If the number of carbon atoms of the hydrocarbon group R exceeds 7, the proportion of the carbonate group occupying a certain weight decreases, and the number of ions, that is, lithium ion coordination sites in this embodiment, decreases. As the number of ion coordination sites decreases, the ionic conductivity decreases. For this reason, when the carbon number of the hydrocarbon group R exceeds 7, the ionic conductivity may not be improved. On the other hand, when the number of carbon atoms of the hydrocarbon group R is smaller than 2, the polymer is easily crystallized, which makes it difficult for ions to move, and the ionic conductivity may not be improved.

したがって、炭化水素基Rの炭素数は、本実施形態の数値に限らず任意に選択することもできるが、本実施形態のように2以上7以下とすることにより、確実にイオン伝導度を向上できる。さらに、炭化水素基Rの炭素数は、2以上3以下とすることにより、一層確実にイオン伝導度を向上できる。   Therefore, the number of carbon atoms of the hydrocarbon group R is not limited to the numerical value of the present embodiment, but can be arbitrarily selected. By setting the number of carbon atoms to 2 or more and 7 or less as in the present embodiment, the ionic conductivity is reliably improved. it can. Furthermore, the ionic conductivity can be improved more reliably by setting the number of carbon atoms of the hydrocarbon group R to 2 or more and 3 or less.

一般式(1)の付加モル数mは、上記のように、10以上10000以下である。付加モル数mが10000を越えると、分子量が大きくなり、分子が長くなり過ぎる。そして、分子が長くなるに連れて分子が動き難くなり、イオンが動き難くなるため、イオン伝導度が低下して行く。このため、付加モル数mが10000を越えると、イオン伝導度を向上できなくなる場合がある。一方、付加モル数mが10より小さくなると、分子が短くなり過ぎることから、やはり分子が動き難くなり、イオンが動き難くなるため、イオン伝導度が低下して行く。このため、付加モル数mが10よりも小さくなることでも、イオン伝導度を向上できなくなる場合がある。加えて、付加モル数mが10より小さくなると、分子が短くなり過ぎることから、有機高分子を用いた固体電解質に求められる加工性、成形性、柔軟性や曲げ加工性などの特性が損なわれてしまう。   The added mole number m of the general formula (1) is 10 or more and 10,000 or less as described above. When the added mole number m exceeds 10,000, the molecular weight increases and the molecule becomes too long. Then, as the molecule becomes longer, the molecule becomes difficult to move and the ion becomes difficult to move, so that the ionic conductivity decreases. For this reason, when the added mole number m exceeds 10,000, the ionic conductivity may not be improved. On the other hand, when the added mole number m is smaller than 10, the molecule becomes too short, so that the molecule becomes difficult to move and the ion becomes difficult to move, so that the ionic conductivity decreases. For this reason, even if the added mole number m is smaller than 10, the ionic conductivity may not be improved. In addition, when the number of added moles m is less than 10, the molecule becomes too short, and the properties such as processability, moldability, flexibility and bending workability required for solid electrolytes using organic polymers are impaired. End up.

したがって、付加モル数mは、本実施形態の数値に限らず任意に選択することもできるが、本実施形態のように10以上10000以下とすることにより、確実にイオン伝導度を向上できると共に、確実に有機高分子を用いた固体電解質としての特性を保持できる。さらに、付加モル数mは、100以上1000以下とすることにより、一層確実にイオン伝導度を向上できると共に、一層確実に有機高分子を用いた固体電解質としての特性を保持できる。   Therefore, the number of added moles m is not limited to the numerical value of the present embodiment, and can be arbitrarily selected. However, by setting the number of moles to 10 or more and 10,000 or less as in the present embodiment, the ion conductivity can be reliably improved, The characteristics as a solid electrolyte using an organic polymer can be reliably maintained. Furthermore, by setting the added mole number m to 100 or more and 1000 or less, the ionic conductivity can be improved more reliably and the characteristics as a solid electrolyte using an organic polymer can be more reliably maintained.

一般式(1)の分岐数nは、上記のように、2以上3以下である。分岐数nが3を越えたとき、そして、分岐数nが2より小さいとき、固体電解質を形成できない場合がある。したがって、分岐数nは、本実施形態の数値に限らず任意に選択することもできるが、本実施形態のように2以上3以下とすることにより、確実にイオン伝導度を向上できる有機高分子を用いた固体電解質を形成できる。さらに、分岐数nは、3とすることにより、一層確実に確実にイオン伝導度を向上できる有機高分子を用いた固体電解質を形成できる。   The number of branches n in the general formula (1) is 2 or more and 3 or less as described above. When the number of branches n exceeds 3, and when the number of branches n is less than 2, a solid electrolyte may not be formed. Therefore, the number of branches n is not limited to the numerical value of the present embodiment, but can be arbitrarily selected. However, by setting the branch number to 2 or more and 3 or less as in the present embodiment, the organic polymer can reliably improve the ion conductivity A solid electrolyte using can be formed. Furthermore, by setting the number of branches n to 3, a solid electrolyte using an organic polymer that can improve the ionic conductivity more reliably and reliably can be formed.

一般式(1)の炭化水素基Xは、上記のように、炭素数が2以上7以下の炭化水素基であり、炭化水素基Rと同様に、例えば、エチレン、プロピレン、ブチレン、ペンチレン、ジメチルトリメチレン、ジメチルテトラメチレン、ジメチルペンタメチレンなどの脂肪族炭化水素基などである。炭化水素基Xの炭素数が7を越えると、炭化水素基Rと同様に、一定重量に占めるカーボネート基の割合が低下し、イオン、本実施形態ではリチウムイオンの配位可能サイトが減少してしまう。そして、イオンの配位可能サイトが減少するに連れ、イオン伝導度が低下して行く。このため、炭化水素基Xの炭素数が7を越えると、イオン伝導度を向上できなくなる場合がある。一方、炭化水素基Xの炭素数が2よりも小さくなると、高分子が結晶化し易くなることにより、イオンが動き難くなり、イオン伝導度を向上できなくなる場合がある。   As described above, the hydrocarbon group X of the general formula (1) is a hydrocarbon group having 2 to 7 carbon atoms. Like the hydrocarbon group R, for example, ethylene, propylene, butylene, pentylene, dimethyl And aliphatic hydrocarbon groups such as trimethylene, dimethyltetramethylene and dimethylpentamethylene. When the number of carbon atoms of the hydrocarbon group X exceeds 7, like the hydrocarbon group R, the proportion of the carbonate group occupying a constant weight decreases, and in this embodiment, the coordination possible site of lithium ions decreases. End up. As the number of ion coordination sites decreases, the ionic conductivity decreases. For this reason, when the carbon number of the hydrocarbon group X exceeds 7, the ionic conductivity may not be improved. On the other hand, when the number of carbon atoms of the hydrocarbon group X is smaller than 2, the polymer is easily crystallized, which makes it difficult for ions to move, and the ionic conductivity may not be improved.

