JP2005042791A - Electro-fusion joint bonding method - Google Patents

Electro-fusion joint bonding method Download PDF

Info

Publication number
JP2005042791A
JP2005042791A JP2003202254A JP2003202254A JP2005042791A JP 2005042791 A JP2005042791 A JP 2005042791A JP 2003202254 A JP2003202254 A JP 2003202254A JP 2003202254 A JP2003202254 A JP 2003202254A JP 2005042791 A JP2005042791 A JP 2005042791A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
joint
resin
heating element
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003202254A
Other languages
Japanese (ja)
Inventor
Sadao Nagase
貞雄 長瀬
Masaru Kumagai
勝 熊谷
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ef Techno Kk
Mitsubishi Kagaku Sanshi Corp
Original Assignee
Ef Techno Kk
Mitsubishi Kagaku Sanshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ef Techno Kk, Mitsubishi Kagaku Sanshi Corp filed Critical Ef Techno Kk
Priority to JP2003202254A priority Critical patent/JP2005042791A/en
Publication of JP2005042791A publication Critical patent/JP2005042791A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electro-fusion joint bonding method in which a fusion-bonded portion is hardly separated when fluid such as city gas, tap water, heating medium of flooring members for floor heating passes. <P>SOLUTION: In a method for bonding a thermoplastic resin tube to a portion of the inner circumference of an electro-fusion joint having an embedded heat generating body in which the heat generating body is embedded, unevenness is formed on the surface of the thermoplastic resin tube, and the tube is fusion-bonded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロヒュージョン継手(短筒状継手)の接合方法に関する。さらに詳しくは、エレクトロヒュージョン継手の内壁面に熱可塑性樹脂管を融着接合し、融着接合した部分が剥離し難い接合方法に関するものである。
【0002】
【従来の技術】
従来、都市ガス、水道水、床暖房用熱媒などの流体を通す熱可塑性樹脂管を接合する継手として、接合部分に、通電によって発熱するコイルなどの発熱体が埋設された熱可塑性樹脂からなるエレクトロヒュージョン継手(短筒状継手)が知られている。このエレクトロヒュージョン継手は、通電すると発熱する発熱体を埋設した熱可塑性樹脂の成形品を射出成形金型にインサートし、この成形品の表面に、継手の外殻を構成する熱可塑性樹脂を射出成形し、積層一体化する方法によって製造されている。流体を通す熱可塑性樹脂管の耐熱性、耐久性、耐薬品性などを向上させるために、発熱体を埋設した成形品と積層一体化される外殻を構成する樹脂として、架橋させた熱可塑性樹脂が使用されるようになった。架橋性の未架橋熱可塑性樹脂を射出成形して、発熱体を埋設した成形品と積層一体化した後、この未架橋熱可塑性樹脂を架橋させることによって製造される(例えば、特許文献1参照)。
【0003】
しかし、上記の従来のエレクトロヒュージョン継手によって融着接合(接続)可能な樹脂管は、その表面が架橋されていない熱可塑性樹脂よりなる管に限定され、架橋性熱可塑性樹脂の樹脂管との接合は不十分であり、この継手によって融着接合した部分は漏れが生じる等の理由により適用が除外されている。これは、一旦架橋してしまった架橋熱可塑性樹脂管は、発熱体によって溶解させようとしても溶融せず、一体接合できないことによる。このような欠点を、構造面から改良したもの(例えば、特許文献2参照)、材料面から改良したもの(例えば、特許文献3、特許文献4参照)、溶融接合条件面から改良したもの(例えば、特許文献5)などが提案されている。
【0004】
【特許文献1】
特開平2−253091号公報
【特許文献2】
特開平9−170693号公報
【特許文献3】
特開2000−280731号公報
【特許文献4】
特開2001−82667号公報
【特許文献5】
特開2001−289388号公報
【0005】
【発明が解決しようとする課題】
本発明者らがさらに検討した結果、上記提案の手法で接合したエレクトロヒュージョン継手であっても、なお、融着接合部につきISO13954に準拠して剥離(ピール)試験を行うと、接合部の剥離率が高い(剥離し易い)という問題があることがわかった。本発明者らは、かかる状況に鑑み、融着接合部が剥離し難く剥離率が低いエレクトロヒュージョン継手が得られる技術を提供すべく鋭意検討の結果、本発明を完成するに至ったものである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明は、発熱体が埋設されてなるエレクトロヒュージョン継手内周の発熱体が埋設された部分に、熱可塑性樹脂管を接合する方法において、熱可塑性樹脂管の接合される管表面に凹凸を設け、この熱可塑性樹脂管の凹凸を設けた部分を前記継手に挿入し、発熱体に通電して融着接合することを特徴とする、エレクトロヒュージョン継手の接合方法を提供する。
【0007】
【発明の実施の態様】
以下、本発明を詳細に説明する。本発明に係る接合方法では、発熱体が埋設されたエレクトロヒュージョン継手(短筒状継手)と熱可塑性樹脂管とを融着接合する。エレクトロヒュージョン継手は外観が短筒状を呈し、両側の開口部から接合されるべき樹脂管を挿入・接合される箇所の内周に発熱体が樹脂層に埋設されてなる(この樹脂層を、「発熱体埋設樹脂層」ということがある)。発熱体は、通電すると発熱するコイルである。
【0008】
短筒状継手は、上記の発熱体埋設樹脂層を、接着性を有する改質ポリオレフィン共重合体樹脂(以下、「改質PO樹脂」ということがある)によって構成する。本発明において改質PO樹脂の基体となる樹脂は、エチレン重合体および/またはエチレン・α−オレフィン共重合体である。エチレン・α−オレフィン共重合体とは、エチレンを主成分としα−オレフィンを共重合したものをいう。α−オレフィンとは、通常、炭素数3〜20のα−オレフィン、具体的には、プロピレン、1ブテン、1−ヘキセン、1−オクテン、1−デセン、1−テトラデセン、1−オクタデセン、4−メチル−1−ペンテンなどであり、単独でも2種類以上の混合物であってもよい。
