JP2005042908A - Self-displacement control of pulley diameter for v belt type continuously variable transmission - Google Patents

Self-displacement control of pulley diameter for v belt type continuously variable transmission Download PDF

Info

Publication number
JP2005042908A
JP2005042908A JP2004109475A JP2004109475A JP2005042908A JP 2005042908 A JP2005042908 A JP 2005042908A JP 2004109475 A JP2004109475 A JP 2004109475A JP 2004109475 A JP2004109475 A JP 2004109475A JP 2005042908 A JP2005042908 A JP 2005042908A
Authority
JP
Japan
Prior art keywords
load
power
continuously variable
variable transmission
pulleys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109475A
Other languages
Japanese (ja)
Inventor
Takanori Kubota
孝徳 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004109475A priority Critical patent/JP2005042908A/en
Publication of JP2005042908A publication Critical patent/JP2005042908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in the speed change drive control of a conventional V-belt type continuously variable transmission, wherein as constitutions of a load detecting mechanism and a gear shift ratio setting mechanism, or an electronic control circuit and an adjustment driving mechanism are necessary, it is unsuitable to be fitted in a compact industrial machine, automobile, motorcycle and bicycle, and further electricity and oil-pressure supply sources are necessary to drive a control mechanism in a constitution of a conventional V belt type continuously variable transmission mechanism. <P>SOLUTION: In this V belt type continuously variable transmission mechanism, a clearance between pulleys divided into a power side and a load side is changed on the basis of the balance of the screw-like engagement and the force of a spring mounted between a shaft 1 or 8 and the pulleys 3, 4 or 10, 11 by allowing the rotating torque generated between the shaft and pulley at the power side and load side in accordance with the change of the power torque or load torque, to directly act, whereby the diameters of the pulleys at the power side and the load side are changed, and the self-displacement is controlled in the V belt type continuously variable transmission. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は動力の変速機を必要とする産業用機械や自動車、或いはオートバイや自転車に搭載するVベルト式変速機構の変速制御の手段に関するものである。  The present invention relates to a shift control means for a V-belt transmission mechanism mounted on an industrial machine, automobile, motorcycle or bicycle that requires a power transmission.

産業用機械や自動車の動力の伝達にVベルト式の無段階変速機構を用いる事により、有段階変速の様な動力側に対する大きな負荷の変動を与える事もなく、動力源も大きな物を必要としない効率の良い動力の伝達と変速が可能となっている。  By using a V-belt type continuously variable transmission mechanism for transmission of power to industrial machines and automobiles, it does not give a large load fluctuation to the power side like stepped transmission, and requires a large power source. It is possible to transmit and shift power efficiently.

しかし従来のVベルト式無段階変速機の変速制御でのプーリー径を変化させるための二分したプーリーの間隔の変位制御には、負荷検出機構や変速比設定機構または電子制御回路及び調整駆動機構等とそれらの間の動力や信号伝達要素の構成が必要であった、またこれらの機構を駆動するためには電気の供給源や油圧の供給源が必要であった。  However, the load detection mechanism, the gear ratio setting mechanism, the electronic control circuit, the adjustment drive mechanism, etc. are used for the displacement control of the pulley distance divided in order to change the pulley diameter in the speed change control of the conventional V belt type continuously variable transmission. In order to drive these mechanisms, an electric power source and a hydraulic power source were necessary.