したがって、炭化水素基Rと同様に、炭化水素基Xの炭素数は、本実施形態の数値に限らず任意に選択することもできるが、本実施形態のように2以上7以下とすることにより、確実にイオン伝導度を向上できる。さらに、炭化水素基Xの炭素数は、2以上3以下とすることにより、一層確実にイオン伝導度を向上できる。   Therefore, similarly to the hydrocarbon group R, the number of carbon atoms of the hydrocarbon group X is not limited to the numerical value of the present embodiment, but can be arbitrarily selected, but by setting it to 2 or more and 7 or less as in the present embodiment. It is possible to improve the ionic conductivity without fail. Furthermore, the ionic conductivity can be more reliably improved by setting the number of carbon atoms of the hydrocarbon group X to 2 or more and 3 or less.

本実施形態における電解質塩としては、リチウム二次電池を構成する固体電解質であるため、リチウム二次電池に用いることができる電解質塩であれば、様々な電解質を使用できる。例えば、LiClO4、LiCF3SO3、LiN(CF3SO3)2、LiN(C25SO2)2、LiBF4、LiPF6、LiI、LiBr、低級脂肪族カルボン酸リチウムで表される化合物またはそれらの混合物などを用いることができる。ただし、高分子中での解離度を考慮すると、LiN(CF3SO3)2、LiN(C25SO2)2を用いることが望ましい。 Since the electrolyte salt in the present embodiment is a solid electrolyte constituting a lithium secondary battery, various electrolytes can be used as long as the electrolyte salt can be used for a lithium secondary battery. For example, LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiBF 4 , LiPF 6 , LiI, LiBr, lower aliphatic lithium carboxylate A compound or a mixture thereof can be used. However, considering the degree of dissociation in the polymer, it is desirable to use LiN (CF 3 SO 3 ) 2 or LiN (C 2 F 5 SO 2 ) 2 .

さらに、本発明の固体電解質は、分岐型のカーボネート基含有ポリマーを含む構成とすることに加えて、数十nm程度の粒状の無機酸化物、例えばSiO、TiO、ZrOといったような無機酸化物の少なくとも1種類を含む構成とすることで、イオン伝導度をより向上することもできる。 Furthermore, the solid electrolyte of the present invention includes a branched carbonate group-containing polymer and an inorganic oxide such as a granular inorganic oxide of about several tens of nanometers such as SiO 2 , TiO 2 , and ZrO 2. By including at least one kind of oxide, the ionic conductivity can be further improved.

本実施形態のリチウム二次電池を構成するリチウムを可逆的に吸蔵放出する正極としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)などの層状化合物、一種以上の遷移金属を置換したもの、または、マンガン酸リチウム、銅−リチウム酸化物(Li2CuO2)、LiV38 、LiFe34 、V25 、Cu227などのバナジウム酸化物、ジスルフィド化合物、そして、Fe2(MoO4)3 などを含む混合物などが挙げられる。 As the positive electrode that reversibly occludes and releases lithium constituting the lithium secondary battery of this embodiment, a layered compound such as lithium cobaltate (LiCoO 2 ) or lithium nickelate (LiNiO 2 ), or one or more transition metals is substituted. Or vanadium oxides such as lithium manganate, copper-lithium oxide (Li 2 CuO 2 ), LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 , disulfide compounds And a mixture containing Fe 2 (MoO 4 ) 3 and the like.

なお、マンガン酸リチウムは、Li1+xMn2-x4(ただしx=0〜0.33)、Li1+xMn2-x-yy4(ただし、MはNi、Co、Cr、Cu、Fe、Al、Mgより選ばれた少なくとも1種の金属を含み、x=0〜0.33、y=0〜1.0、2−x−y>0)、LiMnO3 、LiMn23 、LiMnO2 、LiMn2-xx2(ただし、MはCo、Ni、Fe、Cr、Zn、Taより選ばれた少なくとも1種の金属を含み、x=0.01〜0.1)、Li2Mn3MO8(ただし、MはFe、Co、Ni、Cu、Znより選ばれた少なくとも1種の金属を含む)などである。 Incidentally, the lithium manganate, Li 1 + x Mn 2- x O 4 ( provided that x = 0~0.33), Li 1 + x Mn 2-xy M y O 4 ( provided that, M is Ni, Co, Cr And at least one metal selected from Cu, Fe, Al, Mg, x = 0 to 0.33, y = 0 to 1.0, 2 -xy> 0), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , LiMn 2−x M x O 2 (where M includes at least one metal selected from Co, Ni, Fe, Cr, Zn, Ta, and x = 0.01 to 0.0. 1), Li 2 Mn 3 MO 8 (wherein M includes at least one metal selected from Fe, Co, Ni, Cu, and Zn).

一方、本実施形態のリチウム二次電池を構成するリチウムを可逆的に吸蔵放出する負極としては、天然黒鉛、石油コークスや石炭ピッチコークスなどから得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの、メソフェーズカーボン、非晶質炭素、炭素繊維、そしてリチウムと合金化する金属、または、炭素粒子表面に金属を担持した材料などが用いられる。具体的には、リチウム、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウムなどより選ばれた金属あるいは合金である。さらに、これらの金属の酸化物を負極として利用することもできる。   On the other hand, as a negative electrode that reversibly occludes and releases lithium constituting the lithium secondary battery of this embodiment, a graphitizable material obtained from natural graphite, petroleum coke, coal pitch coke, or the like is heat-treated at a high temperature of 2500 ° C. or higher. Or mesophase carbon, amorphous carbon, carbon fiber, a metal alloying with lithium, or a material having a metal supported on the surface of carbon particles. Specifically, it is a metal or alloy selected from lithium, aluminum, tin, silicon, indium, gallium, magnesium and the like. Furthermore, oxides of these metals can be used as the negative electrode.

このような本実施形態の固体電解質では、一般式(1)で示される分岐型のカーボネート基含有ポリマーと、電解質塩とを含む構成とすることにより、従来の有機高分子を用いた固体電解質よりも弾性率を低下させることができ、イオンを移動し易くできる。このため、可燃性有機溶媒を添加しなくても、イオン伝導度を向上できる。すなわち、安全性を向上しながら、イオン伝導度も向上できる。   In such a solid electrolyte of the present embodiment, a structure including a branched carbonate group-containing polymer represented by the general formula (1) and an electrolyte salt is used, so that a solid electrolyte using a conventional organic polymer is used. Also, the elastic modulus can be lowered, and ions can be easily moved. For this reason, ionic conductivity can be improved without adding a flammable organic solvent. That is, ionic conductivity can be improved while improving safety.

さらに、本実施形態の固体電解質を有する構成のリチウム二次電池とすることにより、液漏を無くせると共に、イオン伝導度を向上できるため、安全性を向上しながら、リチウム二次電池の充放電特性も向上できる。   Furthermore, by using the lithium secondary battery having the solid electrolyte of the present embodiment, liquid leakage can be eliminated and ion conductivity can be improved, so that charging and discharging of the lithium secondary battery can be performed while improving safety. The characteristics can also be improved.