【0009】
エチレン重合体の具体例としては、超低密度ポリエチレン(VLDPE)、直鎖状ポリエチレン樹脂(LLDPE)、中密度ポリエチレン(MDPE)および高密度ポリエチレン(HDPE)とも称され、分子構造は直鎖状を有するものなどが挙げられる。エチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン系エラストマ−(EPR)、エチレン・ブテン−1系エラストマ−(EBR)、プロピレン・ブテン−1系エラストマ−(PBR)などが挙げられるが、これら例示したものに限定されるものではない。
【0010】
上記のエチレン重合体、エチレン・α−オレフィン共重合体は、密度(測定法:JIS K7112準拠)が0.88未満では、改質PO樹脂の引張強度不足のため、接着体で必要な60℃での接着強度が低く、0.955を超えると接着層での改質PP樹脂が固いので接着性が劣り、いずれも好ましくない。密度の特に好ましい範囲は、0.89〜0.95g/cmである。
【0011】
上記のエチレン重合体、エチレン・α−オレフィン共重合体は、そのMFR(測定法:JIS K7210準拠)が0.05〜50g/10minの範囲のものが好ましい。MFRが上記範囲以外のものは、溶融粘度が低すぎるか高すぎて、成形性に劣るので好ましくない。MFRの特に好ましい範囲は、0.1〜30g/10minである。
【0012】
本発明において改質PO樹脂とは、上記のエチレン重合体および/またはエチレン・α−オレフィン共重合体の一部または全部が、不飽和カルボン酸および/またはその誘導体(モノマー)の1種または2種以上の混合物によって、変性されたものをいう。変性するに使用される不飽和カルボン酸および/またはその誘導体としては、アクリル酸、マレイン酸、フマ−ル酸、イタコン酸、シトラコン酸などの不飽和カルボン酸、または、その誘導体、例えば、無水物、アミド、イミド、エステルなどが挙げられる。これらの中では、不飽和ジカルボン酸またはその酸無水物が好適であり、特にマレイン酸またはその無水物が好適である。
【0013】
上記のエチレン重合体および/またはエチレン・α−オレフィン共重合体を変性するには、従来から知られている種々の方法によることができる。例えば、(1)オレフィン系共重合体(1種以上の混合物を含む)および上記不飽和カルボン酸および/またはその誘導体(モノマー)を、あらかじめ混合しておき、この混合物を押出機で溶融させてグラフト共重合させる方法、(2)オレフィン系共重合体(1種以上の混合物を含む)を溶媒に溶解させ、この溶液に上記不飽和カルボン酸および/またはその誘導体を添加してグラフト共重合させる方法、などが挙げられる。
【0014】
上記の(1)、(2)のいずれの方法によって変性するにしても、不飽和カルボン酸および/またはその誘導体を効率よくグラフト共重合させるためには、重合開始剤としてラジカル発生剤を用いるのが好ましい。使用できるラジカル発生剤としては、有機過酸化物が一般的であり、具体的には、2,5−ジメチルヘキサン−2,5ジヒドロパ−オキサイド、2,5−ジメチル−2,5ジ(tert−ブチルパ−オキシ)ヘキシン−3、ジ−tert−ブチルパ−オキサイド、tert−ブチル−クミルパ−オキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパ−オキシ)ヘキサン、ジ−クミルパ−オキサイド、tert−ブチルパ−オキシベンゾエ−ト、tert−ブチルパ−オキシアセテ−ト、tert−ブチルパ−オキシイソプロピルカ−ボネ−ト、ベンゾイルパ−オキサイド、m−トルオイルパ−オキサイドなどが挙げられる。
【0015】
これらの中では、2,5−ジメチルヘキサン−2,5ジヒドロパ−オキサイド、2,5−ジメチル−2,5ジ(tert−ブチルパ−オキシ)ヘキシン−3、ジ−tert−ブチルパ−オキサイド、ジ−クミルパ−オキサイド、ベンゾイルパ−オキサイド、m−トルオイルパ−オキサイドなどが特に好ましい。
【0016】
グラフト共重合させる際の反応温度は、エチレン重合体および/またはエチレン・α−オレフィン共重合体の種類、不飽和カルボン酸および/またはその誘導体の種類、ラジカル発生剤の有無および種類、有の場合はその使用量などにより変化するが、通常、80〜300℃の温度範囲で選ばれる。ラジカル発生剤の一般的な使用量は、オレフィン系共重合体100重量部に対して通常0.001〜8重量部の範囲で選ばれる。
【0017】
上記方法によって変性して得られた改質PO樹脂には、変性の条件によっては未反応の不飽和カルボン酸および/またはその誘導体が残存することがあるので、接着性の観点から、できるだけ残存させない方が好ましい。従って、必要に応じて各種の除去方法、例えば、アセトンなどの貧溶媒による抽出、加熱乾燥処理による未反応化合物(モノマー)の脱気、などの後処理を適用することもできる。
【0018】
上記方法によって変性された改質PO樹脂は、グラフト量(測定法:赤外分光光度計による)が0.01〜10重量%の範囲が好ましい。グラフト量が0.01重量%未満では金属との接着性が劣り、10重量%を超えるとグラフト共重合時に一部架橋を起こし成形性が劣るばかりでなく、ブツ等により製品外観が悪化し、かつ、接着性も低下するので、好ましくない。グラフト量の特に好ましい範囲は、0.1〜5重量%である。
【0019】
接着性を有する改質PO樹脂組成物を得るには、改質PO樹脂にエチレン重合体および/またはエチレン共重合体を10〜90重量%配合する。エチレン重合体としては、超低密度ポリエチレン(VLDPE)、直鎖状ポリエチレン樹脂(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)およびこれらの混合物が挙げられる。エチレン共重合体としては、エチレン・プロピレン系エラストマ−(EPR)、エチレン・ブテン−1系エラストマー(EBR)、プロピレン・ブテン−1系エラストマ−(PBR)などが挙げられるが、これら例示したものに限定されるものではない。
【0020】
上記のエチレン重合体、エチレン・α−オレフィン共重合体は、密度(測定法:JIS K7112準拠)が0.88未満では、改質PO樹脂の引張強度不足のため、接着体で必要な60℃での接着強度が低く、0.955を超えると接着層での改質PP樹脂が固いので接着性が劣り、いずれも好ましくない。密度の特に好ましい範囲は、0.89〜0.95g/cmである。
【0021】
上記のエチレン重合体、エチレン・α−オレフィン共重合体は、密度(測定法:JIS K7112準拠)が0.88未満では、改質PE樹脂の引張強度不足のため、接着体で必要な60℃での接着強度が低く、0.955を超えると接着層での改質PP樹脂が固いので接着性が劣り、いずれも好ましくない。密度の特に好ましい範囲は、0.89〜0.95g/cmである。
【0022】
接着性を有する改質PO樹脂組成物を得るには、上記の改質PO樹脂にエチレン重合体および/またはエチレン共重合体を10〜90重量%配合する。配合量が10重量%未満であると剥離強度が十分でなく、配合量が90重量%を超えると、剥離強度が著しく低下するので、いずれも好ましくない。
【0023】
接着性を有する改質PO樹脂組成物には、前記成分に加えて、耐熱安定剤、耐候安定剤、ブロッキング防止剤、スリップ剤、帯電防止剤、触媒残査の中和剤、顔料、染料、無機および/または有機フィラーなどの各種の樹脂添加剤を、本発明の目的を損なわない範囲で配合することができる。接着性を有する改質PE樹脂組成物に、前記成分および各種の樹脂添加剤を配合するには、例えば、タンブラーブレンダー、Vブレンダー、リボンブレンダー、ヘンシェルミキサー等によって混合し、混合後、単軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどで溶融混練し、造粒または粉砕する、従来から知られている方法によることができる。