従来のVベルト式無段階変速機の変速駆動制御は負荷検出機構や変速比設定機構または電子制御回路及び調整駆動機構等の幾つかの機構を必要としていたため、小型の産業用機械や自動車、或いはオートバイや自転車への搭載には不向きであった。また従来のVベルト式無段階変速機構を構成するには、その制御機構の駆動のために電気の供給源や油圧の供給源が必要であった。
特に自転車の場合は、この様な無段階変速制御機構の搭載は不可能なため、チェーンとギアによる有段変速機構が採用されているが,発進と停止時は勿論の事、速度の加減や坂道の上り下りの度合いに合わせて変速ギアの切り替えを頻繁に行う必要があるので、非常に面倒な上、ギアの段の切り替えを怠るとペダルを踏む力が軽すぎたり重過ぎたりして、余計な運動エネルギーが費やされていた。またギアの段を適切に切り替えたとしてもペダルを踏む重さが段階的に変わって、乗る人にストレスを与えていた。
The conventional shift drive control of the V-belt type continuously variable transmission requires several mechanisms such as a load detection mechanism, a gear ratio setting mechanism, an electronic control circuit, and an adjustment drive mechanism. Or it was unsuitable for mounting on motorcycles and bicycles. In order to construct a conventional V-belt type continuously variable transmission mechanism, an electric supply source and a hydraulic supply source are required for driving the control mechanism.
Especially in the case of bicycles, it is impossible to install such a stepless speed change control mechanism, so a stepped speed change mechanism using a chain and gear is adopted. Since it is necessary to frequently change gears according to the degree of climbing up and down the hill, it is very troublesome, and if you do not switch the gear stage, the power to step on the pedal is too light or too heavy, Extra kinetic energy was spent. Moreover, even if the gear stage was switched appropriately, the weight of stepping on the pedal changed step by step, putting stress on the rider.

Vベルト式無段階変速機構において、運転する人の意思に応じた原動機からの動力トルク及び負荷側の状況に応じた負荷トルクの変化に応じて、動力側及び負荷側の軸とプーリーとの間で発生する回転トルクを直接利用して動力側及び負荷側のプーリー径を変化させるための二分したプーリーの間隔を変位させる事により、プーリーの径を変化させて無段階変速の制御を行う。  In the V-belt type continuously variable transmission mechanism, the power and load side shafts and pulleys are changed according to the change of the power torque from the prime mover according to the intention of the driver and the load torque according to the load side situation. By directly using the rotational torque generated in step 1, the distance between the two pulleys for changing the pulley diameter on the power side and the load side is displaced, thereby controlling the stepless speed change by changing the pulley diameter.

Vベルト式無段階変速機の変速制御において負荷検出機構や変速比設定機構または電子制御回路及びプーリー径を変化させるための二分したプーリーの間隔調整機構等の大掛かりな機構が不要となり、小型の産業用機械や自動車、或いはオートバイや自転車への搭載が可能となる上、これらの機構を駆動させるための電気や油圧の供給源が不要になる。
このため自転車にもVベルト式無段階変速機の搭載が可能になる上、これを構成した場合に速度の加減や坂道の上り下りの度合いに合わせて、変速ギアの切り替えを手動でかつ頻繁に行う必要がなくなるだけでなく、ペダルの回転を早くするだけで、ペダルを踏む重さは大きく変わらないままで加速をしたり坂道を登る事ができる様になる、反対に加速の必用がない時には自動的にペダルの回転が少なくて済む変速比に移り変わる。
また有段の変速機のようなギアを取り巻くチェーンの位置を変える機構が不要となる。
A large-scale mechanism such as a load detection mechanism, a gear ratio setting mechanism, an electronic control circuit, and a halved pulley interval adjustment mechanism for changing the pulley diameter is not required in the shift control of the V-belt type continuously variable transmission. In addition, it can be mounted on industrial machines, automobiles, motorcycles and bicycles, and an electric or hydraulic supply source for driving these mechanisms becomes unnecessary.
Therefore, it is possible to mount a V-belt type continuously variable transmission on a bicycle, and when this is configured, the transmission gears must be manually and frequently switched according to the degree of speed increase / decrease and up / down slope. Not only does it have to be done, but only by speeding up the pedal, you can accelerate and climb the hill without changing the weight of the pedal. It automatically shifts to a gear ratio that requires less pedal rotation.
Further, a mechanism for changing the position of the chain surrounding the gear, such as a stepped transmission, is not required.