また、本実施形態では、リチウム二次電池に用いる固体電解質を示したが、本発明の固体電解質は、リチウム二次電池に限らず、様々なイオンの動きを利用する電気化学デバイスに適用することができる。   Moreover, in this embodiment, although the solid electrolyte used for a lithium secondary battery was shown, the solid electrolyte of this invention is applied to the electrochemical device using not only a lithium secondary battery but the movement of various ions. Can do.

また、本発明は、特定の用途に限らず、様々な用途、、例えば、ICカード、パーソナルコンピュータ、大型電子計算機、ノート型パソコン、ペン入力パソコン、ノート型ワープロ、携帯電話、携帯カード、腕時計、カメラ、電気シェーバ、コードレス電話、ファックス、ビデオ、ビデオカメラ、電子手帳、電卓、通信機能付き電子手帳、携帯コピー機、液晶テレビ、電動工具、掃除機、バーチャルリアリティなどの機能を有するゲーム機器、玩具、電動式自転車、医療介護用歩行補助機、医療介護用車椅子、医療介護用移動式ベッド、エスカレータ、エレベータ、フォークリフト、ゴルフカート、非常用電源、ロードコンディショナ、電力貯蔵システムなどの電源として使用することができる様々な構成のリチウム二次電池に適用できる。また、民生用のほか、軍需用,宇宙用などとしても用いることができる。   In addition, the present invention is not limited to a specific application, but can be used in various applications, such as an IC card, a personal computer, a large electronic computer, a notebook computer, a pen input personal computer, a notebook word processor, a mobile phone, a mobile card, a wristwatch, Cameras, electric shavers, cordless phones, fax machines, video cameras, video cameras, electronic notebooks, calculators, electronic notebooks with communication functions, portable photocopiers, LCD TVs, electric tools, vacuum cleaners, game machines with virtual reality, toys , Electric bicycle, walking aid for medical care, wheelchair for medical care, mobile bed for medical care, escalator, elevator, forklift, golf cart, emergency power supply, road conditioner, power storage system, etc. The present invention can be applied to lithium secondary batteries having various configurations. It can also be used for civilian use, military use, space use, etc.

以下、本発明を適用してなる固体電解質、及びリチウム二次電池のモデルを作成し評価を行った一実施例について、図1などを参照して説明する。図1は、本発明を適用してなるリチウム二次電池のモデルの構成を示す斜視図である。なお、本実施例では、試料調製及びイオン伝導度の評価はアルゴン雰囲気下で、粘弾性評価は窒素雰囲気下で行い、電解質塩濃度はカーボネート基1molあたり0.05molになるよう調整した。   Hereinafter, an embodiment in which a model of a solid electrolyte to which the present invention is applied and a lithium secondary battery are created and evaluated will be described with reference to FIG. 1 and the like. FIG. 1 is a perspective view showing the configuration of a model of a lithium secondary battery to which the present invention is applied. In this example, sample preparation and evaluation of ion conductivity were performed in an argon atmosphere, viscoelasticity evaluation was performed in a nitrogen atmosphere, and the electrolyte salt concentration was adjusted to 0.05 mol per 1 mol of carbonate groups.

ここで、まず、分岐型のポリマーの作製例、電極の作製例、そして、固体電解質やリチウム二次電池のモデルの評価方法について説明する。   Here, first, an example of producing a branched polymer, an example of producing an electrode, and a method for evaluating a model of a solid electrolyte or a lithium secondary battery will be described.

分岐型のポリマーの作製は、「日本化学会誌」、1993年、第8巻、p.985〜987の記載に準じて行った。すなわち、50cmの二口フラスコに、無水炭酸カリウム10mmol、N,N―ジメチルホルムアミド(DMF)、または、N−メチル−2−ピロリドン(NMP)15cm、ジアルコール10mmol、ハロゲン化アルキル5mmolを入れ、CO置換したのち、上部にCO入りの風船(容積500cm)を取り付け、80℃で4時間かき混ぜた。反応終了後、冷却し、エーテル35cm、0.5M塩酸20cmを加え、分液した。水層をさらにエーテル10cmで2回抽出し、有機層は合わせて1M亜硫酸ナトリウム水溶液10cmで1回、飽和食塩水10cmで2回洗浄した後、無水硫酸マグネシウム上で乾燥することでポリカーボネートを得た。そして、このように合成したポリカーボネートを、トリメチロールプロパン45g(0.3mol)にリチウムメトキシドを0.1g加えた溶液に混合させ、分岐型のポリカーボネート基含有ポリマーを得た。 The branched polymer was produced according to the description in “Journal of Chemical Society of Japan”, 1993, Vol. 8, p.985-987. That is, 10 mmol of anhydrous potassium carbonate, N, N-dimethylformamide (DMF) or 15 cm 3 of N-methyl-2-pyrrolidone (NMP), 10 mmol of dialcohol, and 5 mmol of alkyl halide are placed in a 50 cm 3 two-necked flask. , After CO 2 replacement, mount the CO 2 containing the balloon (volume 500 cm 3) at the top, followed by stirring for 4 hours at 80 ° C.. After the reaction, the reaction mixture was cooled, ether 35 cm 3, was added 0.5M hydrochloric acid 20 cm 3, and the layers were separated. The aqueous layer was further extracted twice with ether 10 cm 3, the organic layer is combined once with 1M aqueous sodium sulfite solution 10 cm 3, washed twice with saturated brine 10 cm 3, polycarbonate by drying over anhydrous magnesium sulfate Got. The polycarbonate thus synthesized was mixed with a solution obtained by adding 0.1 g of lithium methoxide to 45 g (0.3 mol) of trimethylolpropane to obtain a branched polycarbonate group-containing polymer.

電極、すなわち正極及び負極の作製は、次のように行った。正極の作製では、セルシード(日本化学工業社製のコバルト酸リチウム)、SP270(日本黒鉛社製の黒鉛)、ポリエチレンカーボネート(PAC Polymers Inc.社製)、LiN(CF3SO22(Aldrich社製)、及びKF1120(呉羽化学工業社製のポリフッ化ビニリデン)を70:10:5:10:5重量%の割合で混合した。この混合物をN−メチル−2−ピロリドンに投入、混合して、スラリー状の溶液を作製した。そして、作製したスラリーを、厚さ20μmのアルミニウム箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、150g/m2 であった。合剤かさ密度が3.0g/cm3になるようにプレスし、1cm×1cmに切断して正極を作製した。 The electrodes, that is, the positive electrode and the negative electrode were produced as follows. In the production of the positive electrode, cell seed (lithium cobaltate manufactured by Nippon Chemical Industry Co., Ltd.), SP270 (graphite manufactured by Nippon Graphite Co., Ltd.), polyethylene carbonate (manufactured by PAC Polymers Inc.), LiN (CF 3 SO 2 ) 2 (Aldrich) And KF1120 (polyvinylidene fluoride manufactured by Kureha Chemical Industry Co., Ltd.) at a ratio of 70: 10: 5: 10: 5 wt%. This mixture was put into N-methyl-2-pyrrolidone and mixed to prepare a slurry solution. And the produced slurry was apply | coated to the 20-micrometer-thick aluminum foil with the doctor blade method, and it dried. The mixture application amount was 150 g / m 2 . The mixture was pressed to a bulk density of 3.0 g / cm 3 and cut to 1 cm × 1 cm to produce a positive electrode.