【0024】
短筒状継手は、発熱体が接着性を有する改質ポリエチレン共重合体樹脂(改質PO樹脂)と、エチレン重合体および/またはエチレン共重合体とよりなる樹脂組成物に埋設されているので、発熱体に通電することによって、発熱体埋設樹脂層を構成する改質PO樹脂などを容易に溶融させることができ、溶融した発熱体埋設樹脂が架橋熱可塑性樹脂管の表面を隙間なく覆うことになり、冷却後は接合一体化され、各々の特性を十分に発揮する。
【0025】
上記短筒状継手によって接合される樹脂管は、ポリエチレンを原料として押出成形法で製造し、架橋させたものが好ましい。ポリエチレン重合体としては、低密度ポリエチレン(VLDPE)、超低密度ポリエチレン(VLDPE)、直鎖状ポリエチレン樹脂(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)およびこれらの混合物が挙げられる。例えば、特許文献3(特開2000−280731号公報)に記載の方法や、特許文献4(特開2001−82667号公報)に記載の従来法によって接合する場合、低密度架橋ポリエチレン管は剥離率が10%である。これに対して、高密度架橋ポリエチレン管はIS013954に準拠した剥離(ピール)試験での剥離率が33%を超えるが、本発明方法で接合すると、高密度架橋ポリエチレンであっても、剥離率を大幅に低くすることができる。
【0026】
従来は、エレクトロヒュージョン継手を融着接合する際に、接合される熱可塑性樹脂管の表面を削りとって外径を小さくして短筒状継手に挿入し、融着接合していた。本発明方法によってエレクトロヒュージョン継手を接合する際には、短筒状継手によって接合される熱可塑性樹脂管の表面に凹凸を設ける。熱可塑性樹脂管の表面に凹凸を設けることにより、融着接合部の剥離率が低くすることができる。本発明において凹凸とは、山形、波型、鋸の歯型などを意味する(後記、図2、図4参照)。管表面の凹凸は、管の長さ方向に沿わせて設けてもよいし、管の外周全体に沿わせて設けてもよい。管の外周全体に沿わせて設ける場合は、螺旋溝状にするのが好ましい。また、凹凸を設ける割合は剥離率が低下することを防止できれば制限はなく、通常継手内周の発熱体と接触する部分の50%以上の部分に、略均等に凹凸を設けるのが好ましい。
【0027】
熱可塑性樹脂管の表面に設ける凹凸は、本発明者らの実験によれば、元の管の表面積を1とするとき、凹凸を設けた管の表面積を元の管の表面積の1.1倍〜4.5倍の範囲が好ましいことがわかった。表面積が元の管の表面積の1.1倍未満であると、融着接合部の剥離率は改善されず、4.5倍を超えると短筒継手の内壁面との接触面が小さくなりすぎて剥離し易くなり、いずれも好ましくない。上記範囲では、元の管の表面積の1.1倍〜3.5倍の範囲が特に好ましい。
【0028】
【実施例】
以下、本発明を図面および実施例に基づいて説明するが、本発明はその趣旨を超えない限り、以下の記載例に限定されるものではない。
【0029】
図1は、本発明方法によって溶融接合したエレクトロヒュージョン継手の一部切り欠き側面図であり、図2は架橋熱可塑性樹脂管の表面に設けた凹凸の一例を示す一部切欠き斜視略図、図3は図2のA部分の拡大略図、図4は架橋熱可塑性樹脂管の表面に設けた凹凸の他の例の一部切欠き斜視略図、図5は図4のB部分の拡大略図、図6は従来法により接合する際の架橋熱可塑性樹脂管の表面を削った状態を示す一部切欠きである。
【0030】
図1において、1はエレクトロヒュージョン継手であり短筒状の外観を呈し、長さ方向の中央部を挟んでほぼ対称に、開口部側の内周面の架橋熱可塑性樹脂管を接合する箇所に、通電によって発熱するコイル2が埋設されている。3は、コイル2を埋設した改質PE共重合体にエチレン重合体とに樹脂組成物よりなる発熱体埋設樹脂層であって、円筒状外観を呈する。4は発熱体2を埋設した改質PO共重合体樹脂製の層の外表面に形成された架橋熱可塑性樹脂の被覆層である。5、5´はエレクトロヒュージョン継手によって接合される架橋熱可塑性樹脂管である。
【0031】
エレクトロヒュージョン継手(短筒状継手)1の双方の開口部側の内周面に、表面に凹凸6または7を設けた架橋熱可塑性樹脂管5、5´を嵌合し、コイル2に通電すると、改質PO共重合体で構成されている発熱体埋設樹脂層3が溶融し、架橋熱可塑性樹脂管5、5´の表面を隙間なく覆い、冷却後は接合一体化され、発熱体埋設樹脂層3と架橋熱可塑性樹脂管5、5´との間に隙間や、接着不良部分ができず、確実にかつ強固に融着接合されることとなる。
【0032】
架橋熱可塑性樹脂管5、5´の表面に設ける凹凸の例は、図3および図5に示した。元の管の表面積とは、図3に示した例では、山形凹凸を形成しないa部分の表面積を1とし、凹凸を形成したb部分の表面積とc部分の表面積との和の比{(b+c)/a}を1.1倍〜4.5倍とする。図5に示した例では、山形凹凸を形成しないd部分の表面積を1とし、凹凸を形成したe部分の表面積、f部分の表面積およびg部分の和の比{(e+f+2g)/d}を1.1倍〜4.5倍とする。
【0033】
エレクトロヒュージョン継手(短筒状継手)1は、被覆層4が架橋熱可塑性樹脂によって構成され、また、架橋熱可塑性樹脂管5、5´の表面に凹凸6または7を設けているので、短筒継手の内壁面との界面が強固に溶融接合され、界面の剥離率が低くなるので接合部分の強度が優れる。従って、本発明に係る接合方法によって接合されたエレクトロヒュージョン継手は、水道水用、温水用、都市ガス用の熱可塑性樹脂管5、5´として好適に用いることができる。
【0034】
[実施例1〜実施例3、比較例1]
以下の実施例および比較例で使用した原料樹脂は、次のとおりである。
発熱体埋設樹脂層は、接着性を有する改質ポリエチレン樹脂(A)とエチレン重合体(B)の混合物である。接着性を有する改質ポリエチレン樹脂(A)は、三菱化学社製、商品名:モデック−AP、グレードM103(MFR:2.0g/10min、密度:0.923g/cm)であり、エチレン重合体(B)は、日本ポリケム社製、商品名:ノバテックLL、グレードUF240(MFR:2.1g/10min、密度:0.920g/cm)であり、被覆層を形成する架橋熱可塑性樹脂は、シラン架橋性ポリエチレン(三菱化学社製、商品名:リンクロンX、グレ−ドCH−750T、MFR:2.5g/10min、密度:0.925g/cm)である。改質ポリエチレン樹脂(A)とエチレン重合体(B)との混合比率は、前者85重量%、後者15重量%とした。
【0035】
上記の図面で説明したような構成で、パイプ呼称10Aのエレクトロヒュージョン継手(短筒状継手)を射出成形法によって製造した。発熱体埋設層3に埋設したコイル2は、太さ0.3mmのニッケル線製、ピッチは3mmで、発熱体埋設層3の肉厚の中心部に埋設した。発熱体埋設層3の内径は13.1mmφ、外径は15.7mmφで、円筒体のコイル部の長さは13mmであり、被覆層4の厚さは3mmとした。
【0036】
このエレクトロヒュージョン継手の双方の開口部に、高密度架橋ポリエチレン管(密度:0.952g/cm、三菱化学産資社製、商品名:エクセルパイプ、呼称:XLFH−10、外径13.1mm、内径10mm)を嵌合し、コイル2に平均15Vの電圧を34秒間通電して溶融接合した。この際、架橋ポリエチレン管の表面であって継手に嵌合する部分に、図2に示した谷の深さが0.2mmであって、隣接する谷の間隔を変え、表面積を表−1に示したように変えた山形凹凸を形成した。なお、高密度架橋ポリエチレン管の表面であって継手に嵌合する部分を深さ0.1mmに削り取った管の表面積を1とし、山形凹凸を形成した表面積に対する比率の基準とした。溶融接合してから24時間経過した後、得られた接合継手をから竹割りに巾10mmで切断し、ISO13954に準拠した剥離(ピール)試験を行った(n=8)。ピール試験での剥離率と、規格に対する合否判定を表−1に示す。なお、規格に対する合否判定の基準は、剥離率が30%以下を合格とし、30%を超えるものを不合格とした。
