JP2005044535A - Lighting system using relay lens array - Google Patents

Lighting system using relay lens array Download PDF

Info

Publication number
JP2005044535A
JP2005044535A JP2003200172A JP2003200172A JP2005044535A JP 2005044535 A JP2005044535 A JP 2005044535A JP 2003200172 A JP2003200172 A JP 2003200172A JP 2003200172 A JP2003200172 A JP 2003200172A JP 2005044535 A JP2005044535 A JP 2005044535A
Authority
JP
Japan
Prior art keywords
lens array
light
array
light source
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200172A
Other languages
Japanese (ja)
Inventor
Michihiro Tsuchida
道博 土田
Tokio Eda
登喜男 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RANDAKKU KK
Original Assignee
RANDAKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RANDAKKU KK filed Critical RANDAKKU KK
Priority to JP2003200172A priority Critical patent/JP2005044535A/en
Publication of JP2005044535A publication Critical patent/JP2005044535A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means in which the illuminance spots depending on the location of the flux of light emitted by the light source is made uniform and the light is transmitted effectively to the lighting surface in the lighting system in which a uniform illuminance is required. <P>SOLUTION: An isometric relay lens array is placed in the middle of a fly eye array which is an effective lens array as a means of unifying the flux of light having spots, and the light is condensed at the focal point location of the condenser lens array. Since the flux of light which is diffused after condensation is converged by the relay lens array with the focal point location of the collimator lens array as a conjugate point, the flux of light entered into the condenser lens can be emitted from the collimator lens array as a parallel light except for the transmission loss. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は均一且つ強い照射を要する照明系に属する。
【0002】
【従来の技術】
従来の光線の平行化としては射出された光線の一部のみを取り出す方式。フライアイレンズを用いて一旦結像させ、此の結像点を2次光源として平行光線化する方式等が在ったが何れも光源の全光束に対しての効率が悪いのと其の侭では中心部と周辺部の明るさの比が大きいのが欠点であった。
【0003】
【発明が解決しようとする課題】
本発明は光源の全光束に対する利用効率を上げる事と明るさの比の改善を目的とした。放物面の開口を大とすれは効率は大となるが同時に周辺の光量比が著しく減少し且つ総体が大きくなりコスト増を招く結果となる。
【0004】
【課題を解決するための手段】
光源から放射される光束の内平行光部分のみを取り出して用いる方式は光源から放射される光束の一部を用い、大部分を捨てると言う損失の大きい方式であり効率が悪い事は言うまでもない。同様にフライアイを用いる方式でも光源の全光束に比してに効率は必ずしも良くない。光源の全光束を用いる事は無理で在るとして、利用効率を高める手段の一は反射鏡を用いて光束の重畳を成立させる事であり次いでは光束の分散集合に於ける損失の減少を計る事が必要である。
【0005】
図3は従来用いられてきたフライアイレンズアレイの断面を示す。実線は集光アレイに依って焦点位置で結像後発散する光線を示している。今、コリメ−タアレイを構成する一単位に就いて見ると双方の焦点間間隔が大で在ればコリメ−タアレイに到達する範囲に在る集光レンズ数が多くなり光量の均一化が増すが中心部では均一化されるが周辺の非重畳部も増して光束全体を使用出来ず、加えてコリメ−タアレイの焦点を通過せずに入射して斜光線となる光束も増加し、透過光量と均一化に問題が残る。破線はコリメ−タアレイの平行射出の条件を満たす範囲を示す。
【0006】
【発明の実施の形態】
図1−1は本発明に於ける放物面鏡の断面を示す1−3は鏡体の反射面を示し1−4は焦点位置に置かれた光源を示す。此の放物鏡の効率は60%を超える平行光を射出し従来の35〜45%を改善してる。
図1−2は照明を要する面積を満たすアレイとして置かれた放物面鏡群の断面を示す。
【0007】
図2は放物面アレイ1−2からの平行光線を一旦焦点位置に結像させる集光レンズアレイ2−1と此の結像点を光源とし共軛点に再結像する時点で集光レンズアレイの単位レンズが同時に複数のリレ−レンズ2−2に入射し其れぞれが共軛点に結像するが此の時結像点は一点でなく複数の結像点となりリレ−アレイ全体としてはあたかも一点に対応したかの如き状態となりこれを光源とするコリメ−タアレイ2−3に依って平行光線として射出される。
【0008】
リレ−レンズの焦点距離を幾何光学的に定めた例を示す。集光レンズに依って焦点に結像される光線の傾斜は正弦に於いて0.5・B/Fcで在るから距離(2・N+1)Fcの位置では高さは0.5B・Nと成り集光レンズの最大傾斜光線がリレ−レンズアレイ外形を集光レンズアレイと同寸としたとき過不足無く全光束が入射され共軛点に集光される、入射から射出迄の光路長は各アレイの焦点距離を詰める事で短縮が可能で在る。
【0009】
【実施例】
原点を頂点とする放物面鏡の断面の方程式をY^2=2・R・X と表示する時(basic表示)開口径を25.4 頂点曲率半径 R=4.5 とし、光源は管径を2.4の冷陰極管を用いて有効反射率62%を得た。
此の開口径を5等分すれば光量比は中心21.8%、中間帯16.6%周縁で6.3%となり著しい光量差を持っている。此の光源アレイをレンズアレイ系を通過させる事で周縁部を除いてほぼ均等に分配され、且つ30%に満たない透過損失で平行光束を得る事が出来た。
【0010】
【発明の効果】
従来のフライアイアレイに於て集光後、発散した光束をリレ−アレイを中間に挿入する事でコリメ−タアレイの焦点を通過させ、平行光射出の効率を極限迄高め得た。従来に比し180%にも及ぶ効率となった。
【図面の簡単な説明】
【図1】放物面鏡と光源。放物面鏡アレイの例を示す。
【図2】リレ−レンズアレイを用いた照明系の概略を示す。
【図3】フライアイレンズに於ける光束の均一化と平行化を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to an illumination system that requires uniform and intense irradiation.
[0002]
[Prior art]
Conventional collimation of light rays is a method of extracting only a part of the emitted light rays. There has been a system in which a fly-eye lens is used to form an image once, and this image formation point is converted into a parallel light beam as a secondary light source. However, a large ratio of the brightness between the central part and the peripheral part was a drawback.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to increase the utilization efficiency of the light source with respect to the total luminous flux and to improve the brightness ratio. Increasing the opening of the paraboloid increases efficiency, but at the same time, the peripheral light quantity ratio is remarkably reduced and the overall size increases, resulting in an increase in cost.
[0004]
[Means for Solving the Problems]