負極の作製では、カーボトロンPE(呉羽化学工業社製の非晶性カーボン)、ポリエチレンカーボネート(PAC Polymers Inc.社製)、LiN(CF3SO22(Aldrich社製)、及びKF1120(呉羽化学工業社製のポリフッ化ビニリデン)を80:10:5:5重量%の割合で混合した。この混合物をN−メチル−2−ピロリドンに投入、混合して、スラリー状の溶液を作製した。そして、作製したスラリーを厚さ20μmの銅箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、70g/m2 であった。合剤かさ密度が1.0g/cm3になるようにプレスし、1.2cm×1.2cmに切断して負極を作製した。 In the production of the negative electrode, Carbotron PE (amorphous carbon manufactured by Kureha Chemical Industries), polyethylene carbonate (manufactured by PAC Polymers Inc.), LiN (CF 3 SO 2 ) 2 (manufactured by Aldrich), and KF1120 (Kureha Chemical) (Polyvinylidene fluoride manufactured by Kogyo Co., Ltd.) was mixed at a ratio of 80: 10: 5: 5% by weight. This mixture was put into N-methyl-2-pyrrolidone and mixed to prepare a slurry solution. And the produced slurry was apply | coated to the 20-micrometer-thick copper foil with the doctor blade method, and it dried. The mixture application amount was 70 g / m 2 . The mixture was pressed to a bulk density of 1.0 g / cm 3 and cut into 1.2 cm × 1.2 cm to produce a negative electrode.

このように作製した固体電解質や、正極及び負極を用いたリチウム二次電池のモデルを以下のような評価方法で評価した。   The model of the lithium secondary battery using the solid electrolyte prepared as described above and the positive electrode and the negative electrode was evaluated by the following evaluation method.

分子量の測定は、ゲルパーミエイションクロマトグラフィー(以下、GPCと略称する)を用いて行った。   The molecular weight was measured using gel permeation chromatography (hereinafter abbreviated as GPC).

ガラス転移温度の測定は、動的粘弾性評価装置(IT計測制御社製DVA−220)を用い、温度範囲が−100℃〜100℃、昇温速度が5℃min−1、測定周波数が10Hzの条件で、正弦波振動をサンプルに印加し、弾性率の実数部と虚数部の比(δ)の温度変化を測定することで行い、tanδのピーク温度をガラス転移温度とした。   The glass transition temperature is measured using a dynamic viscoelasticity evaluation apparatus (DVA-220 manufactured by IT Measurement Control Co., Ltd.), the temperature range is -100 ° C to 100 ° C, the temperature rising rate is 5 ° C min-1, and the measurement frequency is 10 Hz. Under this condition, sinusoidal vibration was applied to the sample and the temperature change of the ratio (δ) of the real part to the imaginary part of the elastic modulus was measured, and the peak temperature of tan δ was defined as the glass transition temperature.

イオン伝導度の測定は、25℃において固体電解質をステンレス鋼電極で挟み込むことで電気化学セルを構成し、電極間に交流を印加して抵抗成分を測定する交流インピーダンス法を用いて行い、コール・コールプロットの実数インピーダンス切片から計算した。   The ionic conductivity is measured using an alternating current impedance method in which an electrochemical cell is constructed by sandwiching a solid electrolyte between stainless steel electrodes at 25 ° C., and an alternating current is applied between the electrodes to measure the resistance component. Calculation was made from the real impedance intercept of the Cole plot.

充放電特性の評価は、次のように実施した。充放電器(東洋システム社製TOSCAT3000)を用い、25℃、電流密度0.5mA/cm2で充放電を行う。充電では、4.2V までは定電流充電を行い、電圧が4.2V に達した後、12時間定電圧充電を行った。充電後の放電では、放電終止電圧3.5V に至るまで定電流放電を行った。また、最初の放電で得られた容量を、初回放電容量とした。そして、このような電池充放電条件での充電・放電を1サイクルとして、初回放電容量の70%以下に至るまで充放電を繰り返し、その回数をサイクル特性とした。 The charge / discharge characteristics were evaluated as follows. Using a charger / discharger (TOSCAT3000 manufactured by Toyo System Co., Ltd.), charging / discharging is performed at 25 ° C. and a current density of 0.5 mA / cm 2 . In the charging, constant current charging was performed up to 4.2V, and constant voltage charging was performed for 12 hours after the voltage reached 4.2V. In discharging after charging, constant current discharging was performed until the discharge final voltage reached 3.5V. Moreover, the capacity | capacitance obtained by the first discharge was made into the first time discharge capacity. And charging / discharging on such battery charging / discharging conditions was made into 1 cycle, charging / discharging was repeated until it reached to 70% or less of initial discharge capacity, and the frequency | count was made into cycle characteristics.

さらに、電流密度1mA/cm2で4.2Vまで定電流充電を行い、電圧が4.2Vに達した後、12時間定電圧充電を行い、充電後、放電終止電圧3.5Vに至るまで定電流放電を行った。そして、このとき得られた容量と、上述の電池充放電条件での充放電サイクルで得られた初回サイクル容量とを比較し、その比率を高速充放電特性とした。 Furthermore, constant current charging is performed up to 4.2 V at a current density of 1 mA / cm 2. After the voltage reaches 4.2 V, constant voltage charging is performed for 12 hours. After charging, the voltage is constant until the discharge end voltage reaches 3.5 V. A current discharge was performed. And the capacity | capacitance obtained at this time was compared with the first cycle capacity | capacitance obtained by the charging / discharging cycle on the above-mentioned battery charging / discharging conditions, and the ratio was made into the high-speed charging / discharging characteristic.

(実施例1)
前述の分岐型のポリカーボネート基含有ポリマーの作製例に従い、ジアルコールとしてヘキサメチレンジオール10mmol、ハロゲン化アルキルとして1,4−ジ(クロロメチル)5mmolを選択し、DMF15cmを用いてポリカーボネート(以下、ポリマーAと称する)を得た。さらに、前述の分岐型のポリカーボネート基含有ポリマーの作製例に従い、ポリマーAを出発物質として分岐型のポリカーボネート基含有ポリマー(以下、分岐型ポリマーAと称する)を得た。このようにして得た分岐型ポリマーAの分子量をGPCにより測定したところ、分子量は48000であった。
(Example 1)
According to the preparation example of the branched polycarbonate group-containing polymer described above, 10 mmol of hexamethylenediol and 5 mmol of 1,4-di (chloromethyl) as the alkyl halide are selected, and the polycarbonate (hereinafter referred to as polymer) is selected using DMF 15 cm 3. A). Further, according to the above-described production example of the branched polycarbonate group-containing polymer, a branched polycarbonate group-containing polymer (hereinafter referred to as branched polymer A) was obtained using polymer A as a starting material. The molecular weight of the branched polymer A thus obtained was measured by GPC. As a result, the molecular weight was 48,000.