【0037】
【表1】

Figure 2005042791
【0038】
表−1より、次のことが明らかである。
(1)高密度架橋ポリエチレン管の表面に山形凹凸を形成され、元の管に比べて表面積が大きくされているものは、融着接合部分の剥離率が小さく接合部分の強度が優れる(実施例1〜実施例3参照)。
(2)これに対して、高密度架橋ポリエチレン管の表面に山形凹凸を形成せず、単に削りとったものは剥離率が約36%と高く、破壊し易い(比較例1参照)。
【0039】
【発明の効果】
本発明は、以上詳細に説明した通りであり、以下のような特別に有利な効果を奏し、その産業上の利用価値は極めて大である。
1.本発明に係る接合方法により接合するときは、熱可塑性樹脂管の接合される管表面に凹凸を設けて融着接合するので、接合部分の剥離率が小さく接合部分の強度が優れる。
2.本発明に係る接合方法により接合するときは、従来法で接合する場合接合部分の剥離率が改善されなかった高密度架橋ポリエチレン管でも、剥離率を大幅に低くすることができる。
3.本発明に係る接合方法により接合したエレクトロヒュージョン継手は、接合部分は耐熱性、耐久性、耐薬品性に優れているので、水道水用、温水用、都市ガス用の配管継手として使用できる。
【図面の簡単な説明】
【図1】本発明に係るエレクトロヒュージョン継手の一部切り欠き側面図である。
【図2】架橋熱可塑性樹脂管の表面に設けた凹凸の一例を示す一部切欠き斜視略図である。
【図3】図2のA部分の拡大略図である。
【図4】架橋熱可塑性樹脂管の表面に設けた凹凸の他の例の一部切欠き斜視略図である。
【図5】図4のB部分の拡大略図である。
【図6】従来法により接合する際の架橋熱可塑性樹脂管の表面を削った状態を示す一部切欠きである。
【符号の説明】
1:エレクトロヒュージョン継手(短筒状継手)
2:通電によって発熱する発熱体(コイル)
3:改質ポリオレフィン共重合体樹脂性の発熱体埋設樹脂層
4:架橋熱可塑性樹脂の被覆層(外殻)
5、5´:架橋熱可塑性樹脂管
6、7:架橋熱可塑性樹脂管の表面に設けた凹凸
8:架橋熱可塑性樹脂管の表面を削った部分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for joining an electrofusion joint (short tubular joint). More specifically, the present invention relates to a joining method in which a thermoplastic resin tube is fusion bonded to an inner wall surface of an electrofusion joint, and the fusion bonded portion is difficult to peel off.
[0002]
[Prior art]
Conventionally, as a joint for joining a thermoplastic resin pipe through which a fluid such as city gas, tap water, or a heating medium for floor heating passes, a joining body is made of a thermoplastic resin in which a heating element such as a coil that generates heat when energized is embedded. An electrofusion joint (short tubular joint) is known. In this electrofusion joint, a molded product of a thermoplastic resin in which a heating element that generates heat when energized is embedded is inserted into an injection mold, and the thermoplastic resin constituting the outer shell of the joint is injection molded on the surface of this molded product. However, it is manufactured by a method of stacking and integrating. In order to improve the heat resistance, durability, chemical resistance, etc. of thermoplastic resin pipes that allow fluids to pass through, crosslinked thermoplastic as a resin that constitutes the outer shell that is laminated and integrated with the molded product in which the heating element is embedded Resin came to be used. It is manufactured by injection-molding a crosslinkable uncrosslinked thermoplastic resin, laminating and integrating with a molded product in which a heating element is embedded, and then crosslinking the uncrosslinked thermoplastic resin (see, for example, Patent Document 1). .
[0003]
However, resin pipes that can be fusion-bonded (connected) by the above-described conventional electrofusion joint are limited to pipes made of thermoplastic resins whose surfaces are not cross-linked, and are bonded to resin pipes of cross-linkable thermoplastic resins. However, the application is excluded for the reason that leakage occurs in the portion fused and joined by this joint. This is because the crosslinked thermoplastic resin tube once crosslinked is not melted and cannot be integrally joined even if it is dissolved by the heating element. Such defects are improved from a structural aspect (for example, see Patent Document 2), improved from a material aspect (for example, see Patent Document 3 and Patent Document 4), and improved from a melt bonding condition surface (for example, Patent Document 5) has been proposed.