Vベルト式無段階変速機構の動力側及び負荷側の軸とプーリーを固定せず、軸とプーリーの接合面において互いにボルトナットの様な一定方向と一定角度のスクリュー状の溝と突起を設ける、動力側では二分したプーリー(3)(4)の間隔を狭める力を加えるための引っ張りコイルばね(5)を設け、負荷側では二分したプーリー(10)(11)の間隔を広げる力を加えるための圧縮コイルばね(12)を設ける。  The power side and load side shafts and pulleys of the V-belt type continuously variable transmission mechanism are not fixed, and screw-like grooves and projections having a certain direction and a certain angle, such as bolts and nuts, are provided on the joint surfaces of the shaft and the pulleys. On the power side, a tension coil spring (5) is provided to apply a force to narrow the distance between the two pulleys (3) and (4). On the load side, a force to increase the distance between the two pulleys (10) and (11) is applied. The compression coil spring (12) is provided.

動力側制御機構においては、図1動力側回転軸(1)に設けたスクリュー状の案内溝(2)と相反するプーリー(3)(4)内側のスクリュー状の突起がかみ合った状態において、負荷側回転速度を早くするために動力側回転軸(1)の回転トルクを大きくする、または負荷側からのベルトにかかる負荷が大きくなる事による動力側プーリー(3)(4)への負荷が大きくなった場合に、動力側回転軸(1)とプーリー(3)(4)との間で発生するトルクが大きくなる。
このためスクリュー状にかみ合う案内溝(2)に沿って左右2つに分けられたプーリー(3)(4)が軸上において引っ張りコイルばね(5)で働く力と反対の方向に移動して、左右2つに分けられたプーリー(3)(4)の間隔が広がり、プーリーとしてベルトが取り巻く外径が小さくなる。この結果として負荷トルクまたは動力トルク又はその両方が最大の時に図1(6)のベルト位置となり、変速機構全体を見た場合のベルトの状態は図5の様になる。
これとは逆に動力側回転軸(1)の回転トルクを小さくなる、または負荷側からのベルトにかかる負荷が小さくなる事による動力側プーリー(3)(4)への負荷が小さくなった場合には、左右プーリー(3)(4)の間に設けた引っ張りコイルばね(5)の力によって左右2つに分けられたプーリー(3)(4)が軸上で移動して戻るため左右プーリー(3)(4)の間隔が狭くなり、プーリーとしてのベルトが取り巻く直径が大きくなる。この結果として負荷が最大の時に図2(7)のベルト位置となり、変速機構全体を見た場合のベルトの状態は図6(17)の様になる。
In the power-side control mechanism, in the state where the screw-like protrusions inside the pulleys (3) and (4) opposite to the screw-like guide grooves (2) provided on the power-side rotating shaft (1) in FIG. The load on the power side pulley (3) (4) is increased by increasing the rotational torque of the power side rotating shaft (1) to increase the side rotation speed or by increasing the load on the belt from the load side. In this case, the torque generated between the power side rotating shaft (1) and the pulleys (3) and (4) increases.
For this reason, the pulleys (3) and (4) divided into right and left along the guide groove (2) meshing with the screw shape move in the opposite direction to the force acting on the tension coil spring (5) on the shaft, The distance between the pulleys (3) and (4) divided into two on the left and right is increased, and the outer diameter of the belt surrounding the pulley is reduced. As a result, the belt position shown in FIG. 1 (6) is reached when the load torque and / or power torque is maximum, and the state of the belt when the entire transmission mechanism is viewed is as shown in FIG.
On the contrary, when the rotational torque of the power side rotating shaft (1) is reduced or the load on the power side pulley (3) (4) is reduced due to the load applied to the belt from the load side being reduced. The left and right pulleys (3) and (4), which are divided into two left and right pulleys by the force of the tension coil spring (5) provided between the left and right pulleys (3) and (4), move and return on the shaft. (3) The interval between (4) is narrowed, and the diameter surrounding the belt as a pulley is increased. As a result, when the load is maximum, the belt position shown in FIG. 2 (7) is obtained, and the state of the belt when the entire transmission mechanism is viewed is as shown in FIG. 6 (17).