この分岐型ポリマーAと、電解質塩としてLiBFとをジメチルカーボネートに混ぜた溶液(以下、溶液Aと称する)を、テフロン(登録商標)上に塗布し、80℃で12時間アルゴン中に放置し、その後、80℃で12時間真空乾燥して厚さ100μmの固体電解質Aを得た。このようにして得られた固体電解質Aのガラス転移温度を前述の方法で測定したところ、15℃であった。 A solution obtained by mixing this branched polymer A and LiBF 4 as an electrolyte salt in dimethyl carbonate (hereinafter referred to as “solution A”) was applied onto Teflon (registered trademark) and left in argon at 80 ° C. for 12 hours. Thereafter, vacuum drying was performed at 80 ° C. for 12 hours to obtain a solid electrolyte A having a thickness of 100 μm. The glass transition temperature of the solid electrolyte A thus obtained was measured by the above-described method and found to be 15 ° C.

さらに、得られた膜状の固体電解質Aを、直径1cmの円板状に切抜き、これを一対のステンレス電極に挟み込んだ後、25℃でのイオン伝導度を前述の方法により求めたところ、イオン伝導度は、0.1mS/cmであった。   Further, the obtained membrane-shaped solid electrolyte A was cut out into a disk shape having a diameter of 1 cm, and sandwiched between a pair of stainless steel electrodes, and then the ionic conductivity at 25 ° C. was determined by the above-described method. The conductivity was 0.1 mS / cm.

また、溶液Aを前述の方法で作製した正極および負極上にキャストし、80℃で12時間アルゴン中に放置し、その後、80℃で12時間真空乾燥を行った。そして、これらの正極及び負極を重ねあわせ、0.1MPaの荷重をかけ、80℃で6時間保持することで張り合わせた。この後、図1に示すように、正極1及び負極3に、各々、ステンレス端子5、7を取り付け、袋状のアルミラミネートフィルム9に挿入した。   Further, the solution A was cast on the positive electrode and the negative electrode prepared by the above-described method, left in argon at 80 ° C. for 12 hours, and then vacuum-dried at 80 ° C. for 12 hours. And these positive electrodes and negative electrodes were piled up, and a load of 0.1 MPa was applied, and they were bonded together by holding at 80 ° C. for 6 hours. Thereafter, as shown in FIG. 1, stainless steel terminals 5 and 7 were attached to the positive electrode 1 and the negative electrode 3, respectively, and inserted into a bag-shaped aluminum laminate film 9.

このように作製したリチウム二次電池のモデルの充放電特性を前述の方法で評価したところ、初回放電容量は、1.1mAhであり、サイクル特性は、138回であった。さらに、高率放電特性は、60%であった。   When the charge / discharge characteristics of the lithium secondary battery model thus produced were evaluated by the above-described method, the initial discharge capacity was 1.1 mAh and the cycle characteristics were 138 times. Furthermore, the high rate discharge characteristic was 60%.

(実施例2)
電解質塩として、実施例1で用いたLiBFの代わりにLiPFを用いること以外は、実施例1と全く同様の方法で固体電解質及びリチウム二次電池のモデルを作製し、実施例1と同様の測定及び評価を行った。その結果、ガラス転移温度は、15℃、イオン伝導度は、0.2mS/cm、初回放電容量は、1.2mAh、サイクル特性は、138回、高率放電特性は、60%であった。
(Example 2)
A model of a solid electrolyte and a lithium secondary battery was prepared in the same manner as in Example 1 except that LiPF 6 was used instead of LiBF 4 used in Example 1 as the electrolyte salt. Measurement and evaluation were performed. As a result, the glass transition temperature was 15 ° C., the ionic conductivity was 0.2 mS / cm, the initial discharge capacity was 1.2 mAh, the cycle characteristics were 138 times, and the high rate discharge characteristics were 60%.

(実施例3)
電解質塩として、実施例1で用いたLiBFの代わりにLiN(CF3SO22(Aldrich社製)を用いること以外は、実施例1と全く同様の方法で固体電解質及びリチウム二次電池のモデルを作製し、実施例1と同様の測定及び評価を行った。その結果、ガラス転移温度は、18℃、イオン伝導度は、0.3mS/cm、初回放電容量は、1.2mAh、サイクル特性は、138回、高率放電特性は、60%であった。
(Example 3)
A solid electrolyte and a lithium secondary battery were exactly the same as in Example 1 except that LiN (CF 3 SO 2 ) 2 (Aldrich) was used as the electrolyte salt instead of LiBF 4 used in Example 1. And the same measurement and evaluation as in Example 1 were performed. As a result, the glass transition temperature was 18 ° C., the ionic conductivity was 0.3 mS / cm, the initial discharge capacity was 1.2 mAh, the cycle characteristics were 138 times, and the high rate discharge characteristics were 60%.

(実施例4)
前述の分岐型のポリカーボネート基含有ポリマーの作製例に従い、ジアルコールとしてヘキサメチレンジオール10mmol、ハロゲン化アルキルとしてヘキサメチレンジヨード5mmolを選択し、NMP15cmを用いてポリカーボネート(以下、ポリマーBと称する)を得た。さらに、前述の分岐型のポリカーボネート基含有ポリマーの作製例に従い、ポリマーBを出発物資として分岐型のポリカーボネート基含有ポリマー(以下、分岐型ポリマーBと称する)を得た。このようにして得た分岐型ポリマーBの分子量をGPCにより測定したところ、分子量は21000であった。
(Example 4)
According to the preparation example of the branched polycarbonate group-containing polymer described above, 10 mmol of hexamethylene diol is selected as the dialcohol, 5 mmol of hexamethylene diiodo is selected as the alkyl halide, and the polycarbonate (hereinafter referred to as polymer B) is selected using NMP 15 cm 3. Obtained. Furthermore, according to the above-described production example of the branched polycarbonate group-containing polymer, a branched polycarbonate group-containing polymer (hereinafter referred to as branched polymer B) was obtained using polymer B as a starting material. The molecular weight of the branched polymer B thus obtained was measured by GPC. As a result, the molecular weight was 21,000.