[0004]
[Patent Document 1]
JP-A-2-253091 [Patent Document 2]
JP-A-9-170693 [Patent Document 3]
JP 2000-280731 A [Patent Document 4]
JP 2001-82667 A [Patent Document 5]
JP-A-2001-289388
[Problems to be solved by the invention]
As a result of further investigation by the present inventors, even if the electrofusion joint is bonded by the above-described method, the peel-off of the joint portion is performed when a peel test is performed on the fusion-bonded portion in accordance with ISO13954. It was found that there was a problem that the rate was high (easy to peel). In view of such circumstances, the present inventors have completed the present invention as a result of intensive studies to provide a technique for obtaining an electrofusion joint in which a fusion-bonded portion is difficult to peel off and the peel rate is low. .
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a method for joining a thermoplastic resin pipe to a portion of the inner periphery of an electrofusion joint in which a heating element is buried, in which the thermoplastic resin pipe is joined. Providing a method for joining an electrofusion joint, characterized in that an uneven surface is provided on the surface of the tube, and the uneven portion of the thermoplastic resin tube is inserted into the joint, and the heating element is energized and fusion bonded. To do.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In the joining method according to the present invention, an electrofusion joint (short tubular joint) in which a heating element is embedded and a thermoplastic resin pipe are fused and joined. The electrofusion joint has a short cylindrical appearance, and a heating element is embedded in the resin layer on the inner periphery of the place where the resin pipe to be joined is inserted and joined from the openings on both sides (this resin layer is Sometimes referred to as “heating element embedded resin layer”). The heating element is a coil that generates heat when energized.
[0008]
In the short cylindrical joint, the heating element-embedded resin layer is formed of a modified polyolefin copolymer resin having adhesiveness (hereinafter sometimes referred to as “modified PO resin”). In the present invention, the resin used as the base of the modified PO resin is an ethylene polymer and / or an ethylene / α-olefin copolymer. The ethylene / α-olefin copolymer is a copolymer of ethylene as a main component and α-olefin. The α-olefin is usually an α-olefin having 3 to 20 carbon atoms, specifically, propylene, 1 butene, 1-hexene, 1-octene, 1-decene, 1-tetradecene, 1-octadecene, 4- Methyl-1-pentene and the like may be used alone or in combination of two or more.
[0009]
Specific examples of the ethylene polymer are also called very low density polyethylene (VLDPE), linear polyethylene resin (LLDPE), medium density polyethylene (MDPE) and high density polyethylene (HDPE), and the molecular structure is linear. And the like. Specific examples of the ethylene / α-olefin copolymer include ethylene / propylene elastomer (EPR), ethylene butene-1 elastomer (EBR), propylene / butene-1 elastomer (PBR), and the like. However, it is not limited to those exemplified.
[0010]
When the density (measurement method: JIS K7112 compliant) is less than 0.88, the above-mentioned ethylene polymer and ethylene / α-olefin copolymer have insufficient tensile strength of the modified PO resin. When the adhesive strength is low and exceeds 0.955, the modified PP resin in the adhesive layer is hard, so the adhesiveness is inferior. A particularly preferable range of the density is 0.89 to 0.95 g / cm 3 .
[0011]
The ethylene polymer and the ethylene / α-olefin copolymer preferably have an MFR (measurement method: JIS K7210 compliant) in the range of 0.05 to 50 g / 10 min. Those having an MFR outside the above range are not preferred because the melt viscosity is too low or too high and the moldability is poor. A particularly preferable range of MFR is 0.1 to 30 g / 10 min.
[0012]
In the present invention, the modified PO resin means that one or two of the above-mentioned ethylene polymer and / or ethylene / α-olefin copolymer is unsaturated carboxylic acid and / or a derivative (monomer) thereof. The one modified by a mixture of seeds or more. Examples of the unsaturated carboxylic acid and / or its derivative used for modification include an unsaturated carboxylic acid such as acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, or a derivative thereof such as an anhydride. , Amide, imide, ester and the like. Of these, unsaturated dicarboxylic acids or their anhydrides are preferred, and maleic acid or its anhydride is particularly preferred.
[0013]
In order to modify the ethylene polymer and / or ethylene / α-olefin copolymer, various conventionally known methods can be used. For example, (1) an olefin copolymer (including one or more mixtures) and the unsaturated carboxylic acid and / or derivative (monomer) thereof are mixed in advance, and the mixture is melted with an extruder. A method of graft copolymerization, (2) an olefin copolymer (including one or more mixtures) is dissolved in a solvent, and the unsaturated carboxylic acid and / or derivative thereof is added to the solution to perform graft copolymerization. Method, etc.
[0014]
Regardless of the method (1) or (2), a radical generator is used as a polymerization initiator in order to efficiently graft copolymerize the unsaturated carboxylic acid and / or derivative thereof. Is preferred. As the radical generator that can be used, an organic peroxide is generally used. Specifically, 2,5-dimethylhexane-2,5 dihydroperoxide, 2,5-dimethyl-2,5 di (tert- Butyl peroxy) hexyne-3, di-tert-butyl peroxide, tert-butyl-cumyl peroxide, 2,5-dimethyl-2,5-di (tert-butyl peroxy) hexane, di-cumyl peroxide, Examples thereof include tert-butyl peroxybenzoate, tert-butyl peroxyacetate, tert-butyl peroxyisopropyl carbonate, benzoyl peroxide, and m-toluoyl peroxide.
[0015]
Among these, 2,5-dimethylhexane-2,5 dihydroperoxide, 2,5-dimethyl-2,5 di (tert-butylperoxy) hexyne-3, di-tert-butylperoxide, di- Cumyl peroxide, benzoyl peroxide, m-toluoyl peroxide and the like are particularly preferable.
[0016]
The reaction temperature during graft copolymerization is the type of ethylene polymer and / or ethylene / α-olefin copolymer, the type of unsaturated carboxylic acid and / or its derivative, the presence or absence and type of radical generator, Varies depending on the amount used, but is usually selected in the temperature range of 80 to 300 ° C. The general use amount of the radical generator is usually selected in the range of 0.001 to 8 parts by weight with respect to 100 parts by weight of the olefin copolymer.
[0017]
Since the unreacted unsaturated carboxylic acid and / or its derivative may remain in the modified PO resin obtained by modification by the above method depending on the modification conditions, it should not be left as much as possible from the viewpoint of adhesiveness. Is preferred. Therefore, various removal methods, for example, post-treatment such as extraction with a poor solvent such as acetone, degassing of unreacted compound (monomer) by heat drying treatment, and the like can be applied.