It goes without saying that the method of extracting and using only the parallel light portion of the light beam emitted from the light source is a lossy method in which a part of the light beam emitted from the light source is used and most of the light beam is discarded, and the efficiency is poor. Similarly, the efficiency using the fly eye is not always good compared to the total luminous flux of the light source. Since it is impossible to use the total luminous flux of the light source, one way to increase the utilization efficiency is to establish superimposition of the luminous flux using a reflector, and then to reduce the loss in the dispersed set of luminous flux Things are necessary.
[0005]
FIG. 3 shows a cross section of a conventionally used fly-eye lens array. A solid line indicates a light beam that diverges after image formation at the focal position due to the condensing array. Now, looking at one unit constituting the collimator array, if the distance between both focal points is large, the number of condensing lenses in the range reaching the collimator array increases, and the amount of light becomes more uniform. Although uniform in the center, the surrounding non-overlapping part increases and the entire light beam cannot be used, and in addition, the light beam that enters the collimator array without passing through the focal point and becomes oblique rays increases, Problems remain in uniformity. A broken line indicates a range that satisfies the parallel injection condition of the collimator array.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1-1 shows a cross section of a parabolic mirror according to the present invention. 1-3 shows a reflecting surface of the mirror body, and 1-4 shows a light source placed at a focal position. The efficiency of this parabolic mirror improves the conventional 35-45% by emitting more than 60% parallel light.
FIG. 1-2 shows a cross section of a group of parabolic mirrors placed as an array that fills the area requiring illumination.
[0007]
FIG. 2 shows a condensing lens array 2-1 that once forms an image of parallel rays from the paraboloidal array 1-2 at a focal position and condensing at the time of re-imaging at a common point using this imaging point as a light source. The unit lens of the lens array is simultaneously incident on a plurality of relay lenses 2-2 and each forms an image at a common point. At this time, the image forming point is not a single point but a plurality of image forming points. As a whole, it is as if it corresponded to one point, and is emitted as parallel rays by the collimator array 2-3 using this as a light source.
[0008]
An example in which the focal length of the relay lens is determined geometrically will be shown. The inclination of the light beam formed at the focal point by the condenser lens is 0.5 · B / Fc in the sine, so the height is 0.5B · N at the distance (2 · N + 1) Fc. When the maximum tilting ray of the condensing lens makes the outer dimensions of the relay lens array the same size as the condensing lens array, the entire light beam is incident and condensed at the common point without any excess or deficiency. Shortening is possible by reducing the focal length of each array.
[0009]
【Example】
When the equation of the cross section of the parabolic mirror whose origin is the vertex is displayed as Y ^ 2 = 2 · R · X (basic display), the aperture diameter is 25.4 vertex radius of curvature R = 4.5, and the light source is a tube An effective reflectance of 62% was obtained using a cold cathode tube having a diameter of 2.4.
If this aperture diameter is divided into 5 equal parts, the light quantity ratio is 21.8% at the center and 6.3% at the periphery of the intermediate band 16.6%, and there is a remarkable light quantity difference. By passing this light source array through the lens array system, it was distributed almost evenly except the peripheral portion, and a parallel light beam could be obtained with a transmission loss of less than 30%.
[0010]
【The invention's effect】
After condensing in the conventional fly's eye array, the divergent light beam is inserted in the middle of the relay array so that it passes through the focal point of the collimator array, and the efficiency of parallel light emission can be increased to the limit. The efficiency was as high as 180% compared to the conventional one.
[Brief description of the drawings]
FIG. 1 Parabolic mirror and light source. An example of a parabolic mirror array is shown.
FIG. 2 shows an outline of an illumination system using a relay lens array.
FIG. 3 shows light beam homogenization and parallelization in a fly-eye lens.