この分岐ポリマーBと、電解質塩としてLiN(CF3SO22とをジメチルカーボネートに混ぜた溶液(以下、溶液Bと称する)を、テフロン(登録商標)上に塗布し、80℃で12時間アルゴン中に放置し、その後、80℃で12時間真空乾燥して厚さ100μmの固体電解質Bを得た。このようにして得られた固体電解質Bのガラス転移温度を前述の方法で測定したところ、−20℃であった。 A solution obtained by mixing this branched polymer B and LiN (CF 3 SO 2 ) 2 as an electrolyte salt in dimethyl carbonate (hereinafter referred to as solution B) was applied onto Teflon (registered trademark), and the mixture was applied at 80 ° C. for 12 hours. The solid electrolyte B was left in argon and then vacuum dried at 80 ° C. for 12 hours to obtain a solid electrolyte B having a thickness of 100 μm. The glass transition temperature of the solid electrolyte B thus obtained was measured by the method described above, and it was -20 ° C.

さらに、得られた膜状の固体電解質Aを、直径1cmの円板状に切抜き、これを一対のステンレス電極に挟み込んだ後、25℃でのイオン伝導度を前述の方法により求めたところ、イオン伝導度は、0.5mS/cmであった。   Further, the obtained membrane-shaped solid electrolyte A was cut out into a disk shape having a diameter of 1 cm, and sandwiched between a pair of stainless steel electrodes, and then the ionic conductivity at 25 ° C. was determined by the above-described method. The conductivity was 0.5 mS / cm.

また、溶液Bを前述の方法で作製した正極および負極上にキャストし、80℃で12時間アルゴン中に放置し、その後、80℃で12時間真空乾燥を行った。そして、これらの正極及び負極を重ねあわせ、0.1MPaの荷重をかけ80℃で6時間保持することで張り合わせた。この後、図1に示すように、正極1及び負極3に、各々、ステンレス端子5、7を取り付け、袋状のアルミラミネートフィルム9に挿入した。   Further, the solution B was cast on the positive electrode and the negative electrode prepared by the above-described method, left in argon at 80 ° C. for 12 hours, and then vacuum-dried at 80 ° C. for 12 hours. And these positive electrodes and negative electrodes were overlapped and bonded together by applying a load of 0.1 MPa and holding at 80 ° C. for 6 hours. Thereafter, as shown in FIG. 1, stainless steel terminals 5 and 7 were attached to the positive electrode 1 and the negative electrode 3, respectively, and inserted into a bag-shaped aluminum laminate film 9.

このように作製したリチウム二次電池のモデルの充放電特性を前述の方法で評価したところ、初回放電容量は、1.2mAhであり、サイクル特性は、140回であった。また、高率放電特性は、60%であった。   When the charge / discharge characteristics of the lithium secondary battery model thus produced were evaluated by the above-described method, the initial discharge capacity was 1.2 mAh, and the cycle characteristics were 140 times. Further, the high rate discharge characteristic was 60%.

(実施例5)
前述の分岐型のポリカーボネート基含有ポリマーの作製例に従い、ジアルコールとしてヘキサメチレンジオール10mmol、ハロゲン化アルキルとしてヘキサメチレンジブロモ5mmolを選択し、NMP15cmを用いてポリカーボネート(以下、ポリマーCと称する)を得た。ポリマーとして、実施例4で用いたポリマーBの代わりにポリマーCを用いること以外は、実施例4と全く同様の方法で固体電解質及びリチウム二次電池のモデルを作製し、実施例4と同様の測定及び評価を行った。その結果、ガラス転移温度は、−40℃、イオン伝導度は、0.8mS/cm、初回放電容量は、1.3mAh、サイクル特性は、140回、高率放電特性は、65%であった。
(Example 5)
Obtained according Preparation Examples of the branched polycarbonate containing polymers described above, hexamethylene diol 10mmol as dialcohols, select hexamethylene dibromo 5mmol as the alkyl halide, polycarbonate with NMP15cm 3 (hereinafter, referred to as polymer C) to It was. As a polymer, a model of a solid electrolyte and a lithium secondary battery was prepared in the same manner as in Example 4 except that polymer C was used instead of polymer B used in Example 4. Measurement and evaluation were performed. As a result, the glass transition temperature was −40 ° C., the ionic conductivity was 0.8 mS / cm, the initial discharge capacity was 1.3 mAh, the cycle characteristics were 140 times, and the high rate discharge characteristics were 65%. .

(実施例6)
前述の分岐型のポリカーボネート基含有ポリマーの作製例に従い、ジアルコールとしてヘキサメチレンジオール10mmol、ハロゲン化アルキルとして1,4−ジ(クロロメチル)5mmolを選択し、DMF15cmを用いてポリカーボネート(以下、ポリマーDと称する)を得た。ポリマーとして、実施例4で用いたポリマーBの代わりにポリマーDを用いること以外は、実施例4と全く同様の方法で固体電解質及びリチウム二次電池のモデルを作製し、実施例4と同様の測定及び評価を行った。その結果、ガラス転移温度は、−60℃、イオン伝導度は、1.1mS/cm、初回放電容量は、1.3mAh、サイクル特性は、140回、高率放電特性は、65%であった。
(Example 6)
According to the preparation example of the branched polycarbonate group-containing polymer described above, 10 mmol of hexamethylene diol as dialcohol and 5 mmol of 1,4-di (chloromethyl) as alkyl halide were selected, and polycarbonate (hereinafter referred to as polymer) was selected using DMF 15 cm 3. Referred to as D). As a polymer, a model of a solid electrolyte and a lithium secondary battery was prepared in the same manner as in Example 4 except that polymer D was used instead of polymer B used in Example 4. Measurement and evaluation were performed. As a result, the glass transition temperature was −60 ° C., the ionic conductivity was 1.1 mS / cm, the initial discharge capacity was 1.3 mAh, the cycle characteristics were 140 times, and the high rate discharge characteristics were 65%. .

(比較例1)
数平均分子量50000のポリエチレンカーボネート(PAC Polymers Inc.社製)と、電解質塩としてLiN(CF3SO22とをジメチルカーボネートに混ぜた溶液(以下、溶液Eと称する)を、テフロン(登録商標)上に塗布し、80℃で12時間アルゴン中に放置し、その後,80℃で12時間真空乾燥して厚さ100μmの固体電解質Eを得た。このようにして得られた固体電解質Eのガラス転移温度を前述の方法で測定したところ、20℃であった。
(Comparative Example 1)
A solution (hereinafter referred to as solution E) obtained by mixing polyethylene carbonate (manufactured by PAC Polymers Inc.) having a number average molecular weight of 50,000 and LiN (CF 3 SO 2 ) 2 as an electrolyte salt with dimethyl carbonate is a Teflon (registered trademark). ), And left in argon at 80 ° C. for 12 hours, and then vacuum-dried at 80 ° C. for 12 hours to obtain a solid electrolyte E having a thickness of 100 μm. It was 20 degreeC when the glass transition temperature of the solid electrolyte E obtained in this way was measured by the above-mentioned method.