[0018]
The modified PO resin modified by the above method preferably has a graft amount (measurement method: by infrared spectrophotometer) in the range of 0.01 to 10% by weight. If the graft amount is less than 0.01% by weight, the adhesion to the metal is inferior, and if it exceeds 10% by weight, not only the cross-linking is caused at the time of graft copolymerization, but the moldability is inferior. And since adhesiveness also falls, it is not preferable. A particularly preferable range of the graft amount is 0.1 to 5% by weight.
[0019]
In order to obtain a modified PO resin composition having adhesiveness, an ethylene polymer and / or an ethylene copolymer is blended in an amount of 10 to 90% by weight in the modified PO resin. Examples of the ethylene polymer include very low density polyethylene (VLDPE), linear polyethylene resin (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and mixtures thereof. Examples of the ethylene copolymer include ethylene / propylene elastomer (EPR), ethylene / butene-1 elastomer (EBR), propylene / butene-1 elastomer (PBR), and the like. It is not limited.
[0020]
When the density (measurement method: JIS K7112 compliant) is less than 0.88, the above-mentioned ethylene polymer and ethylene / α-olefin copolymer have insufficient tensile strength of the modified PO resin. When the adhesive strength is low and exceeds 0.955, the modified PP resin in the adhesive layer is hard, so the adhesiveness is inferior. A particularly preferable range of the density is 0.89 to 0.95 g / cm 3 .
[0021]
When the density (measurement method: JIS K7112 compliant) is less than 0.88, the above-mentioned ethylene polymer and ethylene / α-olefin copolymer have a tensile strength of the modified PE resin that is insufficient. When the adhesive strength is low and exceeds 0.955, the modified PP resin in the adhesive layer is hard, so the adhesiveness is inferior. A particularly preferable range of the density is 0.89 to 0.95 g / cm 3 .
[0022]
In order to obtain a modified PO resin composition having adhesiveness, 10 to 90% by weight of an ethylene polymer and / or an ethylene copolymer is blended with the modified PO resin. If the blending amount is less than 10% by weight, the peel strength is not sufficient, and if the blending amount exceeds 90% by weight, the peel strength is remarkably lowered.
[0023]
In addition to the above-mentioned components, the modified PO resin composition having adhesiveness includes a heat resistance stabilizer, a weather resistance stabilizer, an anti-blocking agent, a slip agent, an antistatic agent, a neutralizing agent for a catalyst residue, a pigment, a dye, Various resin additives such as inorganic and / or organic fillers can be blended as long as the object of the present invention is not impaired. In order to blend the above components and various resin additives into the modified PE resin composition having adhesiveness, for example, the mixture is mixed by a tumbler blender, V blender, ribbon blender, Henschel mixer, etc. It is possible to use a conventionally known method of melt-kneading, granulating or pulverizing with a machine, twin-screw extruder, Banbury mixer, kneader or the like.
[0024]
Since the short cylindrical joint is embedded in a resin composition comprising a modified polyethylene copolymer resin (modified PO resin) having an adhesive heating element and an ethylene polymer and / or an ethylene copolymer. By applying current to the heating element, the modified PO resin or the like constituting the heating element embedded resin layer can be easily melted, and the molten heating element embedded resin covers the surface of the crosslinked thermoplastic resin tube without gaps. After cooling, it is joined and integrated, and each characteristic is fully exhibited.
[0025]
The resin pipe joined by the short tubular joint is preferably manufactured by extrusion molding using polyethylene as a raw material and crosslinked. Polyethylene polymers include low density polyethylene (VLDPE), very low density polyethylene (VLDPE), linear polyethylene resin (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE) and mixtures thereof. . For example, when joining by the method described in Patent Document 3 (Japanese Patent Laid-Open No. 2000-280731) or the conventional method described in Patent Document 4 (Japanese Patent Laid-Open No. 2001-82667), the low density cross-linked polyethylene pipe has a peeling rate. Is 10%. In contrast, the high-density cross-linked polyethylene pipe has a peel rate in a peel test in accordance with IS013954 of more than 33%. Can be significantly reduced.
[0026]
Conventionally, when fusion bonding an electrofusion joint, the surface of the thermoplastic resin pipe to be joined is scraped to reduce the outer diameter and inserted into a short tubular joint for fusion joining. When joining the electrofusion joint by the method of the present invention, the surface of the thermoplastic resin pipe joined by the short tubular joint is provided with irregularities. By providing irregularities on the surface of the thermoplastic resin tube, the peel rate of the fusion bonded portion can be lowered. In the present invention, the unevenness means a mountain shape, a wave shape, a saw tooth shape, and the like (see below, FIG. 2 and FIG. 4). The irregularities on the tube surface may be provided along the length direction of the tube, or may be provided along the entire outer periphery of the tube. When providing along the whole outer periphery of a pipe | tube, it is preferable to make it a spiral groove shape. In addition, the ratio of providing unevenness is not limited as long as it is possible to prevent the peeling rate from being lowered, and it is preferable to provide unevenness approximately evenly in a portion of 50% or more of the portion in contact with the heating element on the inner periphery of the joint.
[0027]
According to the experiments conducted by the present inventors, the unevenness provided on the surface of the thermoplastic resin tube is 1.1 times the surface area of the original tube when the surface area of the original tube is set to 1. It was found that a range of ˜4.5 times is preferable. If the surface area is less than 1.1 times the surface area of the original tube, the peel rate of the fusion bonded part will not be improved, and if it exceeds 4.5 times, the contact surface with the inner wall surface of the short tube joint will be too small. It is easy to peel off, and neither is preferable. In the said range, the range of 1.1 times-3.5 times the surface area of an original pipe | tube is especially preferable.
[0028]
【Example】
Hereinafter, the present invention will be described based on the drawings and examples, but the present invention is not limited to the following description examples unless it exceeds the gist thereof.
[0029]
FIG. 1 is a partially cutaway side view of an electrofusion joint melt-bonded by the method of the present invention, and FIG. 2 is a partially cutaway perspective view schematically showing an example of irregularities provided on the surface of a crosslinked thermoplastic tube. 3 is an enlarged schematic view of portion A in FIG. 2, FIG. 4 is a partially cutaway perspective schematic view of another example of irregularities provided on the surface of the crosslinked thermoplastic resin tube, and FIG. 5 is an enlarged schematic view of portion B in FIG. Reference numeral 6 is a partially cutaway showing a state in which the surface of the cross-linked thermoplastic resin tube when it is joined by a conventional method.