負荷側制御機構においては、図3負荷側回転軸(8)に設けた負荷軸スクリュー状の案内溝(9)と相反するプーリー(10)(11)内側のスクリュー状の突起がかみ合った状態において、負荷側回転軸(8)にかかる負荷が大きくなる、またはベルトで伝わる動力側からの動力が大きくなると、負荷側回転軸(8)とプーリー(10)(11)との間で発生するトルクが大きくなる。このためスクリュー状にかみ合う案内溝(9)に沿って左右2つに分けられたプーリー(10)(11)が軸上において、圧縮コイルばね(12)働で働く力と反対の方向に移動して左右2つに分けられたプーリー(10)(11)の間隔が狭まり、プーリーとしてのベルトが取り巻く外径が大きくなる。この結果として負荷トルクまたは動力トルク又はその両方が最大の時に(13)のベルト位置となり、変速機構全体を見た場合のベルトの状態は図5(17)の様になる。
これとは逆に負荷側回転軸(8)にかかる負荷が小さくなる、またはベルトで伝わる動力側からの動力が小さくなった場合には、負荷側回転軸(8)とプーリー(10)(11)の間のトルクが小さくなるため、左右プーリー(10)(11)の間に設けた圧縮コイルばね(12)の力によって左右2つに分けられたプーリー(10)(11)が軸上で移動して左右プーリー(10)(11)の間隔が広くなり、プーリーとしてのベルトが取り巻く直径が小さくなる。この結果として負荷が最大の時に図4(14)のベルト位置となり、変速機構全体を見た場合のベルトの状態は図6の様になる。
In the load side control mechanism, in FIG. 3 the state where the screw-like protrusions inside the pulleys (10) and (11) opposite to the load shaft screw-like guide groove (9) provided on the load-side rotating shaft (8) are engaged. When the load applied to the load side rotating shaft (8) increases or the power from the power side transmitted by the belt increases, the torque generated between the load side rotating shaft (8) and the pulleys (10) (11). Becomes larger. For this reason, the pulleys (10) and (11) divided into two on the left and right along the guide groove (9) meshing with the screw shape move on the shaft in the direction opposite to the force acting by the compression coil spring (12). As a result, the distance between the pulleys (10) and (11) divided into the left and right parts is reduced, and the outer diameter of the belt as the pulley is increased. As a result, the belt position (13) is reached when the load torque and / or power torque is maximum, and the state of the belt when viewing the entire transmission mechanism is as shown in FIG. 5 (17).
On the other hand, when the load applied to the load side rotating shaft (8) is reduced or the power from the power side transmitted by the belt is reduced, the load side rotating shaft (8) and the pulley (10) (11 ) Between the left and right pulleys (10) and (11), the pulleys (10) and (11) divided into two left and right by the force of the compression coil spring (12) provided on the shaft The distance between the left and right pulleys (10) and (11) is increased by movement, and the diameter of the belt surrounding the pulley is reduced. As a result, when the load is maximum, the belt position shown in FIG. 4 (14) is obtained, and the state of the belt when the entire transmission mechanism is viewed is as shown in FIG.

動力側左右プーリー(3)(4)の間隔も負荷側左右プーリー(10)(11)の間隔も一定の間隔で平衡し、動力側のベルトが取り巻くプーリーとしての直径が大きい時は、負荷側のベルトが取り巻くプーリーとしての直径が小さくなる、また動力側のベルトが取り巻くプーリーとしての直径が小さい時は、負荷側のベルトが取り巻くプーリーとしての直径が大きくなるため、動きが安定した状態ではベルトの張り度合いは変わらないが、動力側回転軸(1)のトルクが急激に大きくなった時などに動力側プーリーのベルトが取り巻く外径が先行して小さくなるため、ベルトのテンションを一定に保つための引っ張りコイルばねでベルトを内側に引く力をもったプーリー(15)を設ける。  When the distance between the power side left and right pulleys (3) and (4) and the load side left and right pulleys (10) and (11) are balanced at a constant distance and the diameter of the pulley around the power side belt is large, When the diameter of the pulley surrounding the belt is small, and when the diameter of the pulley surrounding the power belt is small, the diameter of the pulley surrounding the load belt is large. The tension of the belt does not change, but when the torque of the power side rotating shaft (1) suddenly increases, the outer diameter of the belt of the power side pulley is reduced in advance, so the belt tension is kept constant. A pulley (15) having a force for pulling the belt inward by a tension coil spring is provided.