Claims (1)

放物面反射鏡の焦点位置に光源を置くとき鏡面で反射された光線は放物断面の軸と平行と成る事を利用して平行光束群を発生させて平行光照明として使用するに当たり、放物断面を等分割する形状寸法を持つレンズを集合併置した集光マルチレンズアレイとを用い単位レンズ毎に焦点を結ばせる。此の焦点群を光源とする等倍リレ−レンズアレイ系に依ってコリメ−タレンズアレイの焦点を共軛点として結像させ、コリメ−タレンズアレイに依って均一な平行光束として射出させる照明系を構成する。コリメ−タアレイと集光レンズアレイを共通としリレ−レンズアレイの入射距離が集光レンズアレイの単位レンズの焦点距離Fcに対してNを1を含む整数として(2・N+1)Fc、且つ放物断面を等分割した幅Bに対して2・B≦Fc≦4・Bの範囲を満足するレンズアレイを用いた照明系。When the light source is placed at the focal point of the parabolic reflector, the rays reflected by the mirror surface are parallel to the axis of the parabolic cross section to generate a group of parallel light beams and use as parallel light illumination. Each unit lens is focused using a condensing multi-lens array in which lenses having a shape and dimension that equally divides an object cross section are combined. The collimator lens array is focused as a common point by an equal-magnification relay lens array system using this focus group as a light source, and the collimator lens array emits a uniform parallel light beam. Configure the system. A collimator array and a condensing lens array are used in common, and the incident distance of the relay lens array is (2 · N + 1) Fc where N is an integer including 1 with respect to the focal length Fc of the unit lens of the condensing lens array, and a parabola An illumination system using a lens array that satisfies a range of 2 · B ≦ Fc ≦ 4 · B with respect to a width B obtained by equally dividing a cross section.
JP2003200172A 2003-07-23 2003-07-23 Lighting system using relay lens array Pending JP2005044535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200172A JP2005044535A (en) 2003-07-23 2003-07-23 Lighting system using relay lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200172A JP2005044535A (en) 2003-07-23 2003-07-23 Lighting system using relay lens array

Publications (1)

Publication Number Publication Date
JP2005044535A true JP2005044535A (en) 2005-02-17

Family

ID=34260674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200172A Pending JP2005044535A (en) 2003-07-23 2003-07-23 Lighting system using relay lens array

Country Status (1)

Country Link
JP (1) JP2005044535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083798A (en) * 2021-10-29 2022-02-25 深圳市纵维立方科技有限公司 Light source assembly and printer
CN114083798B (en) * 2021-10-29 2024-06-04 深圳市纵维立方科技有限公司 Light source assembly and printer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083798A (en) * 2021-10-29 2022-02-25 深圳市纵维立方科技有限公司 Light source assembly and printer
CN114083798B (en) * 2021-10-29 2024-06-04 深圳市纵维立方科技有限公司 Light source assembly and printer

Similar Documents

Publication Publication Date Title
US8789969B2 (en) Compact LED light engine with reflector cups and highly directional lamps using same
JPH10513579A (en) Light collection system for projectors
US6739726B2 (en) Illumination engine for a projection display using a tapered light pipe
US20040036990A1 (en) Light-emitting unit, illumination apparatus and projection display apparatus
JPH03111806A (en) Optical illumination system and projector with the same
JP2016534513A (en) Optical system that produces uniform illumination
JP2006085150A (en) Optical system for light emitting apparatus
CN101669068A (en) Projection display
US8459830B2 (en) Light output device with partly transparent mirror
JP4478239B2 (en) Illumination device and projection device using the same
JP2005044535A (en) Lighting system using relay lens array
JP3440023B2 (en) Lighting equipment
JP2012164639A (en) Lighting device and lighting system
JP2002049096A (en) Light condensing optical system and projection type display device using the same
JP3140164B2 (en) Focusing reflector
JP2000122178A (en) Illuminator
JP2002279823A (en) Lighting device and lighting system using spherical mirror, and lighting method
JP2000122178A5 (en)
KR100427134B1 (en) Device for dispersing light in video frames
US6312143B1 (en) Illumination device with light reshaping element for an optical valve
JP4497507B2 (en) Illumination optical system and projection display device using the same
CN215494519U (en) Laser light source device and optical equipment
JP2004186114A (en) Light source device
JP2003217309A (en) Signal light
JP2000322922A (en) Lighting system