さらに、得られた膜状の固体電解質Eを、直径1cmの円板状に切抜き、これを一対のステンレス電極に挟み込んだ後、25℃でのイオン伝導度を前述の方法により求めたところ、イオン伝導度は、0.03mS/cmであった。   Further, the obtained membrane-shaped solid electrolyte E was cut out into a disk shape having a diameter of 1 cm, sandwiched between a pair of stainless steel electrodes, and then the ionic conductivity at 25 ° C. was determined by the above-described method. The conductivity was 0.03 mS / cm.

また、溶液Eを前述の方法で作製した正極および負極上にキャストし、80℃で12時間アルゴン中に放置し、その後、80℃で12時間真空乾燥を行った。そして、これらの正極及び負極を重ねあわせ、0.1MPa の荷重をかけ80℃で6時間保持することで張り合わせた。この後、図1に示すように、正極1及び負極3に、各々、ステンレス端子5、7を取り付け、袋状のアルミラミネートフィルム9に挿入した。   Further, the solution E was cast on the positive electrode and the negative electrode prepared by the above-described method, left in argon at 80 ° C. for 12 hours, and then vacuum-dried at 80 ° C. for 12 hours. Then, these positive and negative electrodes were superposed and bonded by applying a load of 0.1 MPa and holding at 80 ° C. for 6 hours. Thereafter, as shown in FIG. 1, stainless steel terminals 5 and 7 were attached to the positive electrode 1 and the negative electrode 3, respectively, and inserted into a bag-shaped aluminum laminate film 9.

このように作製したリチウム二次電池のモデルの充放電特性を前述の方法で評価したところ、初回放電容量は、0.3mAhであり、サイクル特性は、30回であった。また、高率放電特性は、40%であった。   When the charge / discharge characteristics of the lithium secondary battery model thus produced were evaluated by the above-described method, the initial discharge capacity was 0.3 mAh and the cycle characteristics were 30 times. Further, the high rate discharge characteristic was 40%.

これら、実施例1〜実施例6、及び比較例1での評価の結果を表1にまとめた。
The results of evaluation in Examples 1 to 6 and Comparative Example 1 are summarized in Table 1.

Figure 2005044704
このような本実施例での評価の結果から明らかなように、分岐型のポリカーボネート基含有ポリマーを含有する実施例1〜実施例6の固体電解質では、分岐型のポリカーボネート基含有ポリマーを含有していない比較例1の固体電解質に比べて、イオン伝導度が向上している。
Figure 2005044704
As is clear from the results of evaluation in this example, the solid electrolytes of Examples 1 to 6 containing a branched polycarbonate group-containing polymer contain a branched polycarbonate group-containing polymer. Compared with the solid electrolyte of Comparative Example 1 that does not, the ionic conductivity is improved.

さらに、分岐型のポリカーボネート基含有ポリマーを含有する固体電解質を用いた実施例1〜実施例6のリチウム二次電池のモデルでは、分岐型のポリカーボネート基含有ポリマーを含有していない固体電解質を用いた比較例1のリチウム二次電池のモデルに比べて、初回放電容量、サイクル特性、及び高率放電特性といったリチウム二次電池の充放電特性が向上している。   Further, in the models of the lithium secondary batteries of Examples 1 to 6 using the solid electrolyte containing the branched polycarbonate group-containing polymer, a solid electrolyte not containing the branched polycarbonate group-containing polymer was used. Compared with the lithium secondary battery model of Comparative Example 1, the charge / discharge characteristics of the lithium secondary battery such as the initial discharge capacity, cycle characteristics, and high rate discharge characteristics are improved.

このように、本発明を適用してなる固体電解質では、安全性を向上しながら、イオン伝導度も向上できるものであり、様々な電気化学デバイスに用いることができる。しかし、特にリチウム二次電池では、本発明を適用してなる固体電解質をもちいることで、安全性を向上しながら、イオン伝導度も向上できるだけでなく、二次電池の充放電特性も向上できる。   As described above, the solid electrolyte to which the present invention is applied can improve the ion conductivity while improving the safety, and can be used for various electrochemical devices. However, especially in the lithium secondary battery, by using the solid electrolyte to which the present invention is applied, not only can the ion conductivity be improved while improving the safety, but also the charge / discharge characteristics of the secondary battery can be improved. .

本発明を適用してなるリチウム二次電池のモデルの一実施例の構成を示す斜視図である。It is a perspective view which shows the structure of one Example of the model of the lithium secondary battery formed by applying this invention.

符号の説明Explanation of symbols

1 正極
3 負極
5、7 ステンレス端子
9 アルミラミネートフィルム
1 Positive electrode 3 Negative electrode 5, 7 Stainless steel terminal 9 Aluminum laminated film

Claims (5)

一般式(1)で示される分岐型のカーボネート基含有ポリマーと、電解質塩とを含む固体電解質。

Figure 2005044704
(ただし、R及びXは炭化水素基、mは付加モル数、nは分岐数である)
A solid electrolyte comprising a branched carbonate group-containing polymer represented by the general formula (1) and an electrolyte salt.

Figure 2005044704
(Where R and X are hydrocarbon groups, m is the number of moles added, and n is the number of branches)
前記一般式(1)の式中、炭化水素基R及びXが炭素数2以上7以下であることを特徴とする請求項1に記載の固体電解質。 2. The solid electrolyte according to claim 1, wherein in the formula of the general formula (1), the hydrocarbon groups R and X have 2 to 7 carbon atoms. 前記一般式(1)の式中、付加モル数mが10以上10000以下であることを特徴とする請求項1または2に記載の固体電解質。 3. The solid electrolyte according to claim 1, wherein, in the formula of the general formula (1), the added mole number m is 10 or more and 10,000 or less. 前記一般式(1)の式中、分岐数nが2以上3以下であることを特徴とする請求項1乃至3のいずれか1項に記載の固体電解質。 4. The solid electrolyte according to claim 1, wherein in the formula of the general formula (1), the number n of branches is 2 or more and 3 or less. リチウムを可逆的に吸蔵放出する正極及び負極と、リチウムイオンを含む固体電解質とを有するリチウム二次電池であり、
前記固体電解質として、請求項1乃至4のいずれか1項に記載された固体電解質を有することを特徴とするリチウム二次電池。
A lithium secondary battery having a positive electrode and a negative electrode that reversibly store and release lithium, and a solid electrolyte containing lithium ions,
A lithium secondary battery comprising the solid electrolyte according to any one of claims 1 to 4 as the solid electrolyte.
JP2003279593A 2003-07-25 2003-07-25 Solid electrolyte Pending JP2005044704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279593A JP2005044704A (en) 2003-07-25 2003-07-25 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279593A JP2005044704A (en) 2003-07-25 2003-07-25 Solid electrolyte

Publications (1)

Publication Number Publication Date
JP2005044704A true JP2005044704A (en) 2005-02-17

Family

ID=34265659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279593A Pending JP2005044704A (en) 2003-07-25 2003-07-25 Solid electrolyte

Country Status (1)