[0030]
In FIG. 1, reference numeral 1 denotes an electrofusion joint, which has a short cylindrical appearance, and is substantially symmetrical across a central portion in the length direction, at a location where a crosslinked thermoplastic resin tube on the inner peripheral surface on the opening side is joined. The coil 2 that generates heat when energized is embedded. Reference numeral 3 denotes a heating element-embedded resin layer made of a resin composition and a modified PE copolymer having the coil 2 embedded therein and an ethylene polymer, and has a cylindrical appearance. Reference numeral 4 denotes a coating layer of a crosslinked thermoplastic resin formed on the outer surface of the layer made of the modified PO copolymer resin in which the heating element 2 is embedded. 5 and 5 'are cross-linked thermoplastic resin pipes joined by an electrofusion joint.
[0031]
When a cross-linked thermoplastic resin tube 5, 5 ′ having concavities and convexities 6 or 7 is fitted on the inner peripheral surfaces of both opening portions of the electrofusion joint (short tubular joint) 1 and the coil 2 is energized, The heating element embedded resin layer 3 composed of the modified PO copolymer is melted, covers the surfaces of the crosslinked thermoplastic resin tubes 5 and 5 'without any gaps, and is joined and integrated after cooling. There are no gaps or poorly bonded portions between the layer 3 and the crosslinked thermoplastic resin pipes 5 and 5 ', and the fusion bonding is surely and firmly performed.
[0032]
The example of the unevenness | corrugation provided in the surface of the crosslinked thermoplastic resin pipe | tube 5, 5 'was shown in FIG. 3 and FIG. In the example shown in FIG. 3, the surface area of the original tube is the ratio of the sum of the surface area of the b portion where the irregularities are formed and the surface area of the c portion where the irregularities are formed {(b + c ) / A} is 1.1 times to 4.5 times. In the example shown in FIG. 5, the surface area of the portion d where the chevron is not formed is set to 1, and the ratio {(e + f + 2g) / d} of the sum of the surface area of the portion e, the surface area of the portion f and the portion g formed with the unevenness is 1 .1 to 4.5 times.
[0033]
The electrofusion joint (short tubular joint) 1 has a coating layer 4 made of a cross-linked thermoplastic resin, and is provided with irregularities 6 or 7 on the surface of the cross-linked thermoplastic resin pipe 5, 5 ′. Since the interface with the inner wall surface of the joint is firmly melt-bonded and the peeling rate at the interface is lowered, the strength of the joint portion is excellent. Therefore, the electrofusion joint joined by the joining method according to the present invention can be suitably used as the thermoplastic resin pipes 5 and 5 'for tap water, hot water, and city gas.
[0034]
[Examples 1 to 3, Comparative Example 1]
The raw material resins used in the following examples and comparative examples are as follows.
The heating element-embedded resin layer is a mixture of a modified polyethylene resin (A) and an ethylene polymer (B) having adhesiveness. The modified polyethylene resin (A) having adhesiveness is manufactured by Mitsubishi Chemical Corporation, trade name: MODEC-AP, grade M103 (MFR: 2.0 g / 10 min, density: 0.923 g / cm 3 ), ethylene heavy The union (B) is manufactured by Nippon Polychem Co., Ltd., trade name: Novatec LL, grade UF240 (MFR: 2.1 g / 10 min, density: 0.920 g / cm 3 ), and the crosslinked thermoplastic resin forming the coating layer is Silane-crosslinkable polyethylene (trade name: Linkron X, Grade CH-750T, MFR: 2.5 g / 10 min, density: 0.925 g / cm 3 , manufactured by Mitsubishi Chemical Corporation). The mixing ratio of the modified polyethylene resin (A) and the ethylene polymer (B) was 85% by weight of the former and 15% by weight of the latter.
[0035]
An electrofusion joint (short tubular joint) having a pipe designation of 10A having the configuration described in the above drawings was manufactured by an injection molding method. The coil 2 embedded in the heating element embedded layer 3 was made of nickel wire having a thickness of 0.3 mm, the pitch was 3 mm, and embedded in the central portion of the thickness of the heating element embedded layer 3. The inner diameter of the heating element embedded layer 3 was 13.1 mmφ, the outer diameter was 15.7 mmφ, the length of the coil portion of the cylindrical body was 13 mm, and the thickness of the coating layer 4 was 3 mm.
[0036]
In both openings of this electrofusion joint, a high-density cross-linked polyethylene pipe (density: 0.952 g / cm 3 , manufactured by Mitsubishi Chemical Industries, Ltd., trade name: Excel pipe, designation: XLFH-10, outer diameter 13.1 mm , The inner diameter was 10 mm), and the coil 2 was melt-bonded by applying an average voltage of 15 V for 34 seconds. At this time, the depth of the valley shown in FIG. 2 is 0.2 mm on the surface of the cross-linked polyethylene pipe and fitted into the joint, the interval between adjacent valleys is changed, and the surface area is shown in Table-1. The chevron irregularities changed as shown were formed. The surface area of the high-density cross-linked polyethylene pipe, the portion of the pipe fitting cut into the joint, was cut to a depth of 0.1 mm, and the ratio of the surface area to which the chevron was formed was used as a reference. After 24 hours from the melt bonding, the obtained joint was cut into bamboo pieces with a width of 10 mm, and a peel test according to ISO13954 was performed (n = 8). Table 1 shows the peel rate in the peel test and the pass / fail judgment for the standard. In addition, the standard of the pass / fail judgment with respect to the standard was that the peel rate was 30% or less, and the case where it exceeded 30% was rejected.
[0037]
[Table 1]
Figure 2005042791
[0038]
From Table 1, the following is clear.
(1) In the case where chevron irregularities are formed on the surface of a high-density crosslinked polyethylene pipe and the surface area is larger than that of the original pipe, the peel rate of the fusion bonded part is small and the strength of the bonded part is excellent (Example) 1 to Example 3).
(2) On the other hand, what is not sharply formed on the surface of the high-density cross-linked polyethylene pipe and is simply shaved has a high peeling rate of about 36% and is easily broken (see Comparative Example 1).
[0039]
【The invention's effect】
The present invention is as described in detail above, and has the following particularly advantageous effects, and its industrial utility value is extremely great.
1. When joining by the joining method which concerns on this invention, since the unevenness | corrugation is provided in the pipe | tube surface to which a thermoplastic resin pipe is joined, the peeling rate of a joining part is small and the intensity | strength of a joining part is excellent.
2. When joining by the joining method which concerns on this invention, even if it joins by the conventional method, even if it is a high density bridge | crosslinking polyethylene pipe | tube in which the peeling rate of the junction part was not improved, the peeling rate can be lowered significantly.
3. Since the electrofusion joint joined by the joining method according to the present invention is excellent in heat resistance, durability, and chemical resistance, it can be used as a pipe joint for tap water, hot water, and city gas.
[Brief description of the drawings]
FIG. 1 is a partially cutaway side view of an electrofusion joint according to the present invention.