また二分した左右プーリーの移動距離を均等にするため、左右プーリーの回転の同期を取るための棒(16)を設ける。左右プーリーのどちらか一方をプーリーに固定させ、反する一方は回転軸の方向にプーリーが移動できる様に、棒は固定しない。これは動力側も負荷側も同様とする。  Further, in order to make the movement distance of the left and right pulleys equally divided, a rod (16) for synchronizing the rotation of the left and right pulleys is provided. Either one of the left and right pulleys is fixed to the pulley, while the other is not fixed so that the pulley can move in the direction of the rotation axis. The same applies to the power side and the load side.

Vベルト式無段階変速機の変速制御において負荷検出機構や変速比設定機構または電子制御回路及び二分したプーリーの間隔調整機構等の大掛かりな機構が不要となるため、小型の産業用機械や自動車、或いはオートバイや自転車へVベルト式無段階変速機構の利用が可能となる。  In the shift control of the V-belt type continuously variable transmission, a large-scale mechanism such as a load detection mechanism, a gear ratio setting mechanism, an electronic control circuit, and a two-way pulley interval adjustment mechanism is not required. Alternatively, a V-belt continuously variable transmission mechanism can be used for motorcycles and bicycles.

動力側回転軸とプーリー間のトルクが大きい時の動力側断面の状態State of power side cross section when torque between power side rotating shaft and pulley is large 動力側回転軸とプーリー間のトルクが小さい時の動力側断面の状態State of power side cross section when torque between power side rotating shaft and pulley is small 負荷側回転軸とプーリー間のトルクが大きい時の負荷側断面の状態State of load side cross section when torque between load side rotating shaft and pulley is large 負荷側回転軸とプーリー間のトルクが小さい時の負荷側断面の状態State of load side cross section when torque between load side rotating shaft and pulley is small 動力トルク又は負荷トルク又は両方が大きい時のVベルトの状態V-belt condition when power torque or load torque or both are large 動力トルク又は負荷トルク又は両方が小さい時のVベルトの状態V-belt condition when power torque or load torque or both are small

符号の説明Explanation of symbols

1 動力側回転軸
2 動力軸スクリュー状案内溝
3 動力側プーリー左半分(断面)
4 動力側プーリー右半分(断面)
5 引っ張りコイルばね
6 トルクが大きい時の動力側Vベルトの位置(断面)
7 トルクが小さい時の動力側Vベルトの位置(断面)
8 負荷側回転軸
9 負荷軸スクリュー状案内溝
10 負荷側プーリー左半分(断面)
11 負荷側プーリー右半分(断面)
12 圧縮コイルばね
13 トルクが大きい時の負荷側Vベルトの位置(断面)
14 トルクが小さい時の負荷側Vベルトの位置(断面)
15 ベルトテンション調整プーリー
16 左右プーリ一回転の同期を取る棒
17 Vベルト(断面)
1 Power side rotating shaft 2 Power shaft screw guide groove 3 Power side pulley left half (cross section)
4 Power side pulley right half (cross section)
5 Tension coil spring 6 Power V-belt position (cross section) when torque is large
7 Position of power side V-belt when torque is small (cross section)
8 Load side rotating shaft 9 Load shaft screw guide groove 10 Load side pulley left half (cross section)
11 Load side pulley right half (cross section)
12 Compression coil spring 13 Load side V-belt position (cross section) when torque is large
14 Position of load side V-belt when torque is small (cross section)
15 Belt tension adjusting pulley 16 Rod that synchronizes one rotation of left and right pulleys 17 V belt (cross section)

Claims (1)

Vベルト式無段階変速機構において、原動機又は人力からの動力トルクの大きさと、負荷トルクの大きさに応じて、動力側及び負荷側のプーリーと軸との間で発生する回転トルクを利用した機械的な直接作用で、動力側及び負荷側の二分したプーリーの間隔を自己変位制御させる事により、動力側及び負荷側のプーリーの径を変化させて無段階変速の制御を行う。  In a V-belt type continuously variable transmission mechanism, a machine that uses rotational torque generated between a power-side and load-side pulley and shaft in accordance with the magnitude of power torque from a motor or manpower and the magnitude of load torque By directly controlling the distance between the pulverized pulleys on the power side and the load side by self-displacement, the diameters of the pulleys on the power side and the load side are changed to control the stepless speed change.
JP2004109475A 2004-03-06 2004-03-06 Self-displacement control of pulley diameter for v belt type continuously variable transmission Pending JP2005042908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109475A JP2005042908A (en) 2004-03-06 2004-03-06 Self-displacement control of pulley diameter for v belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109475A JP2005042908A (en) 2004-03-06 2004-03-06 Self-displacement control of pulley diameter for v belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2005042908A true JP2005042908A (en) 2005-02-17