Country Link
JP (1) JP2005044704A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022264B2 (en) * 2000-07-10 2006-04-04 Showa Denko Kabushiki Kaisha Polymerizable composition and use thereof
WO2017030127A1 (en) * 2015-08-17 2017-02-23 地方独立行政法人大阪市立工業研究所 All solid state secondary-battery additive, all-solid-state secondary battery, and method for producing same
WO2019022522A1 (en) 2017-07-26 2019-01-31 주식회사 엘지화학 Polymer electrolyte for secondary battery and lithium secondary battery comprising same
WO2020203882A1 (en) * 2019-03-29 2020-10-08 帝人株式会社 Polymeric binder and all-solid-state secondary battery
WO2022065123A1 (en) * 2020-09-28 2022-03-31 リンテック株式会社 Solid electrolyte and battery
TWI789336B (en) * 2016-09-01 2023-01-11 地方獨立行政法人大阪產業技術研究所 Total-solid secondary battery, solid electrolite layer, positive electrode, negative electrode and methed for producing total-solid secondary battery
US11923509B2 (en) 2018-08-16 2024-03-05 Lg Energy Solution, Ltd. Electrolyte including mixture of siloxane-based oligomer and polyalkylene carbonate-based oligomer and lithium secondary battery including the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022264B2 (en) * 2000-07-10 2006-04-04 Showa Denko Kabushiki Kaisha Polymerizable composition and use thereof
CN107925126B (en) * 2015-08-17 2021-05-18 地方独立行政法人大阪产业技术研究所 Additive for all-solid-state secondary battery, and method for producing same
WO2017030127A1 (en) * 2015-08-17 2017-02-23 地方独立行政法人大阪市立工業研究所 All solid state secondary-battery additive, all-solid-state secondary battery, and method for producing same
KR20180036781A (en) * 2015-08-17 2018-04-09 오사카 리서치 인스티튜트 오브 인더스트리얼 사이언스 앤드 테크놀러지 Additive for pre-solid secondary battery, pre-solid secondary battery and manufacturing method thereof
CN107925126A (en) * 2015-08-17 2018-04-17 地方独立行政法人大阪产业技术研究所 Additive, all solid state secondary battery and its manufacture method of all solid state secondary battery
JPWO2017030127A1 (en) * 2015-08-17 2018-06-07 地方独立行政法人大阪産業技術研究所 Additive for all-solid-state secondary battery, all-solid-state secondary battery and method for producing the same
US20180241077A1 (en) * 2015-08-17 2018-08-23 Osaka Research Institute Of Industrial Science And Technology All solid state secondary-battery additive, all-solid-state secondary battery, and method for producing same
KR102582226B1 (en) * 2015-08-17 2023-09-22 오사카 리서치 인스티튜트 오브 인더스트리얼 사이언스 앤드 테크놀러지 Additives for all-solid-state secondary batteries, all-solid-state secondary batteries, and methods for producing the same
US10756383B2 (en) 2015-08-17 2020-08-25 Osaka Research Institute Of Industrial Science And Technology All solid state secondary-battery additive, all-solid-state secondary battery, and method for producing same
TWI789336B (en) * 2016-09-01 2023-01-11 地方獨立行政法人大阪產業技術研究所 Total-solid secondary battery, solid electrolite layer, positive electrode, negative electrode and methed for producing total-solid secondary battery
WO2019022522A1 (en) 2017-07-26 2019-01-31 주식회사 엘지화학 Polymer electrolyte for secondary battery and lithium secondary battery comprising same
US11923509B2 (en) 2018-08-16 2024-03-05 Lg Energy Solution, Ltd. Electrolyte including mixture of siloxane-based oligomer and polyalkylene carbonate-based oligomer and lithium secondary battery including the same
CN113614145A (en) * 2019-03-29 2021-11-05 帝人株式会社 Polymer binder and all-solid-state secondary battery
JPWO2020203882A1 (en) * 2019-03-29 2021-12-16 帝人株式会社 Polymer binder and all-solid-state secondary battery
JP2022088490A (en) * 2019-03-29 2022-06-14 帝人株式会社 Three-dimensional cross-linking type aliphatic acid polycarbonate
EP3950770A4 (en) * 2019-03-29 2022-11-09 Teijin Limited Polymeric binder and all-solid-state secondary battery
WO2020203882A1 (en) * 2019-03-29 2020-10-08 帝人株式会社 Polymeric binder and all-solid-state secondary battery
JP7229340B2 (en) 2019-03-29 2023-02-27 帝人株式会社 Polymer binder and all-solid secondary battery
CN113614145B (en) * 2019-03-29 2023-06-13 帝人株式会社 Polymer binder and all-solid secondary battery
JP7314347B2 (en) 2019-03-29 2023-07-25 帝人株式会社 Three-dimensional cross-linked aliphatic polycarbonate
WO2022065123A1 (en) * 2020-09-28 2022-03-31 リンテック株式会社 Solid electrolyte and battery

Similar Documents

Publication Publication Date Title
KR102303831B1 (en) Polymer, electrolyte comprising the polymer, and lithium secondary battery comprising the electrolyte
Goodenough et al. Challenges for rechargeable Li batteries
CN107534158B (en) Copolymers of PEO and fluorinated polymers as electrolytes for lithium batteries
KR102230650B1 (en) Composite, prepraring method thereof, electrolyte comprising the composite, and lithium secondary battery comprising the electrolyte
EP2339684B1 (en) Nonaqueous electrolytic solution, nonaqueous electrolyte secondary cell, and carbonate compounds
JP5553633B2 (en) Lithium ion secondary battery
JP4578684B2 (en) Lithium secondary battery
JPWO2009133899A1 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP5109329B2 (en) Secondary battery
JP5556818B2 (en) Non-aqueous electrolyte for secondary batteries
KR20160118958A (en) Electrolyte for lithium second battery, and lithium second battery comprising the electrolyte
JP2000285929A (en) Solid electrolyte battery
JPWO2018168505A1 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR PRODUCING SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
JPWO2017209233A1 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY AND ALL-SOLID SECONDARY BATTERY AND SOLID ELECTROLYTE-CONTAINING SHEET
US20050260501A1 (en) Electrolyte and lithium secondary battery
JP2007059264A (en) Electrochemical device
JP4398229B2 (en) Lithium secondary battery
JP2005044704A (en) Solid electrolyte
JP5645154B2 (en) Lithium ion secondary battery
JP2005327566A (en) Battery using cross-linked polymer electrolyte
US20120028093A1 (en) Ionic conductive side-chain-type polymer electrolyte, precursor thereof, and lithium secondary battery
JP5397140B2 (en) Solid electrolyte and secondary battery
JP4451768B2 (en) Polymerizable boron compound for electrochemical devices, method for producing the same, polymerizable composition, and ion conductive polymer electrolyte
KR102651545B1 (en) Composite membrane for Lithium battery, a cathode for lithium battery, and lithium battery comprising the same
EP1263076A2 (en) Electrolyte and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520