FIG. 2 is a partially cutaway perspective schematic view showing an example of unevenness provided on the surface of a crosslinked thermoplastic resin tube.
FIG. 3 is an enlarged schematic view of a part A in FIG. 2;
FIG. 4 is a partially cutaway perspective schematic view of another example of unevenness provided on the surface of a crosslinked thermoplastic resin tube.
FIG. 5 is an enlarged schematic view of a portion B in FIG.
FIG. 6 is a partially cutaway view showing a state in which the surface of a cross-linked thermoplastic resin tube when being joined by a conventional method is scraped.
[Explanation of symbols]
1: Electrofusion joint (short tubular joint)
2: Heating element (coil) that generates heat when energized
3: Modified polyolefin copolymer resinous heating element embedded resin layer 4: Cross-linked thermoplastic resin coating layer (outer shell)
5, 5 ': Cross-linked thermoplastic resin tube 6, 7: Concavities and convexities provided on the surface of the cross-linked thermoplastic resin tube 8: Part of the surface of the cross-linked thermoplastic resin tube shaved

Claims (3)

発熱体が埋設されてなるエレクトロヒュージョン継手内周の発熱体が埋設された部分に、熱可塑性樹脂管を接合する方法において、熱可塑性樹脂管の接合される管表面に凹凸を設け、この熱可塑性樹脂管の凹凸を設けた部分を前記継手に挿入し、発熱体に通電して融着接合することを特徴とする、エレクトロヒュージョン継手の接合方法。In the method of joining a thermoplastic resin pipe to the portion where the heating element is embedded in the inner periphery of the electrofusion joint in which the heating element is buried, the thermoplastic resin pipe is provided with irregularities on the surface to which the thermoplastic resin pipe is joined. A method for joining an electrofusion joint, comprising inserting a portion of a resin pipe having projections and depressions into the joint, and energizing and heating the heating element. 熱可塑性樹脂管が、架橋ポリエチレン管である、請求項1に記載のエレクトロヒュージョン継手の接合方法。The electrofusion joint joining method according to claim 1, wherein the thermoplastic resin pipe is a crosslinked polyethylene pipe. 表面に凹凸を設けられた熱可塑性樹脂管の表面積が、元の管の表面積の1.1倍〜4.5倍である、請求項1または請求項2に記載のエレクトロヒュ−ジョン継手の接合方法。The joint of the electro-fusion joint according to claim 1 or 2, wherein the surface area of the thermoplastic resin pipe provided with irregularities on the surface is 1.1 to 4.5 times the surface area of the original pipe. Method.
JP2003202254A 2003-07-28 2003-07-28 Electro-fusion joint bonding method Pending JP2005042791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202254A JP2005042791A (en) 2003-07-28 2003-07-28 Electro-fusion joint bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202254A JP2005042791A (en) 2003-07-28 2003-07-28 Electro-fusion joint bonding method

Publications (1)

Publication Number Publication Date
JP2005042791A true JP2005042791A (en) 2005-02-17

Family

ID=34262030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202254A Pending JP2005042791A (en) 2003-07-28 2003-07-28 Electro-fusion joint bonding method

Country Status (1)

Country Link
JP (1) JP2005042791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938487B1 (en) * 2007-10-31 2010-01-25 (주)대덕화학 Sewer pipe for Fusion Connection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237984A (en) * 1975-09-19 1977-03-24 Furukawa Electric Co Ltd Method of joining polyolefinic resin pipe body
JPS6397795U (en) * 1986-12-15 1988-06-24
JPH01303398A (en) * 1988-05-28 1989-12-07 Usui Internatl Ind Co Ltd Joint for connecting thin-diameter pipeline and connection method thereof
JPH08247371A (en) * 1995-03-14 1996-09-27 Olympus Optical Co Ltd Tube joining method
JP2000028073A (en) * 1998-07-08 2000-01-25 Mitsubishi Kagaku Sanshi Corp Electro-fusion joint
JP2002039488A (en) * 2000-07-18 2002-02-06 Osaka Gas Co Ltd Pipe connecting structure and pipe fitting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237984A (en) * 1975-09-19 1977-03-24 Furukawa Electric Co Ltd Method of joining polyolefinic resin pipe body
JPS6397795U (en) * 1986-12-15 1988-06-24
JPH01303398A (en) * 1988-05-28 1989-12-07 Usui Internatl Ind Co Ltd Joint for connecting thin-diameter pipeline and connection method thereof
JPH08247371A (en) * 1995-03-14 1996-09-27 Olympus Optical Co Ltd Tube joining method
JP2000028073A (en) * 1998-07-08 2000-01-25 Mitsubishi Kagaku Sanshi Corp Electro-fusion joint
JP2002039488A (en) * 2000-07-18 2002-02-06 Osaka Gas Co Ltd Pipe connecting structure and pipe fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938487B1 (en) * 2007-10-31 2010-01-25 (주)대덕화학 Sewer pipe for Fusion Connection

Similar Documents

Publication Publication Date Title
CA2482706C (en) Heat-recoverable composition and article
EP1130303A1 (en) Composite high-pressure pipe and method of joining same
US7160593B2 (en) Polyefinic pipe having a chlorinated polyolefinic hollow core
FI73718C (en) FOERFARANDE FOER SAMMANFOGNING AV POLYOLEFINPRODUKTER.
EP0804699A1 (en) Plastics pipe
WO2006038534A1 (en) Permeation-inhibiting members and multi-layer containers made by using the same
EP0842215B1 (en) Joining of polyolefin articles
JP4772174B2 (en) Electro-fusion joint
JP2005042791A (en) Electro-fusion joint bonding method
JP2016035327A (en) Electrofusion joint and method for producing the same
JP3732656B2 (en) Electrofusion fitting
JP4165055B2 (en) Barrier multilayer hollow container and method for producing the same
JP4727276B2 (en) Electrofusion joint and method for manufacturing the same
JP2000352480A (en) Resin pipe and its use
JP2003192016A (en) Multilayer hollow container and method of producing it
GB2271958A (en) Electrofusion welding of plastics pipes
JP4003432B2 (en) Barrier multilayer hollow container and method for producing the same
JP2018155394A (en) Coil protection member for electrofusion joint, method of manufacturing electrofusion joint, and electrofusion joint
JP4898084B2 (en) Water supply / hot water supply hose
JP2001179838A (en) Method for bonding polyolefin resin sheet
JPH09187876A (en) Resin joint for microwave fusion and fusing method
JP2000120971A (en) Polyethylene pipe connecting method based on electro- fusion joint
JP2001153291A (en) Electrofusion coupler
GB2392221A (en) A plastic pipe with a removable skin layer
JP2001289388A (en) Method of joining electrofusion joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406