Family

ID=34270140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109475A Pending JP2005042908A (en) 2004-03-06 2004-03-06 Self-displacement control of pulley diameter for v belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2005042908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412469B (en) * 2010-06-01 2013-10-21
CN108313041A (en) * 2017-01-16 2018-07-24 丰田自动车株式会社 Electrical braking device
CN109780175A (en) * 2019-03-11 2019-05-21 温州天纳福汽车轴承股份有限公司 With dust reduction capability and it is versatile can widened expansion tightening wheel
KR102094713B1 (en) * 2018-10-31 2020-03-30 고려대학교 산학협력단 Continuously weight adjustable fitness equipment
CN112253707A (en) * 2020-10-15 2021-01-22 俞利明 Connecting piece capable of quickly adjusting and controlling rotating speed

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412469B (en) * 2010-06-01 2013-10-21
CN108313041A (en) * 2017-01-16 2018-07-24 丰田自动车株式会社 Electrical braking device
JP2018114766A (en) * 2017-01-16 2018-07-26 トヨタ自動車株式会社 Electric brake device
KR102094713B1 (en) * 2018-10-31 2020-03-30 고려대학교 산학협력단 Continuously weight adjustable fitness equipment
CN109780175A (en) * 2019-03-11 2019-05-21 温州天纳福汽车轴承股份有限公司 With dust reduction capability and it is versatile can widened expansion tightening wheel
CN109780175B (en) * 2019-03-11 2022-02-25 温州天纳福汽车轴承股份有限公司 Widened tensioning wheel with dustproof function
CN112253707A (en) * 2020-10-15 2021-01-22 俞利明 Connecting piece capable of quickly adjusting and controlling rotating speed

Similar Documents

Publication Publication Date Title
US10323732B2 (en) Continuously variable transmission
US20080312013A1 (en) Belt Continuously Variable Transmission for Straddle Type Vehicle, and Straddle Type Vehicle
EP2526010B1 (en) Motor having integrated torque sensor
KR101190375B1 (en) continuously variable transmission
TW200726932A (en) Riding type vehicle and power unit
US9964209B2 (en) Maximum axial position changing RPM methods
JP2005042908A (en) Self-displacement control of pulley diameter for v belt type continuously variable transmission
EP1475555A1 (en) Continuously driving transmission, and equipment having continuously driving transmission
EP1420195B1 (en) Continuously variable ratio drive
CA2951857A1 (en) An electromechanically actuated continuously variable transmission system and method of controlling thereof
US20120115656A1 (en) Electric-control belt-type variable-speed transmission mechanism
JP2008183995A (en) Continuously variable transmission for bicycle
EP1568922B1 (en) Control system for a gearshift
CN217227830U (en) Chain wheel speed changing device of middle-placed motor and middle-placed motor thereof
US20160123463A1 (en) Maximum Axial Position Changing RPM Methods
KR101026005B1 (en) Continuously variable transmission for a bycycle
WO2016172013A1 (en) Maximum axial position changing rpm methods
CN2454267Y (en) Multi-stage speed variator for bicycle
KR200328321Y1 (en) Driving apparatus for electric bicycle
CN105351498B (en) A kind of double belt stepless speed variator of vehicle
US9052002B2 (en) Continuously variable transmission having speed control
WO2023275706A1 (en) A continuously variable transmission drive system
CN115571258A (en) Chain wheel speed changing device of middle-placed motor and middle-placed motor thereof
KR20100105367A (en) Automatic continuously variable transmission
JP2010167976A (en) Non-stage derailleur for bicycle and bicycle equipped